Mathematical modeling of antigenicity for HIV dynamics - Laboratoire de mécanique des structures et des systèmes couplés
Article Dans Une Revue MathematicS In Action Année : 2010

Mathematical modeling of antigenicity for HIV dynamics

Résumé

This contribution is devoted to a new model of HIV multiplication motivated by the patent of one of the authors. We take into account the antigenic diversity through what we define ``antigenicity'', whether of the virus or of the adapted lymphocytes. We model the interaction of the immune system and the viral strains by two processes. On the one hand, the presence of a given viral quasi-species generates antigenically adapted lymphocytes. On the other hand, the lymphocytes kill only viruses for which they have been designed. We consider also the mutation and multiplication of the virus. An original infection term is derived. So as to compare our system of differential equations with well-known models, we study some of them and compare their predictions to ours in the reduced case of only one antigenicity. In this particular case, our model does not yield any major qualitative difference. We prove mathematically that, in this case, our model is biologically consistent (positive fields) and has a unique continuous solution for long time evolution. In conclusion, this model improves the ability to simulate more advanced phases of the disease.
Fichier principal
Vignette du fichier
DLR-MiA-janv2011.pdf (562.57 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00329461 , version 1 (16-10-2008)
hal-00329461 , version 2 (01-02-2011)

Identifiants

Citer

François Dubois, Hervé Le Meur, Claude Reiss. Mathematical modeling of antigenicity for HIV dynamics. MathematicS In Action, 2010, 3 (1), pp.1-35. ⟨10.48550/arXiv.0810.2988⟩. ⟨hal-00329461v2⟩
330 Consultations
396 Téléchargements

Altmetric

Partager

More