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In randomized clinical trials (RCT), the analysis is based on the intent-totreat principle to avoid any selection bias in the constitution of groups. However, estimates of overall survival can be biased when significant crossover occurs because the separation of randomized groups is lost. To handle these switches, the inverse probability of censoring weighting (IPCW) method has been proposed; however, it is still poorly used in RCT, notably because of its complex implementation. In particular, for time-to-event outcomes, it can be difficult to format data, especially when time-dependent covariates have to be managed, with different measurement times between patients. This paper aims to present the R package ipcwswitch with some guidance for the analysis of the treatment effect on survival in a hypothetical setting where all patients would have continued to take the randomization treatment. After a brief recall of the key principles of the IPCW method, each step of the implementation is described using a toy example. The guidelines are illustrated in a case study that aimed at evaluating the benefit of therapy based on tumour molecular profiling for advanced cancers, SHIVA01.

Introduction

Estimating the beneficial effect of a treatment is the primary goal of randomized clinical trials (RCT), based on intent-to-treat (ITT) analysis. In case of two parallel arms, the patients are assigned to the experimental or control arm according to randomization. However, treatment decisions may change over time, notably to better fit the evolution of patient status. This is almost systematically the case in oncology trials, where patients are allowed switching to the other arm in case of disease progression, defining a second line treatment. Although such crossovers do not affect progression free survival (PFS) endpoints, estimates of overall survival (OS) using ITT analysis can be biased when significant crossover occurs because the separation of randomized groups is lost [START_REF] Porcher | Sample size correction for treatment crossovers in randomized clinical trials with a survival endpoint[END_REF][START_REF] Davies | The ends justify the mean: outcome measures for estimating the value of new cancer therapies[END_REF].

To handle these switches, different statistical methods have been investigated. The easiest approaches, consisting in excluding switchers or censoring at switch (in a "per-protocol analysis"), or including treatment as a timevarying covariate to assess the effect of treatment actually received by the patients, appeared subject to selection bias [START_REF] Morden | Assessing methods for dealing with treatment switching in randomised controlled trials: a simulation study[END_REF], and should not be considered [START_REF] Latimer | Adjusting for treatment switching in randomised controlled trials -a simulation study and a simplified two-stage method[END_REF]. Two-stage methods, using accelerated failure time models, have been developed to provide randomization-based efficacy estimators [START_REF] Latimer | Adjusting survival time estimates to account for treatment switching in randomized ment switching[END_REF]6,[START_REF] Morden | Assessing methods for dealing with treatment switching in randomised controlled trials: a simulation study[END_REF]. In these models, the patient's observed event time is related to his counterfactual event time, that which would have been observed for the patient if he had not received any treatment [7]. However, it involves fitting parametric models to the data. To estimate the causal treatment effect when selective switches or dropouts may induce dependent censoring, other solutions involving counterfactual outcomes such as the inverse probability of censoring 3 weighting (IPCW) have been proposed [8]. Its use in clinical trials has been recommended, under the condition that appropriate data and sufficient sample size are available [9,10,[START_REF] Willems | Correcting for dependent censoring in routine outcome monitoring data by applying the inverse probability censoring weighted estimator[END_REF][START_REF] Dodd | Adjustment for treatment changes in epilepsy trials: a comparison of causal methods for time-to-event outcomes[END_REF]. It represents an adjustment method that is likely to produce lower bias than the ITT analysis, provided the switching proportion is not extreme [START_REF] Latimer | Adjusting for treatment switching in randomised controlled trials -a simulation study and a simplified two-stage method[END_REF].

