
HAL Id: hal-02435620
https://cnam.hal.science/hal-02435620v1

Submitted on 11 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling Music as Synchronized Time Series:
Application to Music Score Collections

Raphaël Fournier-S’Niehotta, Philippe Rigaux, Nicolas Travers

To cite this version:
Raphaël Fournier-S’Niehotta, Philippe Rigaux, Nicolas Travers. Modeling Music as Synchronized
Time Series: Application to Music Score Collections. Information Systems, 2018, 73, pp.35-49.
�10.1016/j.is.2017.12.003�. �hal-02435620�

https://cnam.hal.science/hal-02435620v1
https://hal.archives-ouvertes.fr

Modeling Music as Synchronized Time Series:
Application to Music Score Collections

Raphaël Fournier-S’niehotta, Philippe Rigaux and Nicolas Travers
Conservatoire National des Arts et Métiers (CNAM) - firstName.lastName@cnam.fr

Abstract

Music is a temporal organization of sounds, and we can therefore assume that any music
representation has a structure that reflects some conceptual principles. This structure is
hardly explicitly accessible in many encodings, such as, for instance, audio files. However,
it appears much more clearly in the language of music notation.

We propose to use the music notation language as a framework to model and manip-
ulate the content of digital music objects, whatever their specific encoding may be. We
describe an algebra that relies on this structured music representation to extract, restruc-
ture, and search such objects. The data model leverages the hidden structure of digital
music encodings to enable powerful manipulations of their content.

We apply the model to collections of music scores. We describe a system, based on
an extension of XQuery with our algebra, that provides search, reorganization, and ex-
traction functionalities on top of large collections of XML-encoded digital scores. Beyond
its application to music objects, our work shows how one can rely on a structured content
embedded in a complex XML encoding to develop robust collection management tools with
minimal implementation effort.

1. Introduction

Music is a temporal organization of sounds, and we can therefore assume that music
content has a structure that reflects some conceptual and organisational principles. Digital
encoding of music is mostly represented by audio files, in which this structure is blurred and
difficult to capture accurately. But music content can also be encoded in a notational form
that has been used for centuries to preserve and exchange music works. Music notation
appears to be a mature language to represent the discrete, typed, coordinated elements
that together constitute the description of complex music pieces.

Preprint submitted to Information Systems January 11, 2020

Figure 1: Beethoven’s Ode to Joy theme.

The structure of music notation

Fig. 1 shows a first example of a monophonic score, the famous “Ode to joy” theme
from Beethoven’s 9th symphony. The central element is a note representing the intended
production of a single sound. A note symbol is a black or white dot that carries two
essential informations: the frequency of the intended sound, measured in Hertz (Hz), and
its duration, which is a value relative to the beat.

Encoding frequencies. The hearing frequency of human beings ranges approximately
from 20 to 20,000 Hz. Although this range is in principle continuous, most music compo-
sitions rely on a discretization in two steps. First, the frequency range is partitioned in
octaves : a note a is one octave above another note b if the frequency of a doubles that of
b. Octaves are in turn divided in twelve equal semi-tones. Since the usual frequency range
covers 8 octaves, one obtains 8 ∗ 12 = 96 possible frequency levels, or pitches.

These levels are materialized by horizontal lines on a score. A note can be positionned
on a line or between two lines. The whole grid, covering the whole frequency range, would
display 96/2 = 48 lines and take a lot of useless space. Since the usual range of a single
musician or singer is much more limited, music scores uses a 5-lines grid, called a staff,
whose relative position in the complete grid is given by an initial symbol, the clef (Fig. 1).

Staves and clefs are example of semiotic artefacts mostly irrelevant in the perspective
of using music notation as a language encoding music content. If we leave apart layout
concerns, there exists a simple, non graphic convention to encode a music note. Inside
an octave, seven pitches are related by close mathematical relationships, and form the
Pythagorean scale (commonly called diatonic scale nowadays). They are encoded by a
letter (A, B, C, ... G). The other pitches can be obtained by either adding (symbol]) of
substracting (symbol [) a semi-tone. To summarize: any pitch in common music notation
is encoded by (i) a diatonic letter, (ii) an octave in the range 1-8, and (optionally) (iii) a
] or a [to denote a semi-tone up/down the diatonic frequency. The score of Fig. 1 starts
with two E5 (frequency 659.25 Hz), followed by two F5 (frequency 698.46 Hz), two G5
(783.99 Hz), etc.

