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Summary

This paper deals with the state estimation problem of a class of nonlinear time-
varying systems with switched dynamics. Based on the concept of fixed-time stabil-
ity, an observer is designed to reconstruct the continuous state of switched nonlinear
time-varying systems with state jumps, satisfying the minimal dwell-time condition.
Using the past input and output values of the studied system, some sufficient condi-
tions are provided to estimate the state before the next switching. Some numerical
results illustrate the effectiveness of the proposed scheme.
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1 INTRODUCTION

One solution to estimate the system state when some vari-
ables are not directly accessible by measurements is to use
a real-time estimation algorithm, usually called an observer.
Thanks to observers, one can estimate useful information on
dynamical systems with the aim of monitoring, fault detec-
tion and feedback control design. Therefore, in control theory,
the state estimation problem has become a fundamental one
which has been addressed in many works. For instance, Luen-
berger observers [23] are traditional estimators which compute
point estimates of the state from input-output data. Interval
observers [16] which were proposed two decades ago, are
another cutting-edge technique of guaranteed state estimation.
They have been developed when upper and lower bounds of
the initial state are known, see [36, 25, 26] and the references
therein. Sliding mode observers have been proposed to esti-
mate in finite time the state of the system using the concept
of sliding surface and equivalent control [11, 20, 7]. Using
the homogeneity properties of nonlinear systems, a finite-time
observer has been designed in [31]. However, the mentioned
works focus on asymptotic convergence, where the settling
time is infinite or finite-time convergence, where the settling
time depends on the initial states.

Switched systems are a class of hybrid systems exhibiting
changes along the time among a finite number of possible
dynamical behaviors. The problem of designing observers for
switched systems has attracted an ever growing attention and
has been acknowledged as an important topic of research
(see e.g. [1, 32, 3] to name a few). The study has been ana-
lyzed depending on whether the switching signal is known or
unknown. If it is known, we focus on estimating the state after
a finite number of switchings [40, 39]. If not, the observabil-
ity of the state and of the switching signal has been shown to
be mutually independent properties [14]. Besides, it should be
noted that finite-time convergence is an interesting property,
mainly for switched systems [15]. Indeed, the observation
problem can be easily solved if the observer estimates the
state before the next switching. However, using finite-time
observers, the bound of the settling time depends on the ini-
tial states, which prevents us from an appropriate tuning of the
observer gains. To solve this problem, the concept of fixed-
time stability has been defined to investigate algorithms which
ensure an upper bound of the settling time regardless of the
initial conditions [33]. Finite-time stabilization for nonlinear
discrete-time singular Markov jump systems was studied in
[41]. Uniform robust exact differentiators were proposed in
[2, 6, 22, 37] based on a Lyapunov analysis or homogeneity
properties. A fixed-time observer, with linear matrix inequal-
ities for tuning the observer parameters, was introduced in
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[21] for linear systems. Based on uniform robust exact differ-
entiators, a uniformly convergent sliding mode observer for
switched linear systems was proposed in [29]. Recently, a
fixed-time convergent observer was designed for a class of lin-
earizable systems in [28]. Although the settling time estimate
does not depend on the initial conditions of the system in many
works, it cannot be easily tuned and it is very over-estimated.
Nevertheless, to the best of our knowledge, the existing fixed-
time observers cannot be applied to nonlinear time-varying
systems which are affine in the unmeasured part of the state
vector.
In this paper, based on fixed-time stability, we propose a

new approach for the state estimation of a class of nonlin-
ear time-varying systems which are affine in the unmeasured
part of the state vector. Here, contrary to many existing works,
the bound of the initial conditions is not assumed to be a pri-
ori known. Important results on the observer design for this
class of systems in the time-invariant case have been proposed
(see for instance [30, 34]). Recently, interval observers have
also been studied in [10, 8, 9, 17]. However, to the best of
our knowledge, no observer has been proposed for nonlinear
time-varying systems which are affine in the unmeasured part
of the state vector and with switched dynamics. Motivated by
the work of [12, 38, 27] for linear and nonlinear time-invariant
systems, the idea is to incorporate past input and output val-
ues of the studied system. Here, some sufficient conditions
are provided to reconstruct the state of switched nonlinear
time-varying systems with state jumps, satisfying the minimal
dwell-time condition. Using the concept of fixed-time stabil-
ity, the proposed estimator estimates the continuous state of
the system before the next switching.
The paper is organized as follows. After recalling some

basics on fixed-time stability, Section 2 introduces the state
estimation problem of a class of nonlinear time-varying sys-
tems with switched dynamics. The proposed estimator is
derived in Section 3. In Section 4, some numerical results
illustrate the effectiveness of the proposed scheme.