However, the use of the IPCW method along with marginal structural models (MSM) to deal with treatment changes in the RCT setting remains uncommon, notably when dealing with a time-to-event outcome. This could be explained at least partially because of the difficulty in its implementation given it is not straightforward to apply these methods directly. Moreover, the lack of available software for a long time may have also limited their use and routine implementation to handle time-varying weights [9]. Recently, several authors gave some practical guidelines to facilitate the use of the IPCW method. For example, Dodd et al. [START_REF] Dodd | Adjustment for treatment changes in epilepsy trials: a comparison of causal methods for time-to-event outcomes[END_REF] provided a Stata code to implement the weights and to fit the model. Willems et al. [START_REF] Willems | Correcting for dependent censoring in routine outcome monitoring data by applying the inverse probability censoring weighted estimator[END_REF] proposed a "user friendly" implementation of IPCW in R [START_REF] Core | R: A language and environment for statistical computing[END_REF]. Notably, using the survSplit function from the survival package [START_REF] Therneau | A package for survival analysis in S[END_REF] on a toy example, the authors provided a nice four steps algorithm, which can be easily reproduced. However, with regards to time-dependent covariates, the authors referred to the unfold function from the RcmdrPlugin.survival package [START_REF] Fox | The RcmdrPlugin.survival package: extending the R Commander interface to survival analysis[END_REF]. Using such a function could be not straightforward, especially when dealing with different observation times of measurement for the patients. Indeed, data processing for time-dependent covariates using the survSplit function could be tricky since it requires the additional building of a function that generates the time-dependent covariates from the output of survSplit (see, e.g., page 19 of Thomas and Reyes [START_REF] Thomas | Tutorial: survival estimation for Cox regression models with time-varying coefficients using SAS and R[END_REF]). Then, up to our knowledge, there is no available straightforward R function dealing with time-dependent covariates when times of measurements are not the same.

In this article, we propose the R package ipcwswitch to estimate the treatment effect on OS in the RCT setting, taking into account the actual treatment switches over time. The package is available from the Comprehensive R Archive Network at https://CRAN.R-project.org/package=ipcwswitch.

We present a step-by-step tutorial on how the IPCW modeling can be used in this framework, i.e., when informative non-compliance to the treatment allocated by randomization may occur. Note that our aim is not to assess the performances of the IPCW method. For this, we refer the reader to the works of Latimer et al. (see e.g.,Latimer et al. [START_REF] Latimer | Adjusting for treatment switching in randomised controlled trials -a simulation study and a simplified two-stage method[END_REF]). By contrast, our aim is to provide tools for statisticians to facilitate the use of this method in the specific setting of RCT with a right-censored end point and time-dependent covariates with different times of measurement across patients. This paper is structured as follows. In Section 2 we give the key principles to IPCW. We describe a step-by-step overview of the IPCW implementation in Section 3. We illustrate the use of the package ipcwswitch in a case study, in Section 4. Some concluding remarks are given in Section 5.

Key principles of IPCW

Context

Let consider a randomized clinical trial where n patients are randomly allocated to one of two parallel arms, with a primary endpoint being right censored such as overall survival. Let consider that patients are allowed to switch in case of a disease progression. The first step of the IPCW method consists in censoring patients who interrupt their initially assigned treatment. Note that we will refer to this censoring as the "treatment censoring", whereas the "censoring" term will only be used with reference to the usual right censoring, that is, when the patient drops out of the study before death. However, the treatment censoring mechanism may depend on the baseline and timedependent factors that have lead to this change of treatment. Since these factors are likely to have some prognostic value, they are associated both with the endpoint and the treatment censoring mechanism. The IPCW method introduces weights to correct for this dependent censoring.

Weights derivation

The second step of the IPCW method is thus to use inverse probability of censoring weights. At a given time t, the weights are defined as the inverse of the probability of having remained on the randomized treatment, that is, of being uncensored by treatment, until time t given still on randomized treatment before time t and given the observed values of the measured baseline and time-dependent confounders at t. Here, the confounders refer to factors that are a common cause of the treatment exposure and the treatment censoring.

More precisely, let T C i be the time to treatment censoring for patient i. The patient's weights up to the ordered treatment censoring times t k , (1 ≤ k ≤ j), are defined as:

w i (t k ) = k l=1 1 P T C i > t l | T C i > t l-1 , Xt l = xt l ,i , V = v i , (1) 
where t 0 = 0, xt l ,i denotes the observed history of the time-varying confounders up to t l , and v i the observed time-fixed covariates. Unstable weights can occur when the denominator is small, that is when some strata defined by the conditioned part of the above mentioned probabilities are small. Then, as suggested by Robins [START_REF] Robins | Marginal structural models 30 and causal inference in epidemiology[END_REF], one can use stabilized weights to obtain narrower distributions. Specifically, the weight denominators do not change whereas the numerators are obtained in the same way as denominators but adjusting only for baseline covariates:

sw i (t k ) = k l=1 P T C i > t l | T C i > t l-1 , V = v i P T C i > t l | T C i > t l-1 , Xt l = xt l ,i , V = v i . (2) 
Because underlying mechanisms of treatment censoring can differ between the two arms, the weights have to be computed in each arm, separately.

