Using contact network dynamics to implement efficient interventions against pathogen spread in hospital settings: A modelling study - Modélisation, épidémiologie et surveillance des risques sanitaires
Article Dans Une Revue PLoS Medicine Année : 2024

Using contact network dynamics to implement efficient interventions against pathogen spread in hospital settings: A modelling study

Résumé

Background: Long-term care facilities (LTCFs) are hotspots for pathogen transmission. Infection control interventions are essential, but the high density and heterogeneity of interindividual contacts within LTCF may hinder their efficacy. Here, we explore how the patient-staff contact structure may inform effective intervention implementation. Methods and findings: Using an individual-based model (IBM), we reproduced methicillin-resistant Staphylococcus aureus colonisation transmission dynamics over a detailed contact network recorded within a French LTCF of 327 patients and 263 staff over 3 months. Simulated baseline cumulative colonisation incidence was 21 patients (prediction interval: 11, 31) and 35 staff (prediction interval: 19, 54). We examined the potential impact of 3 types of interventions against transmission (reallocation reducing the number of unique contacts per staff, reinforced contact precautions, and hypothetical vaccination protecting against acquisition), targeted towards specific populations. All 3 interventions were effective when applied to all nurses or healthcare assistants (median reduction in MRSA colonisation incidence up to 35%), but the benefit did not exceed 8% when targeting any other single staff category. We identified "supercontactor" individuals with most contacts ("frequency-based," overrepresented among nurses, porters, and rehabilitation staff) or with the longest cumulative time spent in contact ("duration-based," overrepresented among healthcare assistants and patients in elderly care or persistent vegetative state (PVS)). Targeting supercontactors enhanced interventions against pathogen spread in the LTCF. With contact precautions, targeting frequency-based staff supercontactors led to the highest incidence reduction (20%, 95% CI: 19, 21). Vaccinating a mix of frequency- and duration-based staff supercontactors led to a higher reduction (23%, 95% CI: 22, 24) than all other approaches. Although based on data from a single LTCF, when varying epidemiological parameters to extend to other pathogens, our results suggest that targeting supercontactors is always the most effective strategy, indicating this approach could be applied to prevent transmission of other nosocomial pathogens. Conclusions: By characterising the contact structure in hospital settings and identifying the categories of staff and patients more likely to be supercontactors, with either more or longer contacts than others, interventions against nosocomial spread could be more effective. We find that the most efficient implementation strategy depends on the intervention (reallocation, contact precautions, vaccination) and target population (staff, patients, supercontactors). Importantly, both staff and patients may be supercontactors, highlighting the importance of including patients in measures to prevent pathogen transmission in LTCF.
Fichier principal
Vignette du fichier
journal.pmed.1004433.pdf (2.62 Mo) Télécharger le fichier
Origine Publication financée par une institution
licence

Dates et versions

hal-04674249 , version 1 (27-08-2024)

Licence

Identifiants

Citer

Quentin Leclerc, Audrey Duval, Didier Guillemot, Lulla Opatowski, Laura Temime. Using contact network dynamics to implement efficient interventions against pathogen spread in hospital settings: A modelling study. PLoS Medicine, 2024, 21 (7), pp.e1004433. ⟨10.1371/journal.pmed.1004433⟩. ⟨hal-04674249⟩
123 Consultations
16 Téléchargements

Altmetric

Partager

More