Finite volumes and mixed Petrov-Galerkin finite elements : the unidimensional problem - Laboratoire de mécanique des structures et des systèmes couplés
Article Dans Une Revue Numerical Methods for Partial Differential Equations Année : 2000

Finite volumes and mixed Petrov-Galerkin finite elements : the unidimensional problem

Résumé

For Laplace operator in one space dimension, we propose to formulate the heuristic finite volume method with the help of mixed Petrov-Galerkin finite elements. Weighting functions for gradient discretization are parameterized by some universal function. We propose for this function a compatibility interpolation condition and we prove that such a condition is equivalent to the inf-sup property when studying stability of the numerical scheme. In the case of stable scheme and under two distinct hypotheses concerning the regularity of the solution, we demonstrate convergence of the finite volume method in appropriate Hilbert spaces and with optimal order of accuracy.
Fichier principal
Vignette du fichier
dubois-nmpde2k.pdf (256.77 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00923745 , version 1 (04-01-2014)

Identifiants

Citer

François Dubois. Finite volumes and mixed Petrov-Galerkin finite elements : the unidimensional problem. Numerical Methods for Partial Differential Equations, 2000, 16 (3), p. 335-360. ⟨10.48550/arXiv.1401.0824⟩. ⟨hal-00923745⟩
186 Consultations
117 Téléchargements

Altmetric

Partager

More