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In this review, we present the main large-scale experimental studies that have been 
performed in the HIV/AIDS field. These “omics” studies are based on several technologies 
including genotyping, RNA interference, and transcriptome or epigenome analysis. Due to 
the direct connection with disease evolution, there has been a large focus on genotyping 
cohorts of well-characterized patients through genome-wide association studies 
(GWASs), but there have also been several in vitro studies such as small interfering RNA 
(siRNA) interference or transcriptome analyses of HIV-1–infected cells. After describing 
the major results obtained with these omics technologies—including some with a high 
relevance for HIV-1 treatment—we discuss the next steps that the community needs 
to embrace in order to derive new actionable therapeutic or diagnostic targets. Only 
integrative approaches that combine all big data results and consider their complex 
interactions will allow us to capture the global picture of HIV molecular pathogenesis. This 
novel challenge will require large collaborative efforts and represents a huge open field for 
innovative bioinformatics approaches.
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INTRODUCTION

HIV remains a major global public health issue, having claimed more than 35 million lives so far. In 
2017, 940,000 people died from HIV-related causes globally (Global AIDS Update, 2016). The active 
anti-retroviral therapies are efficient and have saved many lives but still present multiple caveats: 
need for high compliance, permanent treatment, and unwanted side effects and complications 
(Li et al., 2017). Developing alternative and simple solutions such as immunoprophylactic or 
immunotherapeutic options remains a public health priority. In line with this, a better understanding 
of the molecular etiology of disease progression is essential.

Due to the impact of the disease in the Western world, HIV research has been the subject of 
intense efforts for the past 35 years and has helped in promoting several new research technologies, 
in particular with high-throughput studies from the “omics” era.

In this review, we will present large-scale studies based on various technologies that have 
been undertaken to tackle HIV molecular etiology and their main results. These large-scale 
studies encompass mainly genomics with genome-wide association studies (GWASs) based on 
genotyping chips and with exome sequencing, transcriptomic studies from SIV and HIV patient 
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cells, and small interfering RNA (siRNA) studies in sensitive 
cell lines. We will also briefly describe the results obtained from 
proteomics and epigenomics screenings.

A SHORT RECALL ON HIV-1 INFECTION 
AND MARKERS

There are three successive stages in HIV infection: the acute 
primary infection, the asymptomatic stage and symptomatic 
HIV infection, and acquired immunodeficiency syndrome 
(AIDS). Depending on the individual, AIDS, the most 
advanced stage of the infection course, can occur within 
a few months to several years after HIV infection, with an 
average of around 8 years in the Western world. This stage 
has been defined by the Center for Disease Control (CDC) 
either as a drop of CD4 T-cell count below 200/mm3 or as 
the appearance of opportunistic infections or some cancers 
(Center for Disease Control and Prevention, 1992). Quite 
early, AIDS cohorts were enrolled and prospectively followed, 
and it became apparent that this infection was exhibiting a 
considerable phenotypic heterogeneity at different levels: 
virus acquisition, disease progression, viral load control, and 
response to treatment (Langlade-Demoyen et al., 1994; Ludlam 
et al., 1985; Fowke et  al., 1996; Pantaleo and Fauci, 1996; 
Hetherington et al., 2002; Mallal et al., 2002; Saksena et  al., 
2007). For instance, some individuals, called long-term non-
progressors, are infected but never progress to AIDS; the elite 
controllers have never exhibited any detectable viral load; and 
the rapid progressors reach the AIDS stage within a few months 
following their infection. This phenotypic variability may be 
attributed to a complex interplay between viral, environmental, 
and host genetic factors that could be investigated through 
several types of large-scale studies or omics.