Encoding beats and durations. Time is discrete, and temporal values are expressed
with respect to the beat, a pulse that (in principle) remains constant throughough a same
piece of music. The time signature, a rational (here, 4/4) gives the beat unit, and the
temporal organization of the music in groups of beats, or measures. In our example, the

2

denominator states that the beat corresponds to a black note (a quarter of the maximal
note duration), and the numerator means that each measure contains four beats. All the
possible durations are obtained by applying a simple ratio to the beat: a white note is
twice a quarter, a hamped black is half a quarter, etc.

From these (basic) explanations, it follows that music notation can be seen as a way to
represent sounds in a 2-dimensional space where each axis (frequencies and durations) is
discretized according to some simple rules based on proportional relationships. Moreover,
there exists a simple and commonly used encoding to denote each point in this space. We
will use this discrete sound domain as a basis of our data model.

Scores as times series. Let us now turn our attention to the sequence of notes in Fig. 1.
An implicit constraint is that a note starts immediatly after the end of its predecessor. In
other words, there is no overlapping of the timespans covered by two distinct notes. This
is natural if we consider that the original intent of this notation is to encode the music
part assigned to a single singer, who can hardly produce simultaneous sounds. This part is
accordingly called a voice, and we will use this term to denote the basic structure of music
objects representation as time series of musical events, assigned to timespans that do not
overlap with one another.

Figure 2: Ode to Joy, three instruments.

Polyphonic scores are represented as a combination of several voices. Fig. 2 gives an
illustration (the same theme, excerpt of the orchestra parts). In terms of music content, the
important information expressed by the notation is the synchronization of sounds, graph-
ically expressed by their vertical alignment. The first sound for instance is an harmonic
combination of three notes: a C3, a C5, and a E5 (from bottom to top). The two upper
notes share the same duration (a quarter), but the bottom one (the bass) is a whole note.
This single note is therefore synchronized with 4 notes of the two upper parts.

In such complex scores, one can always adopt two perspectives on the music structure.
A vertical perspective, called harmonic, focuses on the vertical superposition of sounds,
whereas a horizontal one, called polyphonic, rather considers the sequential development
of each voice. Those two aspects constitute, beyond all the semiotic decorations related
to the graphic layout of a score, what could be called the “semantic” of music notation,
since they encode all information pertaining to the sounds and their temporal organization
(at least for the part of this information conveyed by the notation; some other important

3

features, such as intensity and timbre, are left to the performer’s choice). Together, they
define what we will consider in the following as the (structured) music content.

Music pieces as synchronized time series

Finally, this modeling perspective can be extended to cover the more general concept of
synchronized time series built from arbitrary value domains. Consider our third example
shown on Fig. 3, the same Ode to Joy enriched with lyrics. The lower staff consists of a
single voice, the bass. The upper one is a vocal part which, in our model, consists of two
voices, the first one composed of sounds, and the second one of syllables. The latter is
an example of a temporal function that, instead of mapping timestamps to sounds, maps
timestamps to syllables.

Figure 3: Ode to Joy, music and lyrics.

Position, goals and contributions

The position adopted in the present paper relies on two ideas. Firstly, music notation is
a proven, sophisticated, powerful formal language that provides the basis of a data model
for music content. Secondly, instances of this model can be extracted from digital music
documents, and this extraction yields a structured representation of this object through
which its content can be inspected, decomposed, transformed and combined with other
contents. In the context of large collections of such music objects, this opens perspectives
for advanced search, indexing and data manipulation mechanisms.

We can therefore envision a modeling that abstracts the music content as a synchro-
nization (harmonic view, expressed by the vertical axis in the score representation) of
temporal sequences of acoustic events (polyphonic view, expressed by the horizontal axis).
As a natural generalization of this modeling approach, we accept polymorphic events that
can either represent sounds, or features that make sense as time-dependent information
synchronized with the music content. Fig. 4 summarizes the envisioned system. The bot-
tom layer is a Digital Music Library (DML) managing music objects in some encoding,
whether audio (WAV, MP3, MIDI), image (PDF, PNG), or XML (MusicXML, MEI). Such
encodings are not designed to support content-based manipulations, and, as a matter of
fact, it is hardly possible to do so. However, we can map the encoding toward a model
layer where the content is extracted and structured according to the model structures.

