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Abstract: This paper deals with interval observers design for nonlinear switched systems. The nonlinear
modes are represented by the Takagi-Sugeno (T-S) fuzzy models with premise variables depending on
unmeasurable terms, e.g. the state vector. This T-S structure can be used to represent exactly a nonlinear
switched system in a compact set of the state space. The introduced method in this paper allows to
compute the lower and upper bounds of the system state under the assumption that the disturbances as
well as the measurement noises are unknown but bounded. First, the stability conditions of the proposed
T-S interval observers are developed via Linear Matrix Inequality (LMI) formulations to ensure the
convergence of the nonnegative observation error dynamics. Then, changes of coordinates are employed
to relax the restrictive requirement of nonnegativity constraints. Theoretical results are applied to a
numerical example to illustrate the effectiveness of the proposed method.
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1. INTRODUCTION

Since more than 25 years, fuzzy model-based approaches with
Takagi-Sugeno (T-S) fuzzy systems Takagi and Sugeno (1993)
have been considerd as an effective tool to represent different
types of nonlinear systems thanks to their ability to reduce
mathematics complexity by decomposing the operation space
into different zones to create a set of linear local models. The
validity of each system is quantified by nonlinear weighting
functions. The T-S fuzzy models with measurable and unmea-
surable premise variables have been used in a variety of ap-
plications in the literature. Most of the works deal with the
premise variables which are not always accessible and depend
on a subset of the system state Li et al. (2016); Ghorbel et al.
(2014). In these cases, estimation of the unmeasurable vectors
becomes necessary to rescontruct the premise variables Ichalal
et al. (2010). T-S fuzzy models are also investigated to describe
nonlinear switched systems as in Zouari et al. (2014); Garbouj
et al. (2019). Nonlinear switched systems are a particular class
of hybrid systems. They exhibit simultaneously continuous and
discrete dynamics and recently arise in a variety of engineering
applications, such as DC-DC converters Loxton et al. (2009),
robotic systems Petroff (2007), etc. The work in Zouari et al.
(2014); ? adopt a restrictive requirement of the premise vari-
ables: they are supposed to be measurable.

The state estimation problems of such switching representation
is very challenging and become more involved if we consider
that the output is subject to noises in which the conventional

observers may not be an efficient method. Additionally, for the
purpose of control such as stabilization and tracking, precise
information of the state vector in transient periods is not neces-
sary. However, practically there is a great demand for estima-
tion of the state of a system with guarantees at all time and the
notion of interval observer has been one of useful approaches
to meeting this practical demand. That is why interval observer
has attracted an ever growing attention in the past few years.
Although design of interval observers requires bounds of the
uncertainties/disturbances and bounds of the initial conditions
to be known a priori, this requirement is accepted in many
applications. Many classes of systems have been studied in both
continuous and discrete time, e.g. linear systems Mazenc et al.
(2014); Mazenc and Bernard (2011); Efimov et al. (2013a),
bilinear systems Dinh and Ito (2016), nonlinear systems Raı̈ssi
et al. (2012); Mazenc et al. (2013); Dinh and Ito (2017), time-
delay systems Efimov et al. (2013b).

Following right above-mentioned works, interesting results of
interval observers have been devoted to switched systems, es-
pecially in the case of linear switched systems Ethabet et al.
(2018); Guo and Zhu (2017); Marouani et al. (2018). However,
in practice it is well-known that most of the systems need to
be described by nonlinear switched behaviors, and thus interval
estimation design becomes more complex and existing methods
are not able to cope with such behaviors. Furthermore, the
extension of interval observers to nonlinear switched systems
modeled by T-S fuzzy systems has not been fully considered



in the literature and this motivates our work. The main con-
tribution of this paper is to design an interval observer for
nonlinear switched systems subject to measurement noises and
additive disturbances and represented by T-S fuzzy models with
unmeasurable premise variables. The stability analysis is given
in terms of Linear Matrix Inequalities (LMIs) and the restrictive
nonnegativity assumptions on the observation error is relaxed
through a change of coordinates.

The paper is organized as follows: preliminaries and problem
formulation are given in Section II. Section III is devoted to the
main results of designing a T-S interval observer. A numerical
example is presented in Section IV to illustrate the efficiency of
the proposed method. Finally, Section V concludes the paper.