If the CD4 cell count was the major marker to follow HIV-1 
infection and immune deficiency in patients in the early 1980s, 
the progress of molecular biology techniques has made it possible 
to measure precisely HIV-1 viral load in the blood (i.e., the 
number of viral particles present in each ml of serum) by the late 
1990s. Together with the CD4 cell count, this marker has become 
very useful to evaluate the status of an infected patient, either a 
low viral load suggesting a good control of HIV-1 infection or a 
high viral load suggesting a progressive infection at an early stage 
of infection or an uncontrolled infection at a late disease stage 
(AIDS). Most cohorts focus on viral load outcomes (e.g., viral 
control, viral load at set point), but (slow and rapid) progression 
phenotypes have also been defined based on the CD4 counts 
(e.g., the GRIV cohort).

GENETIC ASSOCIATION STUDIES

Host genes associated with various phenotypes have been 
extensively explored since the mid-1990s. The concept is as 
follows: if a particular phenotype (for instance, elite control) 
is statistically associated with the presence or absence of a 
genetic variant, the corresponding gene or its product may 

be involved in the molecular mechanisms of viral infection/
dissemination. Genetic association studies can thus provide 
new clues on the molecular mechanisms of infection and 
disease progression and, in the long run, identify new 
targets for the development of new therapeutic or diagnostic 
strategies. Initial studies have focused on candidate genes 
such as HLA (Kaslow et al., 1996; Carrington et al., 1999; 
Hendel et al., 1999), and a large number of host genetic 
associations with HIV outcomes have been identified. The 
main confirmed association was a 32-base-pair deletion 
in the CCR5 gene (CCR5-Δ32) (Dean et al., 1996; Liu et al., 
1996; Samson et al., 1996; Rappaport et al., 1997), but other 
variants closely located in the CCR5 promoter (Martin et al., 
1998; McDermott et al., 1998) or in the nearby CCR2 gene 
(Smith et al., 1997) were also influential. This deletion led to 
the expression of a truncated and non-functional cell surface 
CCR5 protein that happened to be the major HIV-1 entry 
co-receptor (Alkhatib et al., 1996; Deng et al., 1996; Liu et al., 
1996). Other candidate gene studies pointed to immunity-
related genes (e.g., KIR, IL10, IFNγ) and genes encoding 
HIV restriction factors (e.g., CCL5, APOBEC3G, CUL5) but 
were only partially replicated according to the phenotype and 
cohort tested. The functional interpretation for most of these 
variants is yet to be discovered, but the detailed account of 
each candidate gene is beyond the scope of this article and 
has been covered by previous enlightening reviews (Fellay, 
2009; An and Winkler, 2010). Overall, most of the candidate 
gene associations displayed small to modest effect sizes and, 
combined all together, account for a small fraction of the 
phenotype variability (O’Brien and Nelson, 2004).

GENOME-WIDE ASSOCIATION STUDIES

It was only in 2007 that the first large-scale genetic association 
studies or GWASs have been published with the seminal 
publication by Fellay et al. that focused mainly on viral load at 
set point as the main phenotype of interest (Fellay et al., 2007). 
These large-scale genomic studies have relied on genotyping 
chips targeting simultaneously hundreds of thousands to 
millions of specific genetic markers called single nucleotide 
polymorphisms (SNPs), the most frequent polymorphisms in 
the human genome, that can be rapidly and easily genotyped. 
In contrast to the candidate gene strategy, this approach 
measures and analyzes gene variants across the whole human 
genome in an effort to identify common genetic risk factors 
in the population without any biological hypothesis a priori. 
Since the 2007 publication, GWASs have taken the place 
of candidate gene studies in AIDS. More than 20 GWASs 
focusing on various phenotypes and cohorts have been 
published, and Table 1 summarizes these studies with their 
main characteristics (see also (Limou and Zagury, 2013)): 
date of the publication, origin of the cohort, size of the cohort, 
phenotype(s) of interest, genotyping chip type, associated 
SNP(s), best P-value, possible causing gene(s) involved, and 
publication reference number.
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TABLE 1 | GWASs published in the AIDS field since 2007. 5×10−8 is the standard threshold for considering an association as significant in a GWAS, and the significant 
ones in the table are in bold.