4

MP3

Encoding/serialization
layer

Image

Data model
layer

E

Algebra

mapping

…

…

Virtual collection …

vScore

XML …
Music

collections

vScore

ORM transcription

results

Figure 4: Envisioned system

This automatic mapping is called transcription for audio files, optical music recognition
(OMR) for images, and is a much simpler extraction for XML formats. It defines a virtual
– no materialization occurs – abstraction of structured music objects that we will call vir-
tual music score (vScore) in the following. The data model layer encapsulates both data
representation and data operations, and yields a query language whose expressions define
the set of transformations that produce new vScores from the base corpora. The present
paper develops this approach and proposes the following contributions:

• The definition of a data model to represent the core structure of music content, guided
by the music notation concepts.

• An algebraic language, consisting in a compact, minimal set of operations that apply
to the model domain in closed form.

• Finally, an application to collections of digital music scores, encoded in XML. We
describe a system that converts on-demand XML scores to instances of our model
and extends XQuery with our algebra, thereby allowing to express user queries over
collections of music scores.

The work presented here has been prepared by conference talks and short publications,
addressed to the most relevant communities (music information retrieval and temporal
data management), that helped us in testing and confirming the validity of our approach
. The motivation for extracting a data model from music notation encodings is discussed
in [FSRT16a]. The formal model for synchronized time series is presented in [?], and the
principles of its interface with XQuery in [FSRT16b]. The current text details the modeling
approach, positions our work with respect to the state-of-the art, clarifies the algebra with
examples. Moreover, we now present a full implementation, describe its architecture and
propose optimization guidelines. This system, resulting from a strong implementation

5

effort, integrated in a Digital Score Library at http://neuma.huma-num.fr, is also publicly
available as a virtual Docker image, ready to be used in any similar environment.

To the best of our knowledge, this constitutes the first attempt to address modeling
and querying issues on collections of music content with a data management perspective.
Whatever their origin, transcription, optical recognition, or direct encoding, large collec-
tions of digital music are being produced. They will probably result in a near future in
publicly available repositories supplying an open access to music heritage, in the wake of
the Open Data movement. We believe that music-aware data management methods will
then be of great help, just as research results on spatial data handling helped to leverage
the open access to formerly proprietary geographical data, one decade ago.

Section 2 reviews the state-of-the-art. We present the data model in Section 3 and
the algebra in Section 4. In Section 5, we describe a music score management system,
along with query examples and implementation guidelines. We finally conclude the paper
in Section 6.

2. Context and State of the art

Music representation. There exists essentially two different digital representations of
music: audio and notation. The most common representation, by far, is sampled audio.
The audio signal is sampled (44.1K samples per second in CD-quality formats), each sam-
ple giving an amplitude (loudness) and frequency. Formats that faithfully represent this
information, such as the Waveform Audio File (WAV1), present huge storage requirements.
Compressed formats (e.g., MP32, AAC 3) achieve a compression of one order of magnitude
by getting rid of marginal frequencies.

Audio files encode an audio signal for sound reproduction purposes, and no attempt
to identify the music structure (such as for instance separating instruments and voices)
is made. Without further analysis, no “symbolic” manipulation of the content is possible
(e.g., replace instruments, or isolate a voice).

Another common format is the Musical Instrument Digital Interface (MIDI). As its
name implies, a MIDI document represents the input or output of an electronic sound
device (a digital keyboard for instance), and the synchronization of several outputs (or
channels). Unlike audio files, the representation is symbolic: the intended sound is not
encoded as a signal but as a set of discrete events described by many parameters: pitches,
instrument, onsets/offsets, among others.

