Query-based Linked Data Anonymization - Laboratoire d’Excellence Intelligences des Mondes Urbains
Communication Dans Un Congrès Année : 2018

Query-based Linked Data Anonymization

Résumé

We introduce and develop a declarative framework for privacy-preserving Linked Data publishing in which privacy and utility policies are specified as SPARQL queries. Our approach is data-independent and leads to inspect only the privacy and utility policies in order to determine the sequence of anonymization operations applicable to any graph instance for satisfying the policies. We prove the soundness of our algorithms and gauge their performance through experiments.
Fichier principal
Vignette du fichier
paper.pdf (350.29 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01896276 , version 1 (16-10-2018)

Identifiants

Citer

Rémy Delanaux, Angela Bonifati, Marie-Christine Rousset, Romuald Thion. Query-based Linked Data Anonymization. The 17th International Semantic Web Conference (ISWC 2018), Oct 2018, Monterey, United States. pp.530-546, ⟨10.1007/978-3-030-00671-6_31⟩. ⟨hal-01896276⟩
517 Consultations
871 Téléchargements

Altmetric

Partager

More