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Supervision of Nonlinear Networked Control Systems Under Network
Constraints

Afef Najjar1, Thach Ngoc Dinh2, Messaoud Amairi1, Tarek Raı̈ssi2

Abstract— The remote supervision for a class of nonlinear
systems in the presence of additive disturbances and measure-
ment noises is considered in this paper. The communication
network may introduce time delays while exchanging data
among sites connected to the network medium (i.e., the data
acquisition site and the remote plant site). Two different
approaches are presented in this paper. The first one uses a
conventional estimator-based predictor when the uncertainties
are supposed to be known. In the case of unknown but bounded
uncertainties by known bounds, an interval estimation-based
predictor evaluating the set of admissible values for the state
is investigated. The state prediction techniques are used to
compensate the effect of network-induced delays. Simulation
results are introduced to illustrate the efficiency of the proposed
techniques.

Index Terms— Nonlinear networked control system (NNCS),
time-varying delay, state estimation, interval observer, predic-
tor.

I. INTRODUCTION

Recently, networked control system (NCS) has gone
through wide studies due to its many advantages, such as
reduced wiring cost, flexible maintenance and high reliability
[1]–[3]. NCS has been found in many applications including
manufacturing plants, automobiles, aircraft and remote
surgery [4]. In general, a NCS consists of sensors, actuators
and controllers whose operations are distributed at different
geographical locations and coordinated via information
exchanged over shared communication networks [4]. Using
a shared band limited digital network as medium to connect
could cause some imperfections such as network-induced
time delay, data packet dropout, quantization, sampling and
data rate constraints [5]–[7]. All these imperfections can
introduce instability and performance degradation which
imply that the stability analysis and control design become
more difficult to be investigated.
In the literature, many methods have been proposed to deal
with performance degradation induced by communication
networks. For example, NCS was considered as a switched
linear system in many works, see for instance [8]–[10].
In [9], the system was presented as a discrete-time
switched linear uncertain system subject to time-varying
delay, variable transmission interval and communication
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constraints. A finite number of Linear Matrix Inequalities
(LMI) was used to analyze the system stability. Similarly in
[11] and [12], the NCS has been presented in the discrete-
time domain in the presence of both network delays and
data dropout which were modeled as Bernoulli event in [11]
and as two Markov chains in the action and measurement
channels in [12]. On the other hand, several alternative
solutions have been proposed to achieve stability conditions
of NCS. In [13] and [14], a robust H∞ controller has been
designed to cope with the network-induced delay and/or
packet loss. Also, a fuzzy proportional integral derivative
controller (PID) was used to overcome the problem of
random network delay [15] and a semi-global practical
stability of the closed-loop system was given in term of
gains in [5].
In addition, the supervision problem is very important in
industry. Many solutions already exist for linear systems and
a number of nonlinear structures. For the latter situation, a
state prediction, compensating large network-induced delays,
is considered in this paper. State estimation over networks
is important in applications such as remote sensing, space
exploration, and sensor networks. However in real-life
applications, the knowledge of full states of a NCS is rather
complicated [16]. To solve this issue, a natural approach
is to construct a state estimator from the available data.
In [17], [18], an observer-based control for NCS has been
mentioned. In [17], a switched fuzzy state observer was
designed despite random measurements and time delays
while authors in [18] have proposed an observer-based
residual generator dealing with a robust fault detection filter
(FDF) design and optimization problem.
In the presence of unknown additive disturbances or/and
measurement noises (i.e., unknown uncertainties), like
the case of the considered NNCS architecture, all these
conventional observers converging to the ideal value of the
state cannot be realized. Nevertheless, an interval estimation
providing guaranteed upper and lower bounds for the state
still remain feasible: an interval observer can compute
robustly the set of all admissible values instead of a single
point approximation. Roughly speaking, interval observer
is composed of two classical ones allowing to determine
two bounds which enclose the state under the assumptions
that the uncertainties are unknown but bounded by known
bounds. That is why interval observers have been becoming
more and more popular in the last few years [19]–[23].