2. PRELIMINARIES AND PROBLEM FORMULATION

2.1 Preliminaries

The set of real numbers is denoted by R. The set of nonneg-
ative real numbers is denoted by R≥0, i.e., R≥0 := [0,+∞).
Inequalities must be understood component-wise, i.e., for xa =
[xa,1, ...,xa,n]

> ∈ Rn and xb = [xb,1, ...,xb,n]
> ∈ Rn, xa ≤ xb if

and only if, for all i ∈ {1, ...,n}, xa,i ≤ xb,i. The symbol M � 0
(resp. M ≺ 0) means that the symmetric matrix M is positive
(resp. negative) definite. Ep is a (p× 1) vector whose ele-
ments are equal to 1. For a measurable and locally essentially
bounded input u : R+→R, the symbol ‖u‖[t0,t1] denotes its L∞

norm. If t1 = +∞, then we will simply write ‖u‖. A matrix
A ∈ Rn×n is called Metzler if all its off-diagonal elements are
nonnegative. A matrix A ∈ Rn×n is said to be nonnegative if
every entry of A is nonnegative. Given a matrix A ∈ Rm×n, we
define A+ = max{0,A}, A− = A+−A and denote the absolute
value of a matrix by |A|= A++A− (similarly for vectors). For
a square matrix Ti, we define diag([T1 . . .TN ]) as a diagonal
matrix composed by T1 . . .TN .
Lemma 1. (Mazenc and Bernard (2011)) The system described
by:

ẋ(t) = Ax(t)+u(t), x(0) = x0 (1)
is said to be nonnegative if A is a Metzler matrix and u(t)≥ 0.
For any initial condition x0 ≥ 0, the solution of (1) satisfies
x(t)≥ 0, ∀ t ≥ 0.
Lemma 2. (Chebotarev et al. (2015)) Let x ∈ Rn be a vector
such that x≤ x≤ x.
(1) if A ∈ Rm×n is a constant matrix, then

A+x−A−x≤ Ax≤ A+x−A−x (2)
(2) if A ∈ Rm×n is a matrix satisfying A ≤ A ≤ A, for some
A,A ∈ Rm×n, then

A+x+−A+x−−A−x++A−x− ≤ Ax
≤ A+x+−A+x−−A−x++A−x−

(3)

Lemma 3. (Boyd et al. (1994)) Consider x and y with appropri-
ate dimensions and Ω a positive definite matrix. the following
property is verified:

xT y+ yT x≤ xT
Ωx+ yT

Ω
−1y (4)

Consequently, let λ � 0 be a scalar and M ∈Rn be a symmetric
positive definite matrix, then:

2xT y≤ 1
λ

xT Mx+λyT M−1y x,y ∈ Rn (5)

Lemma 4. (Liberzon and Morse (1999)) Let
ẋ = Aσ x, ∀σ ∈ {1,2, . . . ,N} (6)

The switched system (6) is asymptotically stable if there exists
a matrix M = MT > 0 such that

V̇ (x) = xT (AσT
M+MAσ )x < 0,∀σ ∈ {1,2, . . . ,N} (7)

where V (x) = xT Mx is the common Lyapunov function.

2.2 T-S model formulation for nonlinear switched system

Consider a continuous time nonlinear switched system de-
scribed as follows :

Σσ(t) :
{

ẋ(t) = fσ(t) (x(t),u(t),d(t))
y(t) = gσ(t) (x(t),v(t))

σ(t) : [0,+∞[→{1,2, . . . ,N}
(8)

where x ∈ Rn is the state vector, u ∈ Rm is the input and
y ∈ Rp is the output. d ∈ R` and v ∈ Rp are respectively the
bounded additive disturbances and measurement noises. σ is
the switching law such that σ(t) ∈ {1, ...,N} is the index of the
active mode. For example, if one has σ(t) = i, i∈ {1,2, · · · ,N},
the system is said to be in the mode i at the instant t. fσ and
gσ are nonlinear functions. The additive disturbances d and the
measurement noises v are assumed to be unknown but bounded.