2 PROBLEM FORMULATION AND
PRELIMINARIES

2.1 Problem formulation
Let us consider the following class of nonlinear time-varying
systems with switched dynamics:

ẋ(t) = �k(y, t)x(t) + �k(y, t, u(y, t)), t ∈ [tk−1, tk), (1a)
y(t) = Ckx(t), (1b)

where x(t) ∈ ℝn is the state vector, u ∈ ℝq is the known
input and y(t) ∈ ℝp is the output vector, �k ∈ ℝn×n and
�k ∈ ℝn are continuous nonlinear functions. The index k ∈

{1;… ;N} determines the active subsystem over the interval
[tk−1, tk) and the system trajectories are right-continuous. The
switching mode k ∈ {1;… ;N} and the switching times {tk}
may be governed by a supervisory logic controller, or deter-
mined internally depending on the system state, or considered
as an external input [40]. In any case, it is assumed in this
paper that the active subsystem as well as the switching times
{tk} are known. The objective of this paper is to design an
observer which provides an estimate of the state x(t) of system
(1). Based on formulas incorporating past values of the input
and the output of the studied plant, an observer is introduced
for a class of switched nonlinear systems. Here, the following
assumptions are considered.

Assumption 1. System (1) satisfies the minimal dwell time
condition and the dwell time is a known constant. That means
there exists a known TS > 0 such that time instants tk satisfy
tk − tk−1 ≥ TS for all k ∈ {1;… ;N}.

Assumption 2. For all modes of operation, i.e. ∀k =
{1;… ;N}, there exist two C1 functions V1 ∶ ℝn × [0,∞) →
[0,∞), V2 ∶ ℝn × [0,∞) → [0,∞) and a corresponding
continuous function �∗k ∶ ℝp × [0,∞) → ℝn×p such that:

V 1(�) ≤ V1(�, t) ≤ V 1(�), (2)
)V1
)t

+
)V1
)�

(�)�k(y, t)� ≤ −!1(�), (3)

V 2(�) ≤ V2(�, t) ≤ V 2(�), (4)
)V2
)t

+
)V2
)�

(�)Hk(y, t)� ≤ −!2(�), (5)

for all � ∈ ℝn, t ≥ 0, y ∈ ℝp where V 1, V 1, V 2, V 2 are
continuous positive definite functions and radially unbounded,
!1, !2 are continuous positive definite functions and

Hk(y, t) = �k(y, t) + �∗k(y, t)Ck. (6)

Assumption 3. There exists a positive constant �∗ such that
�∗ < TS with TS defined in Assumption 1 and for all y ∈ ℝp,
for all t ∈ [tk−1 + �∗, tk), k ∈ {1;… ;N}, � ∈ [t − �∗, t],
matrices

E�∗k(t) = e∫
t−�∗
t Hk(y(� ),� )d� − e∫

t−�∗
t �k(y(�),� )d� ∈ ℝn×n

are invertible. Moreover two couples of matrices
�k(y, t) and ∫ t−�∗

t �k(y(� ), �)d� as well as Hk(y, t) and
∫ t−�∗
t Hk(y(� ), �)d� satisfy the commutative properties, i.e.

�k(y, t) ×

t−�∗

∫
t

�k(y(� ), �)d� =

t−�∗

∫
t

�k(y(� ), �)d� × �k(y, t),

(7)
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Hk(y, t) ×

t−�∗

∫
t

Hk(y(� ), �)d� =

t−�∗

∫
t

Hk(y(� ), �)d� ×Hk(y, t),

(8)
where matricesHk(y, t) are defined in (6).

Remark 1. Let us discuss about the considered assumptions:

• Assumption 1 guarantees that no Zeno phenomenon,
which roughly consists of high frequency switchings at
finite time instants, occurs. In fact, minimal dwell time
TS assures that the system stays on each mode during
a period greater than or equal to TS . This condition is
usually used when tackling with stability and stabiliza-
tion problems as well as observer design for switched
systems (see e.g., [18, 4, 5] and the references therein).