Let λ C (t|Z i (t)) = λ 0C (t)exp(β C t Z i (t)
) denote the hazard of treatment discontinuation or switch from a Cox proportional hazards model conditional on covariates Z. In each arm, the probabilities of treatment censoring can be estimated at time t using the Kaplan-Meier product limit estimator [START_REF] Robins | Correcting for noncompliance and dependent censoring in an AIDS clinical trial with inverse probability of censoring weighted (IPCW) log-rank tests[END_REF] as follows: {j:tj<t,δC,j=1}

1 -Λ0C (t j )exp( βC t Z i (t j )) ,
where, for patient j, t j is the minimum time between the death time and the treatment censoring time, and δ C,j is the treatment censoring indicator.

Individual weights are then easily derived from equation ( 1) or (2).

Cox marginal structural model

The IPCW method requires the use of a marginal structural model (MSM)

to describe the relationship between the treatment arm and the primary end-point, that is overall survival. A Cox MSM is a Cox model that estimates marginal effects that would have been observed in the absence of switch or discontinuation of treatment. More specifically, assuming that all confounders have been observed, applying these weights to the Cox partial likelihood estimators creates a pseudo-population that would have been studied

if the patients had complied with their assigned treatment arm [START_REF] Robins | Recovery of information and adjustment for dependent censoring using surrogate markers[END_REF]8,[START_REF] Robins | Correcting for noncompliance and dependent censoring in an AIDS clinical trial with inverse probability of censoring weighted (IPCW) log-rank tests[END_REF]9].

Thus, as given by Robins [8], the partial likelihood score becomes:

U (β) = {j:δ j =1} ŵj (t j ) × A j - n i=1 Y i (t j ) ŵi (t j )A i exp( βA i ) n i=1 Y i (t j ) ŵi (t j )exp( βA i )
,

where δ j and Y j are the death and the at-risk indicator of patient j, respectively, and A j is the binary covariate indicating his(her) treatment arm (where 1 denotes the experimental treatment and 0 otherwise).

Under correct specification of the model, solving the IPCW score equation provides a consistent and asymptotically normal estimator of the parameter β [8]. Moreover, using stabilized weights also provides consistent estimates of β [START_REF] Robins | Marginal structural models 30 and causal inference in epidemiology[END_REF]. In other words, the "hypothetical" causal effect of the experimental treatment on the overall survival is obtained using these IPCW weights in a Cox marginal structural model. Specifically, the estimand represents the effect in a hypothetical setting where all patients would have continued to take the randomization treatment.

Overview of the IPCW implementation

We present here some guidance to format and analyse some RCT data when assessing the benefit of any experimental treatment on overall survival using the weights from the IPCW method in a Cox MSM as described above. • id is the patient's identifier,

• randt is the date of the randomization visit,

• lastdt is the date of latest news,

• status is equal to 1 if the patient dies on lastdt (and 0 otherwise),

• age is the patient's age,

• ps1, ps2, ps3 are the values of a covariate measured at dates randt, dt2, dt3, respectively

• arm is the patient's randomized arm,

• swtrtdt is the date when the patient initiates the other arm treatment (NA if does not happen).

Step 0: Handling time-dependent covariates

As explained in Section 2, two time-dependent Cox models, one for treatment censoring and the Cox MSM, are specified. As a result, values of the covariates are to be computed for all at-risk patients at each failure time (due to the treatment censoring or to the death) in the dataset. We used a counting process method with multiple records for each individual, where each record corresponds to a time interval during which all covariates remain constant. For further analyses, the required variables are the patient's id, the times of death lastdt and the treatment censoring times that correspond to the times of treatment switch swtrtdt, the status indicator status, the fixed covariates age, the time-dependent covariate ps1, ps2, ps3 along with their times of change randt, dt2, dt3, and the time of treatment interruption swtrtdt.

