On triangular lattice Boltzmann schemes for scalar problems - Laboratoire de mécanique des structures et des systèmes couplés
Article Dans Une Revue Communications in Computational Physics Année : 2013

On triangular lattice Boltzmann schemes for scalar problems

Résumé

We propose to extend the d'Humiéres version of the lattice Boltzmann scheme to triangular meshes. We use Bravais lattices or more general lattices with the property that the degree of each internal vertex is supposed to be constant. On such meshes, it is possible to define the lattice Boltzmann scheme as a discrete particle method, without need of finite volume formulation or Delaunay-Voronoi hypothesis for the lattice. We test this idea for the heat equation and perform an asymptotic analysis with the Taylor expansion method for two schemes named D2T4 and D2T7. The results show a convergence up to second order accuracy and set new questions concerning a possible super-convergence.
Fichier principal
Vignette du fichier
dubois-lallemand-dsfd2011-hal-mai2014.pdf (618.56 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00986779 , version 1 (04-05-2014)

Identifiants

Citer

François Dubois, Pierre Lallemand. On triangular lattice Boltzmann schemes for scalar problems. Communications in Computational Physics, 2013, 13 (3), pp.649-670. ⟨10.4208/cicp.381011.270112s⟩. ⟨hal-00986779⟩
198 Consultations
173 Téléchargements

Altmetric

Partager

More