• Assumption 2 is usually used in designing estimators for
switched systems (see for instance in [13, 35]). With-
out taking into account the effect of external inputs,
Assumption 2 establishes conditions of internal stability
(V1, V2 are called common Lyapunov functions [19]). In
fact, Assumption 2 implies that, for any constant vector
y ∈ ℝp, the origin of �̇ = �k(y, t)� and the origin of
�̇ = Hk(y, t)� are globally asymptotically stable.

• Assumption 3 is a technical assumption. Commu-
tative properties (7) and (8) help give an analytic
expression of the state transition matrices when deal-
ing with time-varying systems. Actually, consider
the equation �̇ = �(y, t)� , t ≥ 0, �(0) =
�0. Assuming that �(y, t) and ∫ t

0 �(y(� ), �)d� com-
mute, we have �(t) = e∫

t
0 �(y(� ),� )d��(0) because

d
dt
�(t) = d

dt
e∫

t
0 �(y(� ),� )d��(0) = �(y, t)e∫

t
0 �(y(� ),� )d��(0)

= �(y, t)�(t). Remember that for time-invariant sys-
tems, �(y, t) = � and ∫ t

0 �(y(� ), �)d� = �t
commutes with �. Note also that two matrices that
are simultaneously diagonalizable are always com-
mutative. Consequently, if the couple of matrices
�k(y, t) and ∫ t−�∗

t �k(y(� ), �)d� (respectively Hk(y, t)
and ∫ t−�∗

t Hk(y(� ), �)d� ) is simultaneously diagonaliz-
able, (7) (respectively (8)) is satisfied.

• For the couple �k(y, t) and ∫ t−�∗
t �k(y(�), �)d� (same

for the couple Hk(y, t) and ∫ t−�∗
t Hk(y(�), �)d�), for all

k ∈ {1;… ;N}, each of the following situations will
guarantee that the twomatrices are pairwise commuting:

– �k(y, t) is constant;
– �k(y, t) = ak(y, t)Mk where ak(y, t) is a scalar
function, andMk ∈ ℝn×n is a constant matrix;

– �k(y, t) =
∑

i aki(y, t)Mki where {Mki} are con-
stant matrices that commute:MkiMkj =MkjMki ,
and aki(y, t) are scalar functions;

– �k(y, t) has a time-invariant basis of eigenvectors
spanning ℝn;

– �k(y, t) has special structures such as �k(y, t) =
[

ak(t) bk(t)
−bk(t) ak(t)

]

; etc.

Moreover it is worth noting that for the couple Hk(y, t)
and ∫ t−�∗

t Hk(y(�), �)d�, we have one more degree of
freedom due to the gains �∗k(y, t). In some particular
cases of the output y, one can choose �∗k(y, t) such that
Hk(y, t) = �k(y, t) + �∗k(y, t)C is a diagonal matrix
hence, ∫ t−�∗

t Hk(y(�), �)d� is also a diagonal matrix.

• Assumptions 1 and 3 ensure the exact state estimation
before the next switching.

3 MAIN RESULTS

Let us state and prove the following result:

Theorem 1. Let system (1) satisfy Assumptions 1-3. Con-
sider a stack ofN dynamic extensions, each one of dimension
n associated to a different mode of operation: for all k =
{1;… ;N}

ż(t) = �k(y, t)z(t) + �k(y, t, u(y, t)) (9)

and

ż∗(t) = Hk(y, t)z∗(t) + �k(y, t, u(y, t)) − �∗k(y)y(t), (10)

with initial conditions

z(tk−1) = z0k−1 ∈ ℝn, (11)
z∗(tk−1) = z∗0k−1 ∈ ℝn, (12)

for all k ∈ {1;… ;N}, z0k−1 and z∗0k−1 are constants which can
be arbitrarily selected, t0 = 0 and tk are the switching time
instants. Then, for a given piecewise continuous input u(y, t),
the state observer of dimension n,

x̂(t) = E−1
�∗k
(t)

(

e∫
t−�∗
t Hk(y,l)dlz∗(t) − z∗(t − �∗)

−e∫
t−�∗
t �k(y,l)dlz(t) + z(t − �∗)

)

(13)

provides an estimation of x in each [tk−1 + �∗, tk), i.e.

x̂(t) = x(t), t ∈ [tk−1 + �∗, tk), k ∈ ℕ. (14)