In the present work, we deal with a supervision strategy
for a class of Nonlinear Networked Control Systems



(NNCS) subject to uncertain network-induced delays which
are assumed to be unknown but bounded with an upper
bound and a lower bound. Different from many researches
[24], [25], we treat the case of large network-induced
delays. In other words, we allow the upper bound of these
delays to be greater than the sampling period. Also, additive
disturbances and measurement noises are considered in this
NNCS structure. In the absence of unknown uncertainties
(i.e., disturbances and measurement noises) and after a finite
time depending on the upper bound of network-induced
delays, the conventional estimator-based predictor can be
achieved. Next, after a finite time depending on the upper
bound of network-induced delays, the interval estimation-
based predictor provides upper and lower bounds for each
component of the solutions when unknown but bounded
uncertainties are present. Hence, the current state of the
remote plant is reconstructed thanks to the state predictor
outputs in both approaches.
The rest of the paper is organized as follows. Section II
is formulated to describe the studied system. The classical
approach is investigated in Section III. Section IV develops
the interval approach. The effectiveness of the proposed
supervision schematic is drawn in Section V via a numerical
example. Finally, Section VI gives a brief conclusion.

Notations and definitions: R and N refer to the sets
of real and natural numbers, respectively. Denote the
set of eigenvalues of the matrix A ∈ Rn×n by λ (A)
and Re(z) is the real part of the complex number z.
H is the set of Hurwitz matrices from the set Rn×n,
i.e. R ∈ H ⇔ Re(λ ) < 0, ∀λ ∈ λ (R). M denotes
the set of Metzler matrices from the set Rn×n, i.e.
R =

{
ri j
}n

i, j=1 ∈ M ⇔ ri, j ≥ 0 for i 6= j. For a variable
x, the upper and lower bounds are denoted by x and x
respectively, such that x ≤ x ≤ x and the relation ≤ is
interpreted elementwise for vectors and matrices. Given a
matrix R∈Rn×m, denote R+ = max{0,R} and R− = R+−R.
The matrix of absolute values of all elements of a matrix
M ∈ Rn×m is |M| = M+ + M−. Ep ∈ Rp is stated for a
vector with unit elements and In denotes the identity matrix
of n× n dimension. Let {tk,k ∈ N} be the sequence of
sampling instants such that tk+1− tk = T and lim

k→∞
tk = ∞, T

is the sampling period and tk = kT .

II. SYSTEM DESCRIPTION AND PROBLEM STATEMENT

In this paper, a supervisory approach is developed to allow
users to send and receive data from local and remote sites
given them the impression that they control the plant directly
and this latter is fully transparent for them. We focus here
on the NNCS whose the general architecture is depicted
in Fig. 1. We have two distant sites: the data acquisition
site and the remote plant site connected by the network.
The first site is charged with supervising and controlling
the remote physical plant. Before being transmitted by the
communication medium, all data should be passed by a
sampling stage which is done with a constant period T in
our case. The network introduces a delay d(t). This delay

is assumed to be unknown but upper bounded by a known
value d as follows

0≤ d(t)≤ d, ∀t. (1)

The considered physical plant of this NNCS is nonlinear
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Fig. 1: The general NNCS schematic.

and described by the following differential equation:{
ẋ(t) = Ax(t)+F(u(t),y(t))+w(t),
y(t) =Cx(t)+ v(t), (2)

where x ∈ Rn is the process state, u ∈ Rm is the vector
of inputs, y ∈ Rp is the output, w ∈ Rn and v ∈ Rp are
the disturbances and the measurement noises, respectively.
F(u(t),y(t)) is a nonlinear function. The matrices A and C
are time-invariant matrices with proper dimensions.
The objective of this note is to supervise remotely the
nonlinear system (2) corrupted by uncertainties, through
network introducing delay d(t).
Throughout this work, the next assumptions are made.

Assumption 1: The communication channel is noiseless,
and there are no packet dropouts.

Assumption 2: The pair (A,C) is detectable.
Due to the fact that all data should be sampled before
being transmitted over the network, the next assumptions are
related to the sampling time.

Assumption 3: The sampling network-induced delay d(tk)
is unknown but upper bounded with a known bound as in (1)
and its upper bound d is a multiple of the sampling period
T .

Assumption 4: For any sampling instant of time tk ≥ d,
the information on the control signal u(tk), the information
on the outputs y(tk) in the time interval

[
tk−d, tk

)
can be

stored and used.
Discussions of the assumptions: The Assumption 1 is used
for the sake of simplicity. Indeed, all the results in the next
sections can be extended to the case where there are packet
dropouts. Assumption 2 is necessary for state estimation in
the remote plant site and means also that there exists a
constant matrix L such that A−LC is Hurwitz. Assumption
3 is is related to the real case and can be frequently satisfied
in practice. Assumption 4 is needed for the predictor design.