Publication 
year

Discovery sample 
origin

Discovery sample 
size

Reported trait Microarray type Main SNPs P-value Gene(s) Reference

2007 European 486 HIV-1 viral set 
point

Illumina 
HumanHap550

rs239502, 
rs9264942

9.36×10−12, 
3.77×10−9

HLA-B*5701 (Fellay et al., 2007)

2009 European 2362 HIV-1 control (elite 
and viremic)

Illumina 
HumanHap550, 

Illumina Human1M

rs239502, 
rs9264942

5×10−35, 6×10−32 HCP5/HLA-
B*5701, 
HLA-C

(Fellay et al., 2009)

2009 European 1071 AIDS progression Illumina 
HumanHap550, 

Illumina Human1M

rs9264942, 
rs2395029

6×10−12, 1×10−11 HLA-C,
HCP5/

HLA-B*5701

(Fellay et al., 2009)

2009 European 85 rapid progressors 
HIV(+), 1,352 CTR 

HIV(−)

AIDS progression Illumina 
HumanHap300

rs4118325 6×10−7 PRMT6 (Le Clerc et al., 2009)

2009 European 275 non-progressors 
HIV(+), 1,352 CTR 

HIV(−)

AIDS progression Illumina 
HumanHap300

rs2395029 6.79×10−10, 
6.79×10−8

HCP5/
HLA-B*5701

(Limou et al., 2009)

2010 European 156 HIV-1 progression Affymetrix Human 
Mapping 500K

rs17762192 6.23×10−7 PROX1-AS1 (Herbeck et al., 2010)

2010 African American or 
Afro-Caribbean

515 HIV-1 viral set 
point

Illumina 
HumanHap1M, 

HumanHap1M-Duo, 
HumanHap550K

rs454422 1.46×10−6 MCM8 (Pelak et al., 2010)

2010 European 1712 HIV-1 control Illumina 
HumanHap650Y

rs9264942, 
rs4418214

6.3×10−16 HLA-C, MICA (International H.I.V. 
Controllers Study et al., 

2010)
2010 African American or 

Afro-Caribbean
677 HIV-1 control Illumina 

HumanHap650Y
rs2523608 3.7×10−15 - (International H.I.V. 

Controllers Study et al., 
2010)

2010 Sub-Saharan African 848 high-risk HIV(−), 
531 HIV(+)

HIV-1 
susceptibility

Illumina Human1M 
or 1M-Duo

rs842304 3.97×10−6 - (Petrovski et al., 2011)

2010 Sub-Saharan African 100 HIV(+) infants, 
126 HIV(−)

HIV susceptibility 
(mother-to-child 

transmission)

Illumina 
HumanHap650Y

rs12306 3.92×10−5 WSB1 (Joubert et al., 2010)

2011 European 191 HIV-1 replication 
in vitro

Illumina 
Human610-Quad

rs12483205 2.16×10−5 DYRK1A (Bol et al., 2011)

2011 Sub-Saharan African, 
African unspecified

302 high-risk HIV(−), 
496 HIV(+)

HIV-1 
susceptibility

Illumina 
HumanHap1M-Duo

rs3745760 7.83×10−7 GLTSCR1 (Lingappa et al., 2011)

2011 Sub-Saharan African, 
African unspecified

403 HIV-1 viral set 
point

Illumina 
HumanHap1M-Duo

rs13111989 2.15×10−7 VEGFC (Lingappa et al., 2011)

2011 European 755 AIDS progression Affymetrix Human 
Array 6.0

rs11884476 3.37×10−9 PARD3B (Troyer et al., 2011)

2011 European 404 HIV-1 progression Illumina 
HumanHap300

rs1523635 3.5×10−6 AGR3 (van Manen et al., 
2011)

2013 European 430 high-risk HIV(−) 
and 765 HIV(+)

HIV-1 
susceptibility

Illumina Human1M 
or 1M-Duo

- - - (Lane et al., 2013)

2013 European 6,334 HIV-1(+), 7,247 
HIV-1(−)

HIV-1 
susceptibility

Meta-analysis/
imputation

- - - (McLaren et al., 2013)

2015 African American or 
Afro-Caribbean and 

European

628 high-risk HIV(−) 
vs. 1,376 HIV(+), 327 
high-risk HIV(−) vs. 