Step 1: Data formatting -wide vs. long format Before computing weights using a time-dependent Cox model with timedependent confounders and time-dependent treatment, the estimation of the outcome models requires some tricky data formatting. The wide format refers to a dataset with one row per subject, while the long format refers to a dataset with possibly several rows per subject. When data are provided in the wide format, some data processing are needed to build separated rows according to the observed changes in the time-varying confounders, the observed changes in the administered treatment (i.e., treatment censoring time), and the end of the follow-up (i.e., death or lost of follow-up). Functions are available to convert the wide format to the long format, such as the survSplit function from the survival package [START_REF] Therneau | A package for survival analysis in S[END_REF]. Nevertheless, to our knowledge, there is no available straightforward R function dealing with time-dependent covariates when patients do not share the same dates of measurements. Thus, we developed the specific R package ipcwswitch.

First, the timesToKeep function is run on the toydata as follows:

R> kept.t <-timesTokeep(toydata, id = "id", + tstart = "randt", tstop = "lastdt", + mes.cov = list(c("ps1", "ps2", "ps3")), + time.cov = list(c("randt", "dt2", "dt3")))

For example, for patient id=3, we obtain:

R> kept.t[[1]][[3]]
[1] "2017-05-20" "2018-01-02" "2018-01-04"

Then, the long format is obtained by the wideToLongTDC function:

R> toy.long <-wideToLongTDC(toydata, id = "id", + tstart = "randt", tstop = "lastdt", + event = "status", + bas.cov = c("age", "arm", "swtrtdt"), + mes.cov = list(TDconf=c("ps1", "ps2", "ps3")), + time.cov = list(c("randt", "dt2", "dt3")),

+ times = kept.t[[1]])
We obtain the following dataframe, which represents the Toy Example Data in long format. The variable TDconf aggregates the repeated values ps1, ps2, and ps3 in a single variable: Step 2: Data formatting to compute the IPCW weights

Then, another data formatting is required to allow the computation of the inverse probability of censoring weights. We have to define the exposure times, that is when each patient has been treated according to the randomization or not.

First, among the only patients who have been treated at randomization, those who switched are to be censored at the time of switch. Note that from this point, we work with duration times that are obtained subtracting the starting date of the follow-up from the date we are interested in. This is illustrated in the toy example, where patients are censored when initiating the other arm treatment, that is, at time swtrtdt; a treatment censoring indicator cens is thus added to the previous dataset to indicate such a switch. We thus developed the cens.ipw function that should be used as follows:

R> toy.long2 <-cens.ipw(toy.long, id = "id", tstart = "tstart", tstop = "tstop", + event = "event", arm = "arm",

+ realtrt = FALSE, censTime ="swtrtdt")
resulting in the following formatted data: Then, only times related to either the treatment switches or the occurrences of death were retained in the dataset. Nevertheless, weights need to be computed at all the observed event or treatment censoring times in the sample [START_REF] Van Der Wal | ipw: an R package for inverse probability weighting[END_REF]. Thus, each patient's follow-up must be split according to all these dates. We finally obtained the terminal dataframe using the replicRows function: Step 3: Computation of stabilized weights

Once data have been adequately formatted, weights are to be estimated in each arm as explained in Section 2. To this end, the survfit function from the survival package can be fitted to the result from the coxph function for treatment censoring adjusted on baseline and time-dependent confounders. This is the standard approach when events and censoring occur simultaneously given we considered that the event comes first. More precisely, in case of ties occurring at a given time t, the treatment censoring at t does not contribute to the likelihood at the current event time but contributes to the likelihood at the following event time. Last, because stabilized weights produce smaller confidence intervals and increase the statistical efficiency [START_REF] Van Der Wal | ipw: an R package for inverse probability weighting[END_REF],

we choose to present the single output of stabilized weights. From our toy example, the dataframe with stabilized truncated weights is obtained by: R > toy.rep <-ipcw(data = toy.rep, id = "id", tstart = randt, tstop = lastdt, + cens = cens, arm = "arm", bas.cov = c("age"), + conf = c("TDconf"), trunc = 0.01, type='kaplan-meier')

Additionally, truncating the weights can help when dealing with extreme weights. For example, one can try different levels of truncation, such as truncating the left tail at the 1st percentile and the right tail at the 99th percentile. Hence, plotting those truncated stabilized weights can be useful to determine the cut-off that provides both a mean close to 1 and a small range. To this end, it is possible to use the ipwplot function from the ipw package [START_REF] Van Der Wal | ipw: an R package for inverse probability weighting[END_REF].