III. CLASSICAL APPROACH

This section provides converging estimation of the unavail-
able plant states using the Luenberger observer. However,
it can be applied only when the functions w(t) and v(t)
are known. As shown in Fig. 2, the NNCS schematic is
composed of two sites: the data acquisition site and the
remote process site. The first consists of the discrete state
predictor while the second contains the continuous physical
process, actuator, sensor, continuous local Luenberger ob-
server and Input Set Point Generation (I.S.P.G), where the
plant, actuator and sensor are compounded.
The scenario is as follows. The input set point generation
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Fig. 2: The classical estimator-based predictor schematic.

calculates and sends the continuous signal u(t) to the plant,
periodically. Processing the input u(t), the physical plant
returns an output y(t) which will be used by the Luenberger
observer with the input to estimate the process state x̂(t).
Then, x̂(t) is sampled with the constant sampling period
T and it is transmitted to the data acquisition site via the
communication medium. The predictor receives the upper-
delayed observed state ẑ( tk

T −
d
T ), and regenerates the sam-

pling estimated state ẑ( tk
T ) after a finite time tk = d.

Remark 1: It is worth noting that the network-induced
delay is unknown, thus in the Data Acquisition Site we have
no access at tk

T −
d
T . The problem becomes more challenging

compared with knowing d(t). As a solution, from the output
data received at the upper bound of delay tk

T −
d
T , we use

ẑ( tk
T −

d
T ) to reconstruct ẑ( tk

T ) after a finite time tk = d.
Now, let’s introduce the Luenberger observer in the Re-

mote Plant Site.
If Assumption 2 holds, i.e., there exists a matrix L ∈ Rn×p

such that A−LC ∈H, then the system

x̂(t) = Ax̂(t)+F(u(t),y(t))+L(y(t)−Cx̂(t))+w(t)−Lv(t)
(3)

is an asymptotic observer for (2), i.e., lim
t→∞
|x(t)− x̂(t)|= 0.

Assumption 5: For any sampling instant of time tk ≥ d, the
information on the estimated state ẑ(tk) in the time interval[
tk−d, tk

)
can be stored and used.

Theorem 1: Let Assumptions 1-5 hold, for all tk ≥ d, the

predictor for (2) is given by

ẑ(k) = Φ
k1 ẑ(k− k1)

+
k1

∑
j=1

Φ
k1− jT F(u(k− k1 + j−1),y(k− k1 + j−1))

+
k1

∑
j=1

Φ
k1− jL1(y(k− k1 + j−1)−Cẑ(k− k1 + j−1)),

+
k1

∑
j=1

Φ
k1− jTw(k− k1)+

k1

∑
j=1

Φ
k1− jT L1v(k− k1), (4)

where j = 1,2,3, ...,k1, k = tk
T , k1 = d

T , Φ = (In +TA) and
L1 = T L. �

Proof 1: It is important to mention that the estimated
state x̂(t) should be sampled before being transmitted via
communication network, the state observer (3) is represented
under discrete-time form through Euler approximation with
the sampling period T as follows:

ẑ(k+1) = Φẑ(k)+T F(u(k),y(k))+L1(y(k)−Cẑ(k))

+ Tw(k)−L1v(k), (5)

where Φ = (In +TA), L1 = T L.
From (5) and based on the output data received at k− k1,
the state predictions from k− k1 + 1 to k are calculated
successively as:

ẑ(k− k1 +1) = Φẑ(k− k1)+T F(u(k− k1),y(k− k1))

+ L1(y(k− k1)−Cẑ(k− k1))

+ Tw(k− k1)−L1v(k− k1)

ẑ(k− k1 +2) = Φẑ(k− k1 +1)
+ T F(u(k− k1 +1),y(k− k1 +1))
+ L1(y(k− k1 +1)−Cẑ(k− k1 +1))
+ Tw(k− k1 +1)−L1v(k− k1 +1)

...

ẑ(k) = Φẑ(k−1)+T F(u(k−1),y(k−1))
+ L1(y(k−1)−Cẑ(k−1))+Tw(k−1)−L1v(k−1)

Combining all these equalities, we can conclude that the
formula (4) is a predictor for the plant (2). �

IV. INTERVAL APPROACH

In this part, an interval approach is investigated. Different
from the classical one, interval observer computes the guar-
anteed set of admissible values (interval). Theorem 1 gives in
finite time a prediction of any solution x(t) of (2). However,
the prediction cannot be used when the disturbances w and v
are unknown. The second objective of the present note is to
overcome this limitation by assuming only that the bounds
w, w and v, v are known.

Assumption 6: The measurement noises and the additive
disturbances are unknown but bounded with known bounds:

w≤ w(t)≤ w, |v(t)| ≤V Ep, ∀t ≥ 0 (6)



where w, w ∈ Rn and V ∈ R+.

