BMP signalling directs a fibroblast-to-myoblast conversion at the connective tissue/muscle interface to pattern limb muscles
Résumé
Positional information driving limb muscle patterning is contained in lateral plate mesoderm-derived tissues, such as tendon or muscle connective tissue but not in myogenic cells themselves. The long-standing consensus is that myogenic cells originate from the somitic mesoderm, while connective tissue fibroblasts originate from the lateral plate mesoderm. We challenged this model using cell and genetic lineage tracing experiments in birds and mice, respectively, and identified a subpopulation of myogenic cells at the muscle tips close to tendons originating from the lateral plate mesoderm and derived from connective tissue gene lineages. Analysis of single-cell RNA-sequencing data obtained from limb cells at successive developmental stages revealed a subpopulation of cells displaying a dual muscle and connective tissue signature, in addition to independent muscle and connective tissue populations. Active BMP signalling was detected in this junctional cell sub-population and at the tendon/muscle interface in developing limbs. BMP gain- and loss-of-function experiments performed in vivo and in vitro showed that this signalling pathway regulated a fibroblast-to-myoblast conversion. We propose that localised BMP signalling converts a subset of lateral plate mesoderm-derived fibroblasts to a myogenic fate and establishes a boundary of fibroblast-derived myonuclei at the muscle/tendon interface to control the muscle pattern during limb development.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...