Remark 2. The proposed fixed-time observer does not require
an appropriate knowledge of the initial conditions while most
of existing approaches in the literature need such a knowl-
edge. Contrary to finite-time observers (where the settling time
estimate is finite but depends on the initial conditions), the
proposed fixed-time observer guarantees a finite settling time
with uniform convergence with respect to the initial condi-
tions. For many applications such as switched systems with
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unknown state jumps, i.e., x(tk) = Fkx(t−k ), this approach is
more convenient since the trajectories of the estimation error
reach the origin within a fixed time, which can be defined in
advance as a function of the system parameters. Matrix Fk cor-
responds to the jump parameters of the continuous state x at the
switching times tk, k ∈ {1;… ;N} and is naturally assumed
to be unknown. The notation t−k means the time just before
the switching times (for more details one can refer to the reset
condition given in [24]).

Remark 3. To simplify the exposition, we set by convention
t0 = 0 but the initial time can be arbitrary nonzero. Moreover,
it is worth noticing that at each switching time instant, we reset
the initial conditions of dynamics z and z∗.

Remark 4. Assumption 2 guarantees asymptotic stability of
the origin for the zero-input system. Without Assumption 2,
then even if x(t) is a bounded solution and u(t) is a bounded
input, system (9) admits unstable solutions. This can be a
drawback in many cases. Notice also that z given in (9) is an
exact copy of (1a) whereas z∗ given in (10) corresponds to an
observer for (9).

Remark 5. It is worth pointing out that the proposed estima-
tors (9)-(10)-(13) are not directly derived from the observers
constructed in [12] although some of the key ideas of [12] are
used along our design. The fact that matrix �k is time-varying
and not constant makes the problem tougher than in [12]. Addi-
tionally, we employ in this paper only one standard observer
(10) with only �∗k which is considered as a parameter to be
selected, whereas [12] combined two classical observers with
two separate gains which needed to be carefully chosen.

Proof. Let us consider the case t ∈ [tk−1, tk). Consider a solu-
tion (z(t), z∗(t)) of (9)-(10) associated with a solution x(t) of
the corresponding subsystem of (1a) defined over [tk−1, tk),
k ∈ {1;… ;N}. Note that x̂(t) is always defined for all t ∈
[tk−1, tk), k ∈ {1;… ;N} because z(t) and z∗(t) are bounded
at the origin thanks to (i) Assumption 2 and (ii) the fact that �k
and �∗k are continuous functions.
From the output (1b), for all t ∈ [tk−1 + �∗, tk), k ∈

{1;… ;N} the corresponding subsystem of (1a) can be rewrit-
ten in two different ways:

ẋ(t) = �k(y, t)x(t) + �k(y, t, u(y, t)), (15a)
ẋ(t) = Hk(y, t)x(t) + �k(y, t, u(y, t)) − �∗k(y, t)y(t). (15b)

By integrating (15a) and (15b) between two values v1 ≥ 0
and v2 ≥ 0 and noting that (7) and (8) are satisfied, we obtain

the equalities:

x(v1) = e∫
v1
v2
�k(y(l),l)dlx(v2)

+

v1

∫
v2

e∫
v1
l �k(y(�),�)d��k(y(l),l, u(y(l),l))dl,

x(v1) = e∫
v1
v2
Hk(y(l),l)dlx(v2)

+

v1

∫
v2

e∫
v1
l Hk(y(�),�)d�

[

�k(y(l),l, u(y(l),l))

−�∗k(y(l),l)y(l)
]

dl.

Now, for all t ∈ [tk−1 + �∗, tk), k ∈ {1;… ;N}, let us select
v2 = t ≥ 0 and v1 = t − �∗ ≥ 0. Hence one can get:

x(t − �∗) = e∫
t−�∗
t �k(y(l),l)dlx(t) +

t−�∗

∫
t

e∫
t−�∗
l �k(y(�),�)d�

× �k(y(l),l, u(y(l),l))dl,
(16a)

x(t − �∗) = e∫
t−�∗
t Hk(y(l),l)dlx(t)

+

t−�∗

∫
t

e∫
t−�∗
l Hk(y(�),�)d�

[

�k(y(l),l, u(y(l),l))

−�∗k(y(l),l)y(l)
]

dl.
(16b)

Consequently from (16a) and (16b), one obtains that

E�∗k(t)x(t) =

t−�∗

∫
t

e∫
t−�∗
l �k(y(�),�)d��k(y(l),l, u(y(l),l))dl

−

t−�∗

∫
t

e∫
t−�∗
l Hk(y(�),�)d�

[

�k(y(l),l, u(y(l),l))