The plots of un-truncated and truncated weights are obtained by: Please, note that the arguments of the ipcw function are explained in Appendix, Section Appendix A, whereas those of the ipwplot function are given in the accompanying paper of the ipw package [START_REF] Van Der Wal | ipw: an R package for inverse probability weighting[END_REF]. Since the ipcw function allows the calculation of un-truncated weights, the user has the possibility to compare the weights before and after truncation and to better fit the model by including different potential confounding factors. Also, giving less importance to some patients by truncating the weights can lead to biased estimates. Thus, a choice has to be made between the size of the bias and the strength of the instability of the weights. In addition, let us mention that the ipwtm function in the ipw package [START_REF] Van Der Wal | ipw: an R package for inverse probability weighting[END_REF] can be used to assess the IPCW from adequately formatted data. However, there are two conceptual differences between the ipw::ipwtm and the ipcwswitch::ipcw functions. First, in the ipw package, the authors chose not to follow the above-mentioned "standard approach", that is they consider that the event does not come first in case of ties regarding event and treatment-censoring. Secondly, their procedure is based on the assessment of the survival probabilities from the estimated baseline hazard, whereas we directly estimate these probabilities using the Kaplan-Meier estimator. Specifically, using the ipcwswitch::ipcw with the option type='efron' allows the user to find the results obtained using the ipw::ipwtm function, when considering the corresponding intervals.

Step Note that, in the coxph function, one has to add the option cluster to use the robust variance in order to handle data correlation.

Case study

Design of the trial

The motivating example was the first randomized clinical trial that aimed at comparing molecularly targeted therapy based on tumour molecular profiling (MTA) versus conventional therapy (CT) for advanced cancer (SHIVA01) [START_REF] Tourneau | Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial[END_REF].

A switch to the other arm was scheduled to be proposed at disease progression for patients in both treatment groups. The primary endpoint of the study was progression-free survival, defined as the time from randomization to death from any cause or progression. Overall, 100 patients were randomly allocated to the MTA arm and 97 patients to the CT arm. The primary analysis of the trial was based on the intent-to-treat population [START_REF] Tourneau | Molecularly targeted therapy based on tumour molecular profiling versus conventional therapy for advanced cancer (SHIVA): a multicentre, open-label, proof-of-concept, randomised, controlled phase 2 trial[END_REF], ignoring the time-dependent treatment decisions that may occur after disease progression.

At the time of terminal analysis, there were 167 disease progressions (83 in the MTA arm and 84 in the CT one) and 27 deaths before progression (17 and 10, respectively). Among the 167 disease progressions, 95 patients switched to the other arm. More precisely, in the MTA arm, 25 patients switched to the CT arm (14 of whom died, 56%), while 70 patients in the CT switched to the MTA arm (with 42 subsequent deaths, 60%) (Figure 1). Since treatment switches were motivated by disease progression, we used overall survival as the main endpoint in this case study. The proposed methodology will account for dependent censoring, providing a causal estimate of the treatment effect that would have been obtained if no switches had been observed.

Illustration of the IPCW implementation on the case study

We now illustrate the IPCW implementation on the case study described above, following the algorithm introduced in Section 3. Note that we used anonymized data for reproducibility purpose, since both code and data are available in the ipcwswitch package.

For each observation, the follow-up started on the date of the randomization visit, that is before patients were administered the study treatment.

Applying the IPCW method, patients who never initiated their assigned treatment had to be excluded. Therefore, while there were 197 patients in the ITT analysis, only 193 patients were analysed in the IPCW method described below.

Baseline time-fixed covariates were considered, namely age at randomization, gender, number of previous lines of treatment, the dichotomized Royal Marsden Hospital score (0 or 1 vs. 2 or 3) and the altered molecular pathway (distinguishing 3 pathways, namely hormone receptors pathway, PI3K/ AKT/mTOR pathway, and RAF/MEK pathway). Time-varying confounders, measured at each visit scheduled every two months up to study completion, were the Eastern Cooperative Oncology Group (ECOG) performance status, the presence of concomitant treatments and the need of platelet transfusions. All confounders were selected with the physicians. To deal with missing values, the last observation carried forward method was used to impute values after available measurements.

