Article Dans Une Revue Mathematical and computational applications Année : 2021

Data Augmentation and Feature Selection for Automatic Model Recommendation in Computational Physics

Fabien Casenave
Nissrine Akkari
  • Fonction : Auteur
  • PersonId : 772337
  • IdRef : 179237098
David Ryckelynck

Résumé

Classification algorithms have recently found applications in computational physics for the selection of numerical methods or models adapted to the environment and the state of the physical system. For such classification tasks, labeled training data come from numerical simulations and generally correspond to physical fields discretized on a mesh. Three challenging difficulties arise: the lack of training data, their high dimensionality, and the non-applicability of common data augmentation techniques to physics data. This article introduces two algorithms to address these issues: one for dimensionality reduction via feature selection, and one for data augmentation. These algorithms are combined with a wide variety of classifiers for their evaluation. When combined with a stacking ensemble made of six multilayer perceptrons and a ridge logistic regression, they enable reaching an accuracy of 90% on our classification problem for nonlinear structural mechanics.
Fichier principal
Vignette du fichier
mca-26-00017-v3.pdf (2.74 Mo) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-03282359 , version 1 (08-01-2025)

Licence

Identifiants

Citer

Thomas Daniel, Fabien Casenave, Nissrine Akkari, David Ryckelynck. Data Augmentation and Feature Selection for Automatic Model Recommendation in Computational Physics. Mathematical and computational applications, 2021, 26 (1), pp.17. ⟨10.3390/mca26010017⟩. ⟨hal-03282359⟩
45 Consultations
0 Téléchargements

Altmetric

Partager

More