−�∗k(y(l),l)y(l)
]

dl.
(17)

Thus,

E�∗k(t)x(t) = −

t

∫
t−�∗

e∫
t−�∗
l �k(y(�),�)d��k(y(l),l, u(y(l),l))dl

+

t

∫
t−�∗

e∫
t−�∗
l Hk(y(�),�)d�

[

�k(y(l),l, u(y(l),l))

−�∗k(y(l),l)y(l)
]

dl.
(18)
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Since from Assumption 3, for all t ∈ [tk−1 + �∗, tk), k ∈
{1;… ;N}, matrix E�∗k(t) is invertible, one has

x(t) = −E−1
�∗k
(t)

t

∫
t−�∗

e∫
t−�∗
l �k(y(�),�)d��k(y(l),l, u(y(l),l))dl

+ E−1
�∗k
(t)

t

∫
t−�∗

e∫
t−�∗
l Hk(y(�),�)d�

[

�k(y(l), u(y(l),l))

−�∗k(y(l),l)y(l)
]

dl.
(19)

On the other hand, by integrating (9) and (10) and bearing
in mind that (7) and (8) are fulfilled, we deduced that, for all
constants v1 ≥ 0 and v2 ≥ 0, the equalities

z(v1) = e∫
v1
v2
�k(y(l),l)dlz(v2)

+

v1

∫
v2

e∫
v1
l �k(y(�),�)d��k(y(l),l, u(y(l),l))dl,

z∗(v1) = e∫
v1
v2
Hk(y(l),l)dlz∗(v2)

+

v1

∫
v2

e∫
v1
l Hk(y(�),�)d�

[

�k(y(l),l, u(y(l),l))

−�∗k(y(l),l)y(l)
]

dl,

are satisfied. Hence, for all t ∈ [tk−1 + �∗, tk), k ∈ {1;… ;N},
we select v2 = t − �∗ ≥ 0, v1 = t ≥ 0 and we have:

z(t) = e∫
t
t−�∗

�k(y(l),l)dlz(t − �∗)

+

t

∫
t−�∗

e∫
t
l �k(y(�),�)d��k(y(l),l, u(y(l),l))dl, (20a)

z∗(t) = e∫
t
t−�∗

Hk(y(l),l)dlz∗(t − �∗)

+

t

∫
t−�∗

e∫
t
l Hk(y(�),�)d�

[

�k(y(l),l, u(y(l),l))

−�∗k(y(l),l)y(l)
]

dl. (20b)

It follows that, for all t ∈ [tk−1 + �∗, tk), k ∈ {1;… ;N},
t

∫
t−�∗

e∫
t−�∗
t �k(y(l),l)dle∫

t
l �k(y(�),�)d��k(y(l),l, u(y(l),l))dl

= e∫
t−�∗
t �k(y(l),l)dlz(t) − z(t − �∗), (21)

t

∫
t−�∗

e∫
t−�∗
t Hk(y(l),l)dle∫

t
l Hk(y(�),�)d�

[

�k(y(l),l, u(y(l),l))

−�∗k(y(l),l)y(l)
]

dl

= e∫
t−�∗
t Hk(y(l),l)dlz∗(t) − z∗(t − �∗). (22)

Then, for all t ∈ [tk−1 + �∗, tk), k ∈ {1;… ;N},
t

∫
t−�∗

e∫
t−�∗
l �k(y(�),�)d��k(y(l),l, u(y(l),l))dl

= e∫
t−�∗
t �k(y(l),l)dlz(t) − z(t − �∗), (23)

t

∫
t−�∗

e∫
t−�∗
l Hk(y(�),�)d�

[

�k(y(l),l, u(y(l),l))

−�∗k(y(l),l)y(l)
]

dl

= e∫
t−�∗
t Hk(y(l),l)dlz∗(t) − z∗(t − �∗). (24)

Finally, from (19), (23) and (24), one can immediately
deduce that for all t ∈ [tk−1 + �∗, tk), k ∈ {1;… ;N},

x(t) = E−1
�∗k
(t)

(

e∫
t−�∗
t Hk(y(l),l)dlz∗(t) − z∗(t − �∗)

−e∫
t−�∗
t �k(y(l),l)dlz(t) + z(t − �∗)

)

= x̂(t).