Each nonlinear mode σ(t) can be approximated by T-S fuzzy
models which consist of a set of linear sub-models interpolated
through weighting functions. Each linear model represents lo-
cal dynamics given by the following structure:
 ẋ(t) =

r

∑
i=1

µ
σ
i (ξ (t))(A

σ(t)
i x(t)+Bσ(t)

i u(t)+Fσ(t)
i d(t))

y(t) =Cσ(t)x(t)+ v(t)
σ(t) : [0,+∞[→{1,2, . . . ,N}

(9)
where Aσ(t)

i ∈ Rn×n,Bσ(t)
i ∈ Rn×m,Fσ(t)

i ∈ Rn×` and Cσ(t) ∈
Rp×n are known constant matrices. µσ

i (ξ (t)) are the weighting
functions depending on the so-called decision variable ξ (t) that
can be internal or external to the system. When these variables
are internal, they can be measurable such as {u(t),y(t)} or
unmeasurable as the state x(t) of the system. The weighting
functions satisfy the following convex sum property:

0≤ µ
σ
i (ξ (t))≤ 1, ∀i ∈ {1, . . .r}

r

∑
i=1

µ
σ
i (ξ (t)) = 1 ,∀σ ∈ {1, ...,N} (10)

Assumption 1. For all i ∈ {1, . . . ,r} and σ(t) defined in (9),
r+1

r Aσ(t)
i + 1

r

r
∑
j=1
j 6=i

Aσ(t)
j are Metzler matrices and r+1

r Bσ(t)
i +

1
r

r
∑
j=1
j 6=i

Bσ(t)
j are nonnegative matrices.

Assumption 1 is not restrictive because (i) a T-S model repre-
sentation of a nonlinear one is not unique, so there may have
T-S representations which satisfy Assumption 1 and (ii) it cov-
ers positive T-S fuzzy systems Benzaouia et al. (2014) which
require Ai Metzler and Bi nonnegative for all i ∈ {1, . . . ,r}.
Assumption 2.

d ≤ d(t)≤ d, |v(t)| ≤V Ep, ∀t ≥ 0 (11)

where d,d ∈ R` and the scalar V are a priori known.

Assumption 2 is basic in the literature of interval observers
where the uncertainties are assumed bounded with known
bounds.



Assumption 3. The input u ∈ Rm is upper and lower bounded,
i.e., umin ≤ u(t) ≤ umax for all t ≥ 0 where umin,umax ∈ Rm.
Moreover given ε,ε ∈Rn, for all i ∈ {1, . . . ,r}, σ ∈ {1, . . . ,N},
there exist u ∈Rm and u ∈Rm such that for all ε ∈Rn, ε ≤ ε ≤
ε ,

µ
σ
i (ε)u≤ µ

σ
i (ε)u(t)≤ µ

σ
i (ε)u (12)

Assumption 3 is not restrictive. The requirement that the input
u is bounded is accepted in many applications. Besides because
the function µσ

i is known and always bounded between 0 and
1 as in (10), then one can easily select u ∈ Rm and u ∈ Rm

to satisfy Assumption 3, e.g., u = umax
mini∈{1,...,r},σ∈{1,...,N} µσ

i (ε)
and

u =−|umin|.

Let us consider the matrices Aσ(t)
i and Bσ(t)

i defined as follows:

Aσ(t)
0 =

−1
r

r

∑
i=1

Aσ(t)
i ,Aσ(t)

i = Aσ(t)
i −Aσ(t)

0

Bσ(t)
0 =

−1
r

r

∑
i=1

Bσ(t)
i ,Bσ(t)

i = Bσ(t)
i −Bσ(t)

0

(13)

The matrices Aσ(t)
0 and Bσ(t)

0 characterize the nominal local

model of each mode. The matrices Aσ(t)
i and Bσ(t)

i describe the
variation around the nominal model. Substituting (13) into the
system (9), an equivalent system is obtained:


ẋ(t) = Aσ(t)

0 x(t)+Bσ(t)
0 u(t)+

r

∑
i=1

µ
σ
i (ξ (t))F

σ(t)
i d(t)

+
r

∑
i=1

µ
σ
i (ξ (t))(A

σ(t)
i x(t)+Bσ(t)

i u(t))

y(t) =Cσ(t)x(t)+ v(t)
σ(t) : [0,+∞[→{1,2, . . . ,N}

(14)

In this work, we suppose that the weighting functions depend
on the system state which is unmeasurable (i.e. ξ (t) = x(t)).
The main contribution of this paper is to design a T-S interval
state estimation of the system described in (14). Starting from
the initial state x0 which verifies x0 ≤ x0 ≤ x0 and taking
into account the uncertainties, the designed interval observer
satisfy x(t) ≤ x(t) ≤ x(t), ∀t ≥ 0. In the sequel, for the sake of
simplicity, the time variable t will be omitted.