805 HIV(+)

HIV-1 
susceptibility

Illumina 
HumanOmni1-Quad

rs4878712 4.38×10−8, 
7.78×10−4

CD33, 
FRMPD1

(Johnson et al., 2015)

2015 European 6,315 HIV-1 viral set 
point

Meta-analysis/
imputation

rs59440261, 
rs1015164

2×10−83, 1.5×10−19HLA-B*5701, 
CCRL2

(McLaren et al., 2015)

2015 East Asian 538 HIV-1 viral set 
point

Illumina 
Human660W-Quad

rs2442719 8×10−7 HLA-B (Wei et al., 2015)

2017 Sub-Saharan Africans 556 AIDS progression Illumina 
HumanOmni2.5M

rs2535307 3.72×10−7 HCG22 (Xie et al., 2017)

CTR, controls
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The following major conclusions can be underlined from 
these GWA studies:

1. One signal was repeatedly replicated in several cohorts (of 
European descent) both for the viral load phenotype and also 
for the non-progression phenotype: rs2395029, an SNP in the 
HCP5 gene within the MHC region, which was described in 
nearly full linkage disequilibrium (LD) with the HLA-B*5701 
allele (Fellay et al., 2007; Dalmasso et al., 2008; Limou et al., 
2009; McLaren et al., 2013; McLaren et al., 2017). This HLA 
allele could be critical for the destruction of infected cells via 
a yet-unidentified CD8 T-cell epitope, but we cannot exclude 
a role for other polymorphisms in the HLA region and 
possibly outside of the class I HLA genes, with relevant genes 
highlighted through LD such as MICB and TNF (Kulkarni 
et  al., 2011). Similarly, in African Americans, the HLA-
B*5703 allele was demonstrated to be important for viral 
control (Pelak et al., 2010; McLaren et al., 2012; McLaren 
et al., 2017). Beyond B*57 alleles, HLA seems to play a major 
role in viral control, as another SNP located 35 kb upstream 
of HLA-C was also identified in Europeans (Limou et al., 
2009; McLaren et al., 2017). This −35 kb SNP was correlated 
with higher HLA-C cell surface expression (Thomas et al., 
2009), which can be regulated through microRNA (miRNA) 
binding (Kulkarni et al., 2011) and through the binding of 
the Oct1 transcription factor (Vince et al., 2016).

2. In 2011, the HIV/AIDS research community conducted a 
massive effort to bring together their genomic data in order 
to gain statistical power of detection. This collaborative 
effort, named the International Consortium for the Genetics 
of HIV-1 (ICGH), gathered up to 6,300 HIV-infected 
individuals and 7,200 HIV-uninfected controls who were 
genotyped on various Illumina or Affymetrix platforms. 
A first publication emerged from this consortium in 
2013; it focused on HIV-1 acquisition and confirmed the 
major role of CCR5-Delta32 in resistance to infection but 
did not identify any additional common genetic variant 
(McLaren et al., 2013). A second study was published 2 
years later on viral control and disease progression and 
confirmed the complementary roles of CCR5 locus variants 
and of HLA genetic variants coding for amino acids in the 
peptide binding grooves of HLA-A and HLA-B (McLaren 
et al., 2015). In spite of the large sample size, no other 
locus reached genome-wide significance. These reports 
conclude that future genetic studies should target other 
classes of genetic variants (e.g., low or rare frequency), 
non-European populations, and well-defined homogeneous 
phenotypes (McLaren et al., 2015).

3. In addition, the numerous GWASs have identified novel 
candidate genes, which all deserve further exploration, 
notably the ones that reached genome-wide significance 
(see  Table 1). In particular, a genetic variant within the 
CXCR6 gene was associated with long-term non-progression 
in four independent cohorts (Limou et al., 2010). This signal 
was only identified in individuals without sustained viral 
control, which explains why it was not highlighted in the 

consortium that mainly focused on viral control. Finally, 
the absence of replication for many other signals presented 
in Table 1 does not discount their scientific interest but 
complicates their biological interpretation.