This concludes the proof. ■

Remark 6. The estimate (13) is independent of the initial con-
dition x0 of system (1). It is also important to note that the
observation error exactly converges to zero after the settling
time �∗ following any switches even in the case unknown state
jumps which may occur in (1) (see discussions about unknown
state jumps in Remark 2). Furthermore, one can highlight that
the settling time �∗ is not over-estimated contrary to [6]. It
also does not depend on the initial observation error at each
switching time and can be easily made arbitrarily small.

4 ILLUSTRATIVE EXAMPLE

In this section, let us consider the nonlinear switched system
(1) with N = 2 to illustrate Theorem 1. The two distinct sub-
systems are defined as follows:
Subsystem 1:

ẋ1 = −(t + 2)x1 −
3
2
x2 + u1 + y2 sin(y), (25a)

ẋ2 =
3
2
x1 − (t + 2)x2 + u2 + y2 sin(y), (25b)

y = x1 + x2. (25c)
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Subsystem 2:

ẋ1 = −(t + 4)x1 −
3
2
x2 + u1 + sin(y), (26a)

ẋ2 =
3
2
x1 − (t + 4)x2 + u2 + sin(y), (26b)

y = x1 + x2. (26c)

System (25) corresponds to k = 1, called sub-model 1 and
system (26) corresponds to k = 2, called sub-model 2. Systems
(25)-(26) are of the form (1) with C1 = C2 = [1 1],

�1(t) =

[

−(t + 2) − 3
2

3
2
−(t + 2)

]

and (27)

�1(y, u) =
[

u1 + y2 sin(y)
u2 + y2 sin(y)

]

, (28)

�2(y) =

[

−(t + 4) − 3
2

3
2
−(t + 4)

]

and (29)

�2(y, u) =
[

u1 + sin(y)
u2 + sin(y)

]

. (30)

It is worth pointing out that even the above-mentioned
example is quite simple, the technique proposed in [12] cannot
be applied for it. The example confirms that our methodology
to design fixed-time observers is significantly different from
the one introduced in [12] as discussed in Remark 5. Now, let
us choose �∗1 = �∗2 =

[

3
2
− 3

2

]⊤
. Hence, one can obtain

H1(t) = �1(t) + �∗1C1 =

[

−t − 1
2

0
0 −t − 7

2

]

, (31)

H2(t) = �2(t) + �∗2C2 =

[

−t − 5
2

0
0 −t − 11

2

]

. (32)

Therefore, Assumption 2 is satisfied. Through long but
simple calculations, one can obtain

E�∗1(t) =
[

"11(t) "12(t)
"21(t) "22(t)

]

, (33)

with

"11(t) = e−
�2∗
2
+t�∗

[

e
�∗
2 − e2�∗ cos

(3
2
�∗
)]

,

"12(t) = −e−
�2∗
2
+t�∗+2�∗ sin

(3
2
�∗
)

,

"21(t) = e−
�2∗
2
+t�∗+2�∗ sin

(3
2
�∗
)

,

"22(t) = e−
�2∗
2
+t�∗

[

e
7�∗
2 − e2�∗ cos

(3
2
�∗
)]

.

and

E�∗2(t) =
[

"′11(t) "
′
12(t)

"′21(t) "
′
22(t)

]

, (34)

with

"′11(t) = e−
�2∗
2
+t�∗

[

e
5�∗
2 − e4�∗ cos

(3
2
�∗
)]

,

"′12(t) = −e−
�2∗
2
+t�∗+4�∗ sin

(3
2
�∗
)

,

"′21(t) = e−
�2∗
2
+t�∗+4�∗ sin

(3
2
�∗
)

,

"′22(t) = e−
�2∗
2
+t�∗

[

e
11�∗
2 − e4�∗ cos

(3
2
�∗
)]

.