3. T-S INTERVAL STATE ESTIMATION FOR
NONLINEAR SWITCHED SYSTEM

Based on the structure of the nonlinear switched system rep-
resented by the T-S fuzzy models given in (14), the following
T-S framer composed of x and x is proposed in the Luenberger
form:

ẋ = (Aσ
0 −LσCσ )x+Bσ

0 u+Lσ y+ |Lσ |V Ep +
r

∑
i=1

ϕ
+
Fσ

i

+
r

∑
i=1

(
Aσ

i x++µ
σ
i (x)B

σ

i u
)

ẋ = (Aσ
0 −LσCσ )x+Bσ

0 u+Lσ y−|Lσ |V Ep−
r

∑
i=1

ϕ
−
Fσ

i

−
r

∑
i=1

(
Aσ

i x−−µ
σ
i (x)B

σ

i u
)

(15)
where ϕFσ

i
= Fσ+

i d−Fσ−
i d, ϕ

Fσ
i
= Fσ+

i d−Fσ−
i d.

According to eq. (2) of Lemma 2, we have for any d ∈ R`:

Fσ+
i d−Fσ−

i d ≤ Fσ
i d ≤ Fσ+

i d−Fσ−
i d (16)

From eq. (3) and note that 0≤ µσ
i (x)≤ 1 for all i ∈ {1, . . . ,r},

σ ∈ {1, . . . ,N}, we deduce that

−x− ≤ µ
σ
i (x)x≤ x+ (17)

−ϕ
−
Fσ

i
≤ µ

σ
i (x)F

σ
i d ≤ ϕ

+
Fσ

i
(18)

From Assumption 3, we have for all i ∈ {1, . . . ,r}, σ ∈
{1, . . . ,N},

µ
σ
i (x)u≤ µ

σ
i (x)u(t)≤ µ

σ
i (x)u (19)

Let’s define e = x−x and e = x−x, the corresponding observa-
tion error dynamics are given by:{

ė = ẋ− ẋ = (Aσ
0 −LσCσ )e+Ψ

σ

ė = ẋ− ẋ = (Aσ
0 −LσCσ )e+Ψ

σ (20)

where

Ψ
σ
= Lσ v+ |Lσ |V Ep +

r

∑
i=1

ϕ
+
Fσ

i
−

r

∑
i=1

µ
σ
i (x)F

σ
i d

+
r

∑
i=1

(Aσ

i δ
σ

i +Bσ

i ∆
σ

i ),

Ψ
σ = |Lσ |V Ep−Lσ v+

r

∑
i=1

µ
σ
i (x)F

σ
i d +

r

∑
i=1

ϕ
−
Fσ

i

+
r

∑
i=1

(Aσ

i δ
σ

i +Bσ

i ∆
σ
i ),

(21)

with the vectors:

δ
σ

i = x+−µ
σ
i (x)x≥ 0

δ
σ

i = µ
σ
i (x)x+ x− ≥ 0

(22)

∆
σ

i = µ
σ
i (x)u−µ

σ
i (x)u≥ 0

∆
σ
i = µ

σ
i (x)u−µ

σ
i (x)u≥ 0

(23)

Assumption 4. The following conditions hold throughout this
paper for all i ∈ {1,r} and for all σ ∈ {1, ...,N}:

•
∣∣∣δ σ

i

∣∣∣≤ ασ
i |x− x| ,

∣∣δ σ

i
∣∣≤ ασ

i |x− x|,

•
∣∣∣∆σ

i

∣∣∣≤ γσ
i |x− x| , |∆σ

i | ≤ γσ
i |x− x|,

Assumption 4 ensures Lipschitz conditions on the weighting
functions µi : Rn → R+. For all i ∈ {1, . . . ,r}, σ ∈ {1, ...,N},
the computation of the matrices ασ

i ∈ Rn×n, γσ
i ∈ Rm×n is

introduced in (Ichalal et al., 2010, Section 10) and they are real
nonnegative matrices.
Theorem 1. Assume that the Assumptions 1-4 are satisfied and
there exist Lσ such that the matrices Aσ

0 −LσCσ are Metzler for
all σ ∈ {1,2, . . . ,N}. The initial state x0 verifies x0 ≤ x0 ≤ x0.
Given the matrices ασ

i ,γ
σ
i , i ∈ {1, . . . ,r}, σ ∈ {1, ...,N} and

the scalars λ σ > 0. Then if there exist a positive definite matrix
M ∈Rn×n, matrices Kσ ∈Rn×p, positive definite matrices Ωσ

1i ∈
Rn×n and Ωσ

2i ∈ Rm×n, i ∈ {1, . . . ,r} such that the following
LMI holds:

A σ
Ξ

σ
A Ξ

σ
B Ξ

σ
α Ω

σ
A Ξ

σ
γ Ω

σ
B

Ξ
σT

A −Ω
σ
A 0 0 0

Ξ
σT

B 0 −Ω
σ
B 0 0

Ω
σT

A Ξ
σT

α 0 0 −Ω
σ
A 0

Ω
σT

B Ξ
σT

γ 0 0 0 −Ω
σ
B

≺ 0 (24)

where



A σ = AσT

0 M+MAσ
0 −CσT

KσT −KσCσ +
4

λ σ

Ξ
σ
A =

[
MAσ

1 . . . MAσ

r

]
,Ξσ

B =
[

MBσ

1 . . . MBσ

r

]
Ξ

σ
α = [ α

σ
1 . . . α

σ
r ] ,Ξσ

γ = [ γ
σ
1 . . . γ

σ
r ]

Ω
σ
A = diag([ Ω

σ
11 . . . Ω

σ
1r ]),Ω

σ
B = diag([ Ω

σ
21 . . . Ω

σ
2r ])

(25)
with Kσ = MLσ , then the framer (15) is an interval observer for
the system (14).

Proof.

Since Aσ
0 −LσCσ are assumed Metzler. Additionally using As-

sumption 1 yields Aσ

i Metzler and Bσ

i ≥ 0. As |v| ≤V Ep,∀t ≥ 0
and thank to (18), if x0 and x0 are chosen such that:{

e(0) = x0− x0 ≥ 0
e(0) = x0− x0 ≥ 0

then according to Lemma 1, the dynamics of the estimation
errors e and e stay positive ∀t ≥ 0 and thus x(t) ≤ x(t) ≤
x(t), ∀t ≥ 0.
Let us show that the errors e and e stay bounded ∀t ≥ 0.
The stability of (20) is proved based on Lemma 4. Consider
the common Lyapunov function for the upper estimation error
V (e) = eT Me, M � 0, then:

V̇ (e) = ėT Me+ eT Mė
= eT ((Aσ

0 −LσCσ )T M+M(Aσ
0 −LσCσ ))e

+2eT MLσ v+2eT M |Lσ |V Ep

+2eT M
r

∑
i=1

ϕ
+
Fσ

i
−2eT M

r

∑
i=1

µ
σ
i (x)F

σ
i d

+2eT M
r

∑
i=1

Aσ

i δ
σ

i +2eT M
r

∑
i=1

Bσ

i ∆
σ

i

(26)

From Lemma 3, the following inequalities are obtained for all
δ ∈ {1, ...,N}:

2eT MLσ v≤ 1
λ σ

eT Me+λ
σ vT Lσ T MLσ v

2eT M |Lσ |V Ep ≤
1

λ σ
eT Me+λ

σ ET
p V |Lσ |T M|Lσ |V Ep

2eT M
r

∑
i=1

ϕ
+
Fσ

i
≤ 1

λ σ
eT Me+λ

σ

(
r

∑
i=1

ϕ
+
Fσ

i

)T

M
r

∑
i=1

ϕ
+
Fσ

i

2eT M
r

∑
i=1

µ
σ
i (x)(−Fσ

i )d ≤ 1
λ σ

eT Me

+λ
σ

[
r

∑
i=1

µ
σ
i (x)d

T FσT

i M
r

∑
i=1

µ
σ
i (x)F

σ
i d

]
On the other hand using Lemma 3 and Lipschitz conditions
proposed in Assumption 4, it follows that for all i ∈ {1, . . . ,r}:

δ
σT

i AσT

i Me+ eT MAσ

i δ
σ

i ≤ δ
σT

i Ω1iδ
σ

i + eT MAσ

i Ω
−1
1i AσT

i Me

≤ eT
α

σT

i Ω1iα
σ
i e+ eT MAσ

i Ω
−1
1i AσT

i Me
and

∆
σT

i BσT

i Me+ eT MBσ

i ∆
σ

i ≤ ∆
σT

i Ω2i∆
σ

i + eT MBσ

i Ω
−1
2i BσT

i Me

≤ eT
γ

σT

i Ω2iγ
σ
i e+ eT MBσ

i Ω
−1
2i BσT

i Me
Taking into account the above-mentioned inequalities, the
derivative of the common Lyapunov function (26) can be
bounded as follows:

V̇ (e)≤ eT A σ e+ eT Bσ e+C σ (27)
where A σ defined in (24) and

Bσ =
r

∑
i=1

MAσ

i Ω
−1
1i AσT

i M+MBσ

i Ω
−1
2i BσT

i M+α
σT

i Ω1iα
σ
i

+ γ
σT

i Ω2iγ
σ
i

C σ = vT
[
λ

σ LσT
MLσ

]
v+ET

p
[
λ

σV |Lσ |T M|Lσ |V
]

Ep

+

(
r

∑
i=1

ϕ
+
Fσ

i

)T

[λ σ M]
r

∑
i=1

ϕ
+
Fσ

i

+
r

∑
i=1

µ
σ
i (x)d

T FσT

i [λ σ M]
r

∑
i=1

µ
σ
i (x)F

σ
i d

Because the weighting functions µσ
i for all i ∈ {1, . . . ,r}, σ ∈

{1, . . . ,N}, the additive disturbances d and the measurement
noises v are bounded in norm, it follows that C σ is bounded.
Thus, (27) is guaranteed if A σ + Bσ ≺ 0, which can be
rewritten by employing definitions given in (25) as follows:

A σ +Ξ
σ
A Ω

σ−1

A Ξ
σT

A +Ξ
σ
B Ω

σ−1

B Ξ
σT

B +Ξ
σ
α Ω

σ
A Ξ

σT

α

+Ξ
σ
γ Ω

σ
B Ξ

σT

γ ≺ 0 (28)

Thank to Schur complement and the fact that Kσ = MLσ , (28)
is equivalent to LMI (24). Therefore, the upper estimation error
e is input-to-state stable (ISS). Similarly, we can show that the
lower estimation error e is also ISS ∀t ≥ 0. �

Note that the existence of the observer gains Lσ in Theorem
1 is conservative because of the requirement stating that the
matrices Aσ

0 −LσCσ should be Metzler. In fact, it is not usually
possible to ensure this constraint. Naturally, one can think about
finding a nonsingular transformation z = Px such that the ma-
trices P(Aσ

0 − LσCσ )P−1 are Metzler. Subsequently, a framer
can be constructed in these new coordinates. However, the
existence of a common transformation P for all σ ∈ {1, . . . ,N}
is not obvious, even impossible. Thus, a new methodology is
proposed. It is based on the design, in the original base, of
two conventional observers. The structure is inspired by the one
proposed in Dinh et al. (2014) for non-switched systems.
Assumption 5. There exist changes of coordinates Pσ such that
the matrices

Pσ (Aσ
0 −LσCσ )Pσ−1

are nonnegative for all σ ∈ {1, . . . ,N}.
Remark 1. The second approach based on changes of coordi-
nates is general since it is always possible to transform any real
square matrix into a nonnegative form. The existence of such a
transformation is not a strong assumption. For instance, it has
been shown in Mazenc and Bernard (2011) that based on the
Jordan canonical form, it is always feasible to transform any
square constant matrix into a nonnegative form with a constant
or a time-varying transformation.