NEXT-GENERATION SEQUENCING 
STUDIES

GWASs rely on common SNPs (typically >1% in the population) 
and hardly take into account the possible effect of rare variants 
or other classes of genetic polymorphisms such as indels or copy 
number variants that can also significantly impact disease outcome. 
To investigate the impact of such variants, we first focused on 
low-frequency SNPs (<5%) in our progression GWASs and 
identified the gene RICH2 associated with non-progression, 
which interacts with BST-2, a major known HIV restriction 
factor (Le Clerc et al., 2011). Later, several studies based on next-
generation sequencing (NGS) have emerged. Due to the high cost 
of such studies and to maximize statistical power of detection, 
these screenings have targeted coding variants (exome) and 
patients with very specific and extreme disease outcome. To our 
knowledge, only one publication has emerged from these studies 
(McLaren et al., 2017), which focused on 1,327 subjects, many of 
whom were elite and viral controllers. In spite of the significant 
number of patients studied, only variants in the HLA region came 
out, and this study suggested that exonic variants with large effect 
sizes are unlikely to have a major contribution to host control of 
HIV infection  (McLaren et al., 2017).

FUNCTIONAL GENOMIC SCREENINGS

Systematic inactivation of gene expression through siRNA and 
small hairpin RNA (shRNA) offers a unique chance to identify host 
genes required for HIV replication. In large-scale studies, authors 
used siRNAs (Brass et al., 2008; Konig et al., 2008; Zhou et al., 2008) 
or shRNAs (Yeung et al., 2009) to silence in vitro most known genes 
one by one in HIV permissive cell lines. These screenings identified 
273 (Brass et al., 2008), 213 (Konig et al., 2008), 311 (Zhou et al., 
2008), and 252 (Yeung et al., 2009) HIV host dependency factors, 
respectively, for a total of 842 putative candidates. However, the 
overlap between the different studies was very low, suggesting 
low reproducibility and/or high false positive, which might not be 
surprising considering the different experimental models (cell lines, 
HIV strains, and measurement modes of HIV replication). Overall, 
these studies still provide an interesting list of candidate cellular 
factors and pathways potentially implicated in HIV-1 replication 
that could be considered as relevant targets for drug development.

The development of the CRISPR–Cas9 technology to 
screen each gene with a library of single-guided RNA offers a 
greater sensitivity and specificity than interference based-RNA  
(Wang et al., 2014). A recent report used this technology to 
screen a CD4 T-cell line and identified five host factors required 
for HIV replication, including CD4, C-C motif chemokine 
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receptor 5 (CCR5), and activated leukocyte cell adhesion 
molecule (ALCAM (Park et al., 2017). These factors were 
further validated in primary human CD4 T-cells and therefore 
represent major candidates for a therapeutic intervention.

TRANSCRIPTOMIC STUDIES

The first descriptions of transcriptome analysis by DNA 
microarrays were in cancer in 2002 (Pomeroy et al., 2002; van ‘t 
Veer et al., 2002). In AIDS, the first large-scale transcriptomic 
study (4,600 transcripts) was published in 2003 (van ‘t Wout 
et al., 2003). This study analyzed gene expression in HIV-
infected CD4 T-cell lines at different time points and revealed 
the inhibition of genes involved in cell division, transcription, 
translation, splicing, and also cholesterol biosynthesis (van ‘t 
Wout et al., 2003). An exon transcriptome microarray analysis 
of purified HIV-infected cells revealed host cell factors 
required for viral replication and alternative splicing events 
(Imbeault et al., 2012). A bioinformatic analysis of HIV-
resistant activated CD4 T-cells (due to CD3/CD28 antibodies’ 
co-stimulation) highlighted a few dozen genes critical for 
resistance or permissivity (Xu et al., 2013).

