Multimodal vibration damping of a beam with a periodic array of piezoelectric patches connected to a passive electrical network
Abstract
A multimodal damping strategy is implemented by coupling a beam to its analogue electrical network. This network comes from the direct electromechanical analogy applied to a transverse lattice of point masses that represents the discrete model of a beam. The mechanical and electrical structures are connected together through an array of piezoelectric patches. A discrete and a semi-continuous model are proposed to describe the piezoelectric coupling. Both are based on the transfer matrix formulation and consider a finite number of patches. It is shown that a simple coupling condition gives a network that approximates the modal properties of the beam. A multimodal tuned mass effect is then obtained and a wide-band damping is introduced by choosing a suitable positioning for resistors in the network. The strategy and the models are experimentally validated by coupling a free-free beam to a completely passive network. A multimodal vibration reduction is observed, which proves the efficiency of the control solution and its potential in term of practical implementation.
Origin | Files produced by the author(s) |
---|
Loading...