The two conventional observers are described by:

˙̂x+ = (Aσ
0 −LσCσ )x̂++Bσ

0 u+Lσ y+Pσ−1 |Pσ Lσ |V Ep

+Pσ−1

(
Pσ+

r

∑
i=1

ϕ
+
Fσ

i
+Pσ−

r

∑
i=1

ϕ
−
Fσ

i

)

+Pσ−1
r

∑
i=1

(
Pσ+

Aσ

i x++Pσ−Aσ

i x−

+ Pσ+
Bσ

i µi(x)u−Pσ−Bσ

i µi(x)u
)

(29)

and



˙̂x− = (Aσ
0 −LσCσ )x̂−+Bσ

0 u+Lσ y−Pσ−1 |Pσ Lσ |V Ep

−Pσ−1

(
Pσ+

r

∑
i=1

ϕ
−
Fσ

i
+Pσ−

r

∑
i=1

ϕ
+
Fσ

i

)

−Pσ−1
r

∑
i=1

(
Pσ+

Aσ

i x−+Pσ−Aσ

i x+

− Pσ+
Bσ

i µi(x)u+Pσ−Bσ

i µi(x)u
)

(30)

where Pσ ,σ ∈ {1,2, . . . ,N} are changes of coordinates pre-
sented in Assumption 5.
Theorem 2. Assumptions 1-5 hold. If the initial condition x0
verifies x0 ≤ x0 ≤ x0 then the equations,

x = Qσ+
Pσ x̂+−Qσ−Pσ x̂−, x = Qσ+

Pσ x̂−−Qσ−Pσ x̂+ (31)

associated with the suitably selected initial conditions:

x̂+0 = Qσ

(
Pσ+

x0−Pσ−x0

)
, x̂−0 = Qσ

(
Pσ+

x0−Pσ−x0

)
,

(32)
are a framer for (14) with Qσ = Pσ−1

.

In addition, given the matrices ασ
i ,γ

σ
i , i ∈ {1, . . . ,r} and the

scalars λ σ > 0. If there exist a positive definite M ∈ Rn×n,
matrices Kσ ∈Rn×p, positive definite matrices Ωσ

1i ∈Rn×n and
Ωσ

2i ∈ Rm×n, i ∈ {1, . . . ,r} such that LMI (24) holds, then the
framer (31) is an interval observer for the system (14) and the
observer gains can be computed as Lσ = M−1Kσ .

Proof. The proof is similar to Theorem 1.

For framer property, based on Assumption 5, we prove that
Ė(t)=Pσ ˙̂x+(t)−Pσ ẋ(t) and Ė(t)=Pσ ẋ(t)−Pσ ˙̂x−(t) are non-
negative dynamics. For the stability property, we consider the
Lyapunov functions (x̂+− x)T M(x̂+− x) and (x− x̂−)T M(x−
x̂−). �
Remark 2. The nonnegativity property has motivated the need
of a state transformation. The interest of the second structure
proposed above is that even by using changes of coordinates
z(t) = Pσ x(t), the dynamics (29) and (30) are designed in the
original coordinates ”x” (i.e. ˙̂x+(t) = (Aσ

0 −LσCσ )x̂++ ...) in-
stead of in the basis ”z” (i.e. ˙̂x+(t)=Pσ (Aσ

0 −LσCσ )Qσ x̂+(t)+
...) as in Guo and Zhu (2017). This makes the stability analysis
simpler and allows one to avoid jumping of the framer state and
a hybrid behavior in the coordinates ”z”.