Fig. 3: The interval estimator-based predictor schematic.

As shown in Fig. 3, the scenario is as follows. Periodically,
the input set point generation calculates and sends the
continuous signal u(t) to the plant. Processing the input u(t),
the physical plant returns an output y(t) which is used by
the interval estimator with the input to give the admissible
bounds x(t) and x(t) of the state. Then, x(t) and x(t) are
sampled with the constant sampling period T . The predictor
receives the upper-delayed deviations z( tk

T −
d
T ), z( tk

T −
d
T )

and regenerates the sampling upper and lower bounds of the
state z( tk

T ) and z( tk
T ) after a finite time tk = d.

Remark 2: As the same problem in the conventional ap-
proach, the network-induced delay d(t) is unknown. Thus
from the output data received at the upper bound of delay
tk
T −

d
T , we use z( tk

T −
d
T ), z( tk

T −
d
T ) to reconstruct z( tk

T ), z( tk
T )

after a finite time tk = d.

Now, let’s introduce the interval observer in the Remote
Plant Site. Generally, it is not possible to compute a gain
L satisfying (A− LC) ∈ H ∩M. Therefore, a change of
coordinates with a nonsingular matrix can be a solution of
this restriction.
It is established that if Assumptions 2 and 6 hold and if there
exists a change of coordinates S such that S(A−LC)S−1 ∈
H∩M, then the system

˙̂x+(t) = Ãx̂+(t)+SF(u(t),y(t))+ L̃(y(t)−C̃x̂+(t))

+ S+w−S−w+
∣∣L̃∣∣EpV ,

˙̂x−(t) = Ãx̂−(t)+SF(u(t),y(t))+ L̃(y(t)−C̃x̂−(t))

+ S+w−S−w−
∣∣L̃∣∣EpV (7)

where Ã = SAS−1, L̃ = SL, C̃ = CS−1, associated with the
initial conditions

˙̂x+(0) = S+x0−S−x0, ˙̂x−(0) = S+x0−S−x0, (8)

and the bounds of the solution x(t)

x(t) = S+x̂+(t)−S−x̂−(t)

x(t) = S+x̂−(t)−S−x̂+(t)

(9)

is an interval observer [26] for the system (2), i.e.,

x(t)≤ x(t)≤ x(t). (10)

Assumption 7: For any sampling instant of time tk ≥ d, the
information on the sampling upper and lower bounds z(tk),
z(tk) in the time interval

[
tk−d, tk

)
can be stored and used.

Theorem 2: Let Assumptions (1)-(4) and (6)-(7) hold, for
all tk ≥ d, then the equations

ẑ+(k) = Φ
k1 ẑ+(k− k1)

+
k1

∑
j=1

Φ
k1− jT SF(u(k− k1 + j−1),y(k− k1 + j−1))

+
k1

∑
j=1

Φ
k1− jL̃1(y(k− k1 + j−1)−C̃ẑ+(k− k1 + j−1))

+
k1

∑
j=1

Φ
k1− j

β , (11)

ẑ−(k) = Φ
k1 ẑ−(k− k1)

+
k1

∑
j=1

Φ
k1− jT SF(u(k− k1 + j−1),y(k− k1 + j−1))

+
k1

∑
j=1

Φ
k1− jL̃1(y(k− k1 + j−1)−C̃ẑ−(k− k1 + j−1))

+
k1

∑
j=1

Φ
k1− j

β , (12)

with j = 1,2,3, ...,k1, k = tk
T , k1 =

d
T , L̃1 = T L̃ and

z(k) = S+ẑ+(k)−S−ẑ−(k)

z(k) = S+ẑ−(k)−S−ẑ+(k)

(13)

are the predictor for (2). �

Proof 2: Due that all data should be sampled before being
transmitted via the communication network, the interval
observer (7) is represented under discrete-time form through
Euler approximation with the sampling period T as follows:

ẑ+(k+1) = Φẑ+(k)+T SF(u(k),y(k))

+ L̃1(y(k)−C̃ẑ+(k))+β , (14)
ẑ−(k+1) = Φẑ−(k)+T SF(u(k),y(k))

+ L̃1(y(k)−C̃ẑ−(k))+β , (15)

where Φ=(In+T Ã), L̃1 = T L̃, β = T (S+w−S−w+
∣∣L̃∣∣EpV )

and β = T (S+w−S−w−
∣∣L̃∣∣EpV ). From (14) and based on

the output data received at k− k1, the state prediction from
k− k1 +1 to k are calculated successively as:

ẑ+(k− k1 +1) = Φẑ+(k− k1)+T SF(u(k− k1),y(k− k1))

+ L̃1(y(k− k1)−C̃ẑ+(k− k1))+β



ẑ+(k− k1 +2) = Φẑ+(k− k1 +1)
+ T SF(u(k− k1 +1),y(k− k1 +1))
+ L̃1(y(k− k1)−C̃ẑ+(k− k1))+β

...