Several microarray studies focused on non-human primate 
models, such as cynomolgus monkeys (Bosinger et al., 2004) 
and African green monkeys (non-pathogenic model) vs. rhesus 
macaques (pathogenic model) (Jacquelin et al., 2009). These 
reports mainly identified a major role for IFN-stimulated genes, 
as well as a differential expression of some innate genes (such 
as LPS receptors CD14 and TLR4) and some apoptosis-related 
genes (Bosinger et al., 2004).

Finally, numerous transcriptome studies explored 
differential gene expression in HIV-infected individuals. A 
first report in 2005 claimed to have found (Ockenhouse et al., 
2005) a 10-gene signature for HIV-1 serostatus and a 6-gene 
signature for subjects experiencing a CD4+ T-cell decrease 
(Ockenhouse et al., 2005). The genes identified were primarily 
linked with immune response and apoptosis, mitochondrial 
function, and RNA binding (downregulated in subjects with 
better prognosis) (Ockenhouse et al., 2005). A study focusing 
on HIV-1–resistant individuals (Huang et al., 2011) found a set 
of 185 HIV-1 resistance genes, suggesting a major role for nef in 
disease pathogenesis, and among them pointed out 29 potential 
targets for AIDS prevention or therapy (Huang et al., 2011). By 
comparing the complementary DNA (cDNA) profiles of CD3+ 
T-cells in long-term non-progressors vs. medium progressors 
(Salgado et al., 2011), 325 genes appeared over-expressed in 
regular progressors (from DNA replication, cell cycle, and DNA 
damage pathways), vs. 136 over-expressed genes in long-term 
non-progressors (from cytokine–cytokine receptor interaction 
and negative control of apoptosis pathways) (Salgado et al., 
2011). The transcriptome comparison of CD4+ T-cells and CD8+ 
T-cells from rapid progressors, viremic non-progressors, and 
elite controllers showed a lower expression of IFN-stimulated 
genes and an upregulation of CASP1, CD38, LAG3, TNFSF13B, 
SOCS1, and EEF1D genes in viremic non-progressors (Rotger 

et  al., 2011). Finally, a transcriptomic screening also targeted 
miRNA expression profiles in peripheral blood mononuclear 
cell (PBMC) from rapid and chronic progressors and identified 
five downregulated miRNAs in rapid progressors that all 
converged to the apoptosis pathway (Zhang et al., 2013).

PROTEOMIC AND EPIGENOMIC STUDIES

Some proteomic studies have also been performed, but they were 
not very reproducible, as indicated in a recent review by Donnelly 
and Ciborowski (2016). To our knowledge, few epigenomic studies 
have been published to date in HIV/AIDS. One Korean group 
performed two chromatin immunoprecipitation sequencing (ChIP-
seq) analyses in HIV latently infected CD4 T-cell lines to investigate 
the impact of H3K4me3 and H3K9ac histone modifications on 
latency. They revealed several potential candidate genes, including 
NFIX, tumor necrosis factor (TNF) receptor association factor 4 
(TRAF4), and cell cycle regulating genes such as CDKN1A (p21) 
and CCND2 (Park et al., 2014; Kim et al., 2017). Finally, the blood 
DNA methylation signatures of HIV-infected and uninfected 
subjects were compared through an epigenome-wide association 
study (EWAS), which highlighted a down-methylation of NLC5 
promoter in HIV-infected subjects (Zhang et al., 2016). This host 
gene encodes a key regulator of class I HLA gene expression and 
confirms the major role of the MHC locus in HIV viral control. 
Interestingly, NLC5 promoter and additional MHC clusters also 
appeared differentially methylated in HIV–Hepatitis C virus 
(HCV) co-infected subjects (Zhang et al., 2017), emphasizing the 
importance of inflammation-related genes in the course of HIV 
infection. Overall, these studies are promising and underline the 
need for additional large-scale epigenetic studies in order to better 
capture the breadth of host–HIV complex interactions.

