Machine-Learning Enhanced Predictors for Accelerated Convergence of Partitioned Fluid-Structure Interaction Simulations - Modélisation mathématique et numérique
Pré-Publication, Document De Travail Année : 2024

Machine-Learning Enhanced Predictors for Accelerated Convergence of Partitioned Fluid-Structure Interaction Simulations

Florian de Vuyst
Iraj Mortazavi
  • Fonction : Auteur
  • PersonId : 1025143
Juan-Pedro Berro Ramirez
  • Fonction : Auteur
  • PersonId : 1039186

Résumé

Stable partitioned techniques for simulating unsteady fluid-structure interaction (FSI) are known to be computationally expensive when high added-mass is involved. Multiple coupling strategies have been developed to accelerate these simulations, but often use predictors in the form of simple finite-difference extrapolations. In this work, we propose a non-intrusive data-driven predictor that couples reduced-order models of both the solid and fluid subproblems, providing an initial guess for the nonlinear problem of the next time step calculation. Each reduced order model is composed of a nonlinear encoder-regressor-decoder architecture and is equipped with an adaptive update strategy that adds robustness for extrapolation. In doing so, the proposed methodology leverages physics-based insights from high-fidelity solvers, thus establishing a physics-aware machine learning predictor. Using three strongly coupled FSI examples, this study demonstrates the improved convergence obtained with the new predictor and the overall computational speedup realized compared to classical approaches.
Fichier principal
Vignette du fichier
elsarticle-template-num-names.pdf (8.24 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence

Dates et versions

hal-04576920 , version 1 (15-05-2024)

Licence

Identifiants

Citer

Azzeddine Tiba, Thibault Dairay, Florian de Vuyst, Iraj Mortazavi, Juan-Pedro Berro Ramirez. Machine-Learning Enhanced Predictors for Accelerated Convergence of Partitioned Fluid-Structure Interaction Simulations. 2024. ⟨hal-04576920⟩
93 Consultations
72 Téléchargements

Altmetric

Partager

More