First, a long format dataset was obtained. As reported in Figure 1, 68 patients from the CT arm and 25 patients from the MTA arm, who initiated the other-arm treatment, defined treatment censoring observations. Then, the weights were computed, taking into account the potential confounders.

We chose the stabilized weights with a cut-off truncation at 0.05. Indeed, there were those combining a log(mean) close to 0 and a small range (see Figure 2). sults were not statistically significant at the 5% level. Note that, using the ipw::ipwtm function, we obtained an estimated causal hazard ratio of 1.30 (95%CI = [0.81, 2.07]). The difference is rather low, although there were 29 event times that were also treatment censoring times in the studied data.

Discussion of the case study

This work was motivated and illustrated on data from the SHIVA01 trial.

These anonymized data were used as illustrative of our package and not to report new findings of the SHIVA01 trial. Nevertheless, one should not avoid the checking of the underlying assumptions of the marginal structural model, that is exchangeability, consistency, positivity and correctness of the weightgenerating and survival models [START_REF] Robins | Marginal structural models 30 and causal inference in epidemiology[END_REF]. The low and "moderate", as termed by Latimer, switching proportions observed in each arm (25% and 70%, respectively) legitimized the use of the IPCW method [START_REF] Latimer | Adjusting for treatment switching in randomised controlled trials -a simulation study and a simplified two-stage method[END_REF]. Also, to avoid instability in estimates, we used truncated weights, which is a common practice when data from some levels of the confounders are rare, leading to extreme IPCW weights. The most demanding assumption is the absence of unmeasured confounders to achieve unbiased estimates of treatment effect. Since this exchangeability assumption cannot be tested, it is necessary to collect all the baseline covariates and the time-dependent confounders impacting both the probability of being "treatment-censored" and the survival outcome, to insure most of the confounding information could be taken into account.

Some authors suggested to fit a time-dependent Cox proportional hazards model for treatment censoring to check the presence of dependent censoring, that is the dependence between treatment censoring times and the covariates suspected of being confounders [START_REF] Robins | Correcting for noncompliance and dependent censoring in an AIDS clinical trial with inverse probability of censoring weighted (IPCW) log-rank tests[END_REF][START_REF] Willems | Correcting for dependent censoring in routine outcome monitoring data by applying the inverse probability censoring weighted estimator[END_REF]. Among the three chosen potential confounders, only the need for platelet transfusions was statistically significant (results not shown). Given the fact that using only this covariate as a time-dependent confounder did not markedly change the estimated causal hazard ratio, we kept as time-dependent confounders those three indicated by the physicians. Also, in the SHIVA01 trial, toxic effects were reported according to their association with the received treatment. However, regarding only the toxic effects related to the assigned treatment, there were not enough patients in the MTA arm to be included in the analysis. Therefore, the results should be interpreted with caution. Conversely, one can deal with a high number of potential confounding factors. Some methods to dimension reduction could be considered [START_REF] Robins | Correcting for noncompliance and dependent censoring in an AIDS clinical trial with inverse probability of censoring weighted (IPCW) log-rank tests[END_REF][START_REF] Maldonado | Simulation study of confounder-selection strategies[END_REF][START_REF] Dodd | Adjustment for treatment changes in epilepsy trials: a comparison of causal methods for time-to-event outcomes[END_REF]. We did not use such a method in our application because the set of potential confounders that were identified by clinicians was small.

Recently, some authors showed that using the IPCW method on a posthoc analysis of the phase 3 PREVAIL study resulted in a greater effect of the experimental treatment on overall survival than reported in the ITT analysis [START_REF] Skaltsa | Adjusting overall survival estimates after treatment switching: a case study in metastatic castration-resistant prostate cancer[END_REF]. However, causal methods, such as IPCW, remain slightly used in clinical trials setting [START_REF] Farmer | Application of causal inference methods in the analyses of randomised controlled trials: a systematic review[END_REF]. This could be explained in several ways. First it requires many data transformations and algorithms, that may have limited its easy use; this justified our own work. Moreover, as already mentioned, the IPCW is rather sensitive to small sample sizes and extreme switching proportions [START_REF] Latimer | Adjusting survival time estimates to account for treatment switching in randomized ment switching[END_REF]. It further needs not all patients from the control arm to have switched unless the method is prone to important bias [9]. Other causal inference methods could be preferred [6]. For instance, we chose the IPCW method rather than a Rank Preserving Structural Failure Time Model because the assumption of "common treatment effect", which is crucial in this approach, is questionable. Indeed, in the SHIVA01 protocol, patients could switch only if they had had a disease progression. Thus, the treatment effect could not be the same before or after the switch, preventing those patients from the "common treatment effect". As mentioned above, the use of the IPCW method requires unverifiable assumptions, which represent a barrier to its use. The expertise of clinicians is then essential to collect the confounding factors of switching in the most exhaustive way. At last, not at least, although the IPCW method provides a formal way to handle treatment switches, it cannot replace the intent-to-treat analysis that defines the primary analysis of RCTs.