ẑ+(k) = Φẑ+(k−1)+T SF(u(k−1),y(k−1))
+ L̃1(y(k−1)−C̃ẑ+(k−1))+β

Combining all these equalities, we have (11). Similarly, one
can compute the lower prediction ẑ−(k) as in (12). Hence,
taking into account the change of coordinates S, we can
conclude that the obtained system is a predictor for the
physical plant (2). �

V. SIMULATIONS RESULTS

In order to show the efficiency of our remote supervision
schematic, we consider a nonlinear system of the form (2)

with A =

 −1 0.1 1
0.02 −1.2 1
0.02 0 −3

,

F(u(t),y(t)) =

 sin(u(t)y(t))
2cos(y(t))
sin(y(t))

, C =
(

1 1 0
)
,

w(t) = [0.04sin(10t) 0.04sin(2t) 0.04cos(20t)]T ,
w = [0.04 0.04 0.04]T , w =−w and v(t) = 0.02cos(50t)
with V = 0.02.
The network-induced delay is given by d(t) = 1+ cos(2t)
which is bounded by d = 2s. The I.S.P.G generates an input
signal u(t) = 0.5sin(t)+0.1cos(t).

A. Classical approach

To estimate the plant states, Luenberger
observer is designed as (3) with the gain L =
[0.0092 0.0000 −0.001]T .
Under the sampling period T = 0.01s, system (3) is sampled

and we obtain (5) with Φ=

 0.9900 0.0010 0.0100
0.0002 0.9880 0.0100
0.0002 0 0.9700


and L1 = [0.0092 0.0000 −0.001]T .
The simulation results are plotted in Fig. 4. Both Luenberger
observer x̂ in (3) and the predictor ẑ in (5) are plotted. After
a finite time d = 2s, the predictor converges to the real state,
that confirms our theoretical developments.

B. Interval approach

In this section, we compute a matrix L such that A−LC ∈
H. We find L = [0.0092 0.0000 −0.001]T . However, the
matrix A− LC is Hurwitz but it is not Metzler. Thus, a
transformation of coordinates is needed as explained in
Section IV.

We propose S =

 −0.0101 −0.1789 −0.1074
0.4403 0.5258 0.8401
0.1294 0.1272 −0.5727

, and

we can verify that

S(A−LC)S−1 =

 −1.2399 0.0000 0.0000
0.1000 −1.8371 0.0000
0.2000 0.3000 −3.0456


∈H∩M.

Therefore the system (7) is an interval observer for (2)

with Ã =

 −1.2464 −0.0133 −0.0182
0.4162 −1.1899 0.8899
0.3002 0.5050 −2.7636

,

C̃ =
(

0.7965 1.6303 2.2419
)
,

L̃ = [−0.0081 0.3969 0.1258]T and its initial conditions
are selected as (8) where x(0) = [0.01 0.01 0.01]T ,
x(0) = [−0.01 −0.01 −0.01]T , satisfying the inclusion
x0(t)≤ x0(t)≤ x0(t).

Under a sampling period T = 0.01s, (11) and (12) can

be computed with Φ=

 0.9875 −0.0001 −0.0002
0.0042 0.9881 0.0089
0.0030 0.0051 0.9724

,

L̃1 = [−0.0001 0.0040 0.0013]T ,
β = 10−3[0.1202 0.8019 0.3569]T , β =−β .

We plot in Fig. 5 both interval observer (10) and the
predictor (13). We see that the interval observer exhibits
the upper and lower bounds despite the uncertainties all
the time while due to the network-induced delay d, the
predictor provides two bounds of the state after a finite time
d = 2s. Hence, the theoretical developments are confirmed.
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Fig. 4: Classical Approach.

VI. CONCLUSION

In this paper, we have proposed a new technique of remote
supervision for a class of NNCS with uncertainties (additive
disturbances as well as measurement noises) and network-
induced delay. Based on Luenberger and interval observers,
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two predictors are designed to provide, respectively, converg-
ing values of the solutions in the absence of uncertainties
and a lower and an upper bounds when the uncertainties
are present after a finite time which is the upper bound of
the network-induced delay. The predictor-based controller for
NNCS can be considered for future works.
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