CONCLUSION AND FUTURE DIRECTIONS

In this review, we have presented numerous large-scale genomic 
and transcriptomic analyses that have taken place in the AIDS 
field, which are the consequences of the progress in molecular 
biology and biochemistry technologies. One can see that a 
huge research effort has been dedicated to genetic association 
studies, and this is logical since this experimental approach 
deals with real in vivo data, i.e., cohorts of patients and HIV-1 
infection in vivo. Nevertheless, it was slightly surprising to 
observe that the main signals found by GWAS, in the HLA and 
CCR5 loci, had already been identified by previous candidate 
gene approaches. This apparent limitation could be explained 
by the yet-unidentified role of other polymorphisms such as 
copy number variations (CNVs) or interacting gene variants. 
It could also be explained by the statistical constraints (such 
as stringent multiple testing corrections) that limit the use of 
genetic association data (numerous false negatives) and the 
overall low number of samples at stake (a few thousands) 
compared to other human diseases such as diabetes or 
obesity (hundreds of thousands) (Shungin et al., 2015; 
Fuchsberger et al., 2016). In light of the available biological 
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information provided by the other large-scale studies such 
as transcriptomic or functional genomic studies presented 
in this review, it appears important to reanalyze the genomic 
data by integrating biological information in order to enhance 
the genetic association results. For instance, our group has 
successfully implemented such approaches by pre-selecting 
relevant SNPs defined either by their low frequency (Le 
Clerc et al., 2011) or by their functional impact as potential 
expression quantitative trait loci (eQTLs) (Spadoni et al., 
2015). More generally, there are several methods for data 
integration, the first one being to cross-check the results 
obtained by one method through another, for instance, 
using GWAS to identify SNPs with low P-values, even non-
significant, and then using transcriptomics to pick genes that 
are differentially expressed in a relevant cell type or tissue. By 
combining two (or more) methods, researchers can zoom in 
on specific genes of high interest. This has been implemented 
with the development of PrediScan (Gamazon et al., 2015). 
Another example of cross-checking is the results obtained 
by metabolome analysis and GWAS in which the researchers 
have found that metabolites present at high levels in the blood 
of some subjects are highly correlated with specific variants 
present in the genes of enzymes involved in their metabolism 
(Illig et al., 2010). Other methods of data integration rely on 
rescuing genes by correlating signals not only at the gene 
level but also at the pathway level: for instance, one can 
suspect that if a gene X in a biological pathway is important 
for a clinical phenotype, the genes present upstream in the 
biological pathway may impact this gene X expression and, as 
a consequence, also become targets of interest. One will thus 
have to look for cross-checks at the level of pathways (Chen 
et al., 2011). Importantly, it is essential for data integration 
to perform all these cross-checks in a smart and automated 
manner. Finally, more sophisticated statistical approaches 
have recently emerged outside of the HIV field, such as 

the Bayesian method for data integration (Kichaev  et  al., 
2014; Pickrell, 2014; Finucane et  al., 2015; Yang et al., 2017; 
International Multiple Sclerosis Genetics Consortium, 2019). 
These new methods are yet to be implemented in the relatively 
small HIV/AIDS cohorts but might reveal novel underlying 
physiopathological mechanisms.

With the massive research effort to fight AIDS, this has been 
a true field of experimentation and development for novel 
technologies. A first challenge is now the cross-usage of all 
this information gathered from so many large-scale studies, to 
transform this “gold mine” into diagnostic or therapy strategies 
to fight AIDS, and the same integration of omics big data should 
of course take place also for other human diseases. This systems 
biology challenge has not yet been met. A second challenge is 
to pursue the exploration of alternative technologies such as 
epigenomics or proteomics to derive more understanding of 
HIV-1 molecular pathogenesis. We hope that the AIDS field 
will remain a “cultural” leader for research progress in order to 
fully understand the molecular mechanisms at stake in HIV-1 
infection and AIDS and allow the rationale development 
of diagnostic and therapeutic strategies to finally tackle the  
HIV-1 virus.
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