Conclusion

This paper aimed to present a R package and some practical guidance in the estimation of treatment effect on survival in the RCT setting to take into account the treatment switches, commonly observed in oncology trials.

Transferring causal methodology from observational studies to the clinical trial setting seems appealing. It allows providing an estimate of the treatment effect on survival in the hypothetical case where all patients had remained on their randomized arm. Thus, it accounts for treatment switches, usually motivated by the failure of the front-line treatment, that is, disease progression.

The IPCW approach could be of interest in the clinical setting outside the field of non-compliance. It allows to estimate an "hypothetical" causal wideToLongTDC(data, id, tstart, tstop, event, bas.cov, mes.cov, time.cov, times)

and takes the same parameters as the previous function added to:

• event is the indicator of failure (a death is denoted by 1 at the end of the follow-up),

• bas.cov is a vector containing the names (in character format) of the baseline covariates,

• times is a list of vectors, each of them must contain, for each patient, the event time and the times of changes in time-varying covariates.

Thus, the times parameter can be obtained from the timesTokeep function applied on the same dataframe in the wide format.

The output is the long format version of the initial dataframe data. The repeated values included in each vector of the list mes.cov are aggregated in a variable named as the name of the corresponding list member. This function is not included in the following one because it allows to do some intermediate analyses, such as a time-dependent Cox model adjusted on both fixed and time-dependent covariates.

The key point of the IPCW method is to censor the patients who stopped the randomized treatment and build a censoring indicator, namely cens. We provide the function cens.ipw that can be used as:

cens.ipw(data, id, tstart, tstop, event, arm, realtrt, censTime, trt.start, trt.stop)

and that takes the following parameters:

• data is the dataframe containing the following variables,

• id is the patient's id,

• tstart is the date of the beginning of the follow-up (in numeric format),

• tstop is the date of the end of the follow-up (in numeric format),

• arm is the randomized treatment (2-levels factor),

• realtrt is a boolean indicating if treatment really allocated should be introduced (FALSE by default),

• censTime is the chosen time to censor the patients (in numeric format),

• trt.start is the time of initiation of the randomized treatment (NULL by default),

• trt.stop is the time of termination of the randomized treatment (NULL by default).

Note that this function provides the option to include in the data the treatment really taken with the corresponding dates. Then, the treatment really taken is a 3-levels factor, i.e., the two from the randomized arms and a third indicating the no-treatment case (None).

The output is a dataframe in the long format, with the data being censored according to the input date, censTime.

The following step of data formatting consists in replicating the rows so that each patients' follow-up is split according to all event times. The function replicRows, based on the survSplit function [START_REF] Therneau | A package for survival analysis in S[END_REF], is used as:

replicRows(data, tstart, tstop, event, cens, times1, times2, arm)

and has the following parameters:

• data is the dataframe containing the following variables,

• tstart is the date of the beginning of the follow-up (in numeric format, with the first being equal at 0),

• tstop is the date of the end of the follow-up (in numeric format),

• event is the indicator of failure (a death is denoted by 1 at the end of the follow-up),

• cens is the indicator of censoring (denoted by 1 at the end of the follow-up),

• times1 is a vector of times (in numeric format) indicating the times according to which the rows have to be split for patients in the first arm,

• times2 is a vector of times (in numeric format) indicating the times according to which the rows have to be split for patients in the second arm,

• arm is the randomized treatment (2-levels factor).