4. NUMERICAL EXAMPLE

In order to illustrate the effectiveness of the proposed method-
ology, we consider a switched system characterized by two
nonlinear modes (i.e. σ ∈ {1,2}). Each mode is represented by
T-S models with two local models (i.e. r = 2) as the form (9)
where:
For Mode 1:

A1
1 =

[
−1.51 −0.262

0 −1

]
, A1

2 =

[
−0.86 1.47

0 −3

]
B1

1 =

[
0
1

]
, B1

2 = B1
1, F1

1 =

[
0.5
0.6

]
, F1

2 = F1
1

C1 = [ 1 0 ]

(33)

For Mode 2:

A2
1 =

[
−0.55 2.1

0 −1

]
, A2

2 =

[
−2.65 0.34

0 −3

]
B2

1 =

[
1
0

]
, B2

2 = B2
1, F2

1 =

[
0.5
0.8

]
, F2

2 = F2
1

C2 = [ 1 0 ]

(34)

The Assumption 1 is satisfied because the matrices A1
1+

1
2 (A

1
1+

A1
2), A1

2 +
1
2 (A

1
1 +A1

2), A2
1 +

1
2 (A

2
1 +A2

2), A2
2 +

1
2 (A

2
1 +A2

2) are
Metzler and the matrices Bσ

i > 0 for all i,σ ∈ {1,2}. The
weighting functions are hyperbolic tangent functions and de-
pend on the state of the switched system such as:

ξ (t) = x1(t)

µ
σ
1 (ξ (t)) =

1
2
(1− tanh(x1(t)), ∀σ ∈ {1,2}

µ
σ
2 (ξ (t)) = 1−µ1(x1(t)), ∀σ ∈ {1,2}

(35)

For the simulation, the disturbances and the measurement
noises are chosen such as:

d(t) = 0.05sin(0.8t), d =−d = 0.05
v(t) = 0.08sin(0.8t), V = 0.08

(36)

Thus, Assumption 2 is satisfied. For all σ ∈ {1,2}, the matrices
ασ

1 ,α
σ
2 ,γ

σ
1 and γσ

2 in Assumption 4 are computed from the
method given in Ichalal et al. (2010) and they are defined by:

α
σ
1 = α

σ
2 =

[
1.2 0
0 0

]
, γ

σ
1 = γ

σ
2 = [ 0.5 0 ] (37)

To design the T-S interval observer given in (31) for the system
(9), LMI (24) can be solved using the Yalmip toolbox (Lofberg
(2004)). The scalar λ σ = 2.96, ∀σ ∈ {1,2} is considered. One
feasible solution is given by:

L1 =

[
24.5664
14.3821

]
, L2 =

[
26.1506
15.4306

]
M =

[
0.0769 −0.0160
−0.0160 0.0313

]
Ω

1
A = diag([ 0.7830 1.3446 0.7437 1.9034 ])

Ω
2
A = diag([ 0.7113 1.3037 0.7890 1.3874 ])

Ω
1
B =

[
0.1650 0

0 1.1589

]
, Ω

2
B =

[
0.2175 0

0 1.0285

]
Clearly, the matrices Aσ

0 − LσCσ are not Metzler for all σ ∈
{1,2}, then changes of coordinates are required. We propose
changes of coordinates making Pσ such that the matrices
Pσ (Aσ

0 −LσCσ )Qσ are Metzler for all σ ∈ {1,2} as follows

P1 =

[
0.6251 −0.0161
−0.6251 1.0161

]
, P2 =

[
0.6365 −0.0311
−0.6365 1.0311

]
Q1 =

[
1.6256 0.0258
1.0000 1.0000

]
, Q2 =

[
1.6200 0.0488
1.0000 1.0000

]
Assumption 5 is then satisfied. The simulation results are de-
picted in Fig.1 with the initial condition x0 = [ 0 0 ]

T and
x0 = −x0 = [ 0.5 0.8 ]

T . The switching law σ(t) between the
two modes of the considered system is plotted in Fig.2.

Since all assumptions of Theorem 2 are satisfied, the T-S
interval observer (31) is applied. The simulation results show
that the state stays in the estimated interval all the time, even
when the measurement noises and the additive disturbances
(36) are present. In addition, the upper and lower bounds remain
stable despite the switching instants.
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5. CONCLUSION

The problem of interval observers design for nonlinear switched
systems described by T-S fuzzy models has been investi-
gated. The problem is challenging because of the unmeasur-
able premise variables. The convergence of the error dynamics
has been established using a common Lyapunov function. The
nonnegativity property has been ensured through a change of
coordinates. The effectiveness of the proposed method was
illustrated through a numerical example. Future works will be
focused on improving this present method when the switching
signal is unknown and has to be estimated. Moreover multiple
Lyapunov functions are also expected.
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