Next, let us compute the corresponding determinants

det E�∗1(t) = e−�2∗+2t�∗+2�∗

×
[

2e2�∗ − cos
(3
2
�∗
)(

e
�∗
2 + e

7�∗
2

)]

, (35)

det E�∗2(t) = e−�2∗+2t�∗+4�∗

×
[

2e4�∗ − cos
(3
2
�∗
)(

e
5�∗
2 + e

11�∗
2

)]

. (36)

When �∗ = {0.5; 0.7; 1}, one can check that det E�∗1(t) and
det E�∗2(t) are different from 0 for all t ≥ 0. That means that
matrices E�∗1(t) and E�∗2(t) are invertible for all t ≥ 0. Then,
Assumption 3 is satisfied for �∗ = {0.5; 0.7; 1}.
Hence, the concrete form of x̂ for subsystems (25)-(26) is

given as follows for k = {1; 2}, �∗ = {0.5; 0.7; 1},

x̂(t) = E−1
�∗k
(t)

(

ℍ�∗k(t)z∗(t) − z∗(t − �∗)

−A�∗k(t)z(t) + z(t − �∗)
)

(37)

where E�∗1 , E�∗2 defined in (33), (34), respectively and

ℍ�∗1(t) =
[

e−0.5�2∗+t�∗+0.5�∗ 0
0 e−0.5�2∗+t�∗+3.5�∗

]

, (38)

ℍ�∗2(t) =
[

e−0.5�2∗+t�∗+2.5�∗ 0
0 e−0.5�2∗+t�∗+5.5�∗

]

, (39)

A�∗1(t) =
[

a1(t) cos(1.5�∗) a1(t) sin(1.5�∗)
−a1(t) sin(1.5�∗) a1(t) cos(1.5�∗)

]

, (40)

A�∗2(t) =
[

a2(t) cos(1.5�∗) a2(t) sin(1.5�∗)
−a2(t) sin(1.5�∗) a2(t) cos(1.5�∗)

]

, (41)

with a1(t) = e−0.5�2∗+t�∗+2�∗ , a2(t) = e−0.5�2∗+t�∗+4�∗ .
The two following cases will now be simulated. The first

case is the non-switched case. Here, only the nonlinear sys-
tem (26) is considered (i.e. k ∶= Subsystem 2, ∀t ≥ 0). We
apply Theorem 1 with u1 = u2 = 30 and the initial conditions
x(0) = (2.3, 1)⊤, z(0) = (4.3, 2)⊤, z∗(0) = (3.3, 1.5)⊤. Figure 1
and Figure 2 illustrate the error between the real state and the
estimated state of system (26) with �∗ = 0.5 and �∗ = 1 respec-
tively. One can see that the observation error exactly converges
to zero after the settling time �∗. It can be easily arbitrarily
tuned.
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The second case is the switched case with k set according to:

k ∶=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Subsystem 2 if 0 ≤ t ≤ 2,
Subsystem 1 if 2 ≤ t ≤ 3,
Subsystem 2 if 3 ≤ t ≤ 4,
Subsystem 1 if t ≥ 4.

(42)

The switching law is depicted in Fig. 3. We apply Theorem
1 with

u1 = u2 =

{

50 if k ∶= Subsystem 1,
30 if k ∶= Subsystem 2,

x(tk−1) = (2.3, 1)⊤, z(tk−1) = (4.3, 2)⊤, z∗(tk−1) = (3.3, 1.5)⊤,
where k = {1; 2; 3; 4}. The switching time instants are t1 = 2,
t2 = 3 and t3 = 4.
Figures 4 and 5 illustrate the error between the real state

and the estimated state of the switched system defined by the
two distinct subsystems (25), (26) and the switching signal (42)
with �∗ = 0.5, �∗ = 0.7 respectively. Note that the minimal
dwell-time condition is satisfied and the settling time �∗ can be
easily arbitrarily tuned. We observe that the estimation is exact
for all t, tk−1 + �∗ ≤ t ≤ tk, k = {1; 2; 3} and t ≥ t3.

0 0.5
Time

0

2

4

6

8

E
rr

o
r

FIGURE 1 The error between the real state and the exact
estimation of (26) with �∗ = 0.5.

5 CONCLUSION

In this paper, the state estimation problem has been solved
for a class of nonlinear time-varying systems with switched
dynamics. Using the past input and output values of the stud-
ied system, some sufficient conditions are provided to estimate
the state before the next switching. Extensions to systems
with disturbances and with unknown switching signals are
expected.

0 1
Time

-2

0

2

4

6

8

E
rr

o
r

FIGURE 2 The error between the real state and the exact
estimation of (26) with �∗ = 1.

0 2 3 4Time

Sub-model 1

Sub-model 2

FIGURE 3 Switching law.

0 0.5 2 2.5 3 3.5 4 4.5
Time

-5

0

5

E
rr

o
r

FIGURE 4 The error between the real state and the exact esti-
mation of switched system defined by two distinct subsystems
(25), (26) and the switching signal (42) with �∗ = 0.5.
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