The function ipcw allows to compute the stabilized weights on the data formatted according to the previous steps. It is used as:

ipcw(data, id, tstart, tstop, cens, arm, bas.cov, conf, trunc = NULL, type = 'kaplan-meier')

and takes the following parameters:

• data is the dataframe containing the following variables,

• id is the patient's id,

• tstart is the date of the beginning of the follow-up (in numeric format, with the first being equal at 0),

• tstop is the date of the end of the follow-up (in numeric format),

• cens is the indicator of censoring (denoted by 1 at the end of the follow-up),

• bas.cov is a vector of baseline covariates,

• conf is a vector of time-dependent confounders,

• trunc is an optional fraction for the weights. For instance, when trunc = 0.01, the left tail is truncated to the 1st percentile and the right tail is truncated to the 99th percentile,

• type is a character string specifying the type of survival curve. The default is type='kaplan-meier'.
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  R> toy.rep <-replicRows(toy.long2, tstart = "tstart", tstop = "tstop", + event = "event", cens = "cens", + times1 = rep.times1, times2 = rep.times2, arm = "arm") id age arm swtrtdt TDconf cens tstart tstop event

#

  un-truncated stabilized weights ipwplot(weights = toy.rep$weights, timevar = toy.rep$randt, binwidth = 50, xlab = "Time since enrolment (days)", ylab = "Logarithm of the stabilized\n un-truncated weights")) # truncated stabilized weights ipwplot(weights = toy.rep$weights.trunc, timevar = toy.rep$randt, binwidth = 50, xlab = "Time since enrolment (days)", ylab = "Logarithm of the truncated stabilized weights\n (trunc = 0.01)"))

4 :

 4 Marginal estimates of the causal treatment effect on the pseudopopulation The weights being estimated, they should be incorporated in a marginal Cox model of the hazard of death. They are obtained running the coxph function of the survival package, specifying weights in the arguments of the function. In our example, the Cox MSM using the truncated stabilized weights is fitted as follows: fit.stab.w <-coxph(Surv(randt, lastdt, event) ~age + cluster(id), data = toy.rep, weights = toy.rep$weights.trunc)

Finally, a

 a Cox marginal structural model was fitted on the entire followup. It provided an estimated causal hazard ratio of 1.30 (95%CI = [0.81, 2.08]). It could be contrasted to those estimates obtained in the ITT population (1.19, 95%CI = [0.84, 1.68]), or a Cox model adjusted on both baseline and time-dependent covariates (1.035, 95%CI = [0.74, 1.44]. Anyway, re-

Figure 2 :

 2 Figure 2: Distribution of the log-stabilized weights either un-truncated or at 0.01 and 0.05, levels of truncation, using different scales for the y-axis.
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effect on the outcome of any treatment of interest when treatment decisions are possibly based on confounders. However, it could not handle every settings. For instance, when the front line treatment fails, patient could be re-randomized to another treatment. With such a practice, planning a sequential trial is the key to determine the effect of the sequence of treatment [START_REF] Kidwell | SMART designs in cancer research: past, present, and future[END_REF]. However, open labelled trial with many regimens available, as in the SHIVA01 trial, are not feasible as sequential trial.
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Appendix A. Package description

The following functions will facilitate the data formatting and the computation of the weights.

The function timesTokeep can be used with a dataframe in the wide format to retain times when changes occur for the time-dependent covariates.

It is used as:

timesTokeep(data, id, tstart, tstop, mes.cov, time.cov) and takes the following parameters:

• data is the dataframe containing the following variables,

• id is the patient's id,

• tstart is the date of the beginning of the follow-up (in Date format),

• tstop is the date of the end of the follow-up (in Date format),

• mes.cov is a list of vectors, each of them must contain the names (in character format) of the repeated measurements related to one timedependent covariate,

• time.cov is a list of vectors, each of them must contain the times (in Date format) when the above-mentioned measurements were done.

The output is a list of two lists, one in Date format the other in numeric format. Each of them contains, for each patient, the event time and the times of changes in time-varying covariates.

The function wideToLongTDC builds the long format from a dataframe in the wide format given some times defined by the user. It is used as: (MTA) or conventional therapy (CT)), and were not included in the analysis using the IPCW method. SW refers to patient's switch to the other arm, which may occur in case of disease progression. Patients denoted by † were considered as switchers but did not progress nor initiate the other arm treatment, and were not treatment censored.