1https://en.wikipedia.org/wiki/WAV
2https://en.wikipedia.org/wiki/MP3
3https://fr.wikipedia.org/wiki/Advanced_Audio_Coding

6

Music can also be represented via the traditional music notation language as “sheet mu-
sic”, or simply, music scores. The notation of music has been the primary mean to preserve
and disseminate music pieces for centuries, at least in the Western area. It proposes a so-
phisticated semiotic system able to convey highly complex successions and combinations of
sounds played simultaneously by several instruments or singers. This language has proved
its flexibility and representational power throughout the ages, and its ability to adapt to
a wide range of styles and forms. It constitutes therefore a language of choice to describe
a piece of music, its structure (parts, voices) and the detailed content of each component
(pitches, rhythms).

Since the beginning of this century, two XML-based encodings of music notation have
been proposed: MusicXML [Goo01] and MEI [Rol02, MEI15]. The W3C recently launched
a normalization endeavor [?], confirming that we are heading toward a normalized encod-
ing of music scores. Those encodings provide fine-grained access to the components of the
music notation, and open the perspective to future large collections of scores.

XML representations for music scores are mostly intended as a serialization format
for documents that encapsulate all kinds of information, ranging from metadata (creation
date, encoding agent) to music content information (symbolic representation of sounds
and sounds synchronization) via rendering instructions (positioning of the score objects).
The rendering of a score, as shown by Figs. 1, 2 and 3, contains several other symbols
(clefs, lines, staves) and depends on choices (assignment of each voice to a separate staff
for instance) that are more related to readability concerns than to content description. To
put it differently, the music content is tangled with a lot of irrelevant information, which
makes XML formats unsuitable for complex data manipulations as is.

Digital Music Collections. Large collections of music pieces are nowadays available on-
line. Audio is still the prominent format, and the process of extracting a MIDI or notational
representation from audio files is known as music transcription [Kla04, BDG+13, USG14].
It relies of signal analysis algorithms that decode acoustic flows to identify frequencies,
tones, rhythms and attempt to produce a symbolic notation. Among many issues, the
separation of voices (e.g., instruments) still does not achieve full reliability. The field is
however mature enough and several commercial applications produce digital notation from
audio files, e.g., audioScore-ultimate4, AnthemScore5 or Widisoft6.

Collections of music pieces can also commonly be found as images (PDF). The IMSLP
Petrucci Music Library (http://imslp.org) for instance contains, at the time of writing,
more than 120K complete music pieces. A notational description of these pieces can be
obtained thanks to an Optical Music Recognition (OMR) software. The results are however
highly dependent on the image quality and sometimes fail to supply an accurate description

4https://www.avid.com/products/audioscore-ultimate
5https://www.lunaverus.com/
6http://www.widisoft.com/index.html

7

of the score [BB01, RFP+12].

There is an increasing production and publication of scores directly encoded in one
of the two main XML formats, MusicXML or MEI. They are created and maintained by
librarians, researchers, publishers and active communities of users keen to make publicly
accessible the priceless heritage of music that has been preserved for centuries via their
notation. The OpenScore initiative for instance (https://www.openscore.cc/) is an ongoing
crowdsourcing endeavour to encode the content of the IMSLP library, and will eventually
result in large collection of high-quality score encodings.

Music information retrieval. Most of the research conducted in the Music Informa-
tion Retrieval domain so far has focused on unstructured search and similarity measures,
see [TWV05, CVG+08, SGU14] for surveys on the matter. Unstructured search is con-
venient for search engines as it is user-friendly and it avoids to deal with the complex
structure of the music notation. However, a major downside pertains to the granularity of
the result which may only present whole documents, or nothing. Finding a good similarity
measure for highly diverse and complex objects is a difficult task (see [Bel11, SYBK16] for
some recent proposals).

The work presented in this article introduces operators to manipulate the internal
musical content of the document at a very fine-grained level (e.g., voices) and avoids to rely
on fragile similarity evaluations altogether. It can be related to formal languages for music
content representation and manipulation, notably Euterpea, introduced by [Hud15], and a
few others [Bal96, JBDC+13, FLOB13]. Their focus are a modeling of music language for
music generation, rather than managing a persistent collection of scores. To some extent
our goal is a language which is the equivalent for music notation of the relational
algebra: a limited number of types, a minimal set of operators that can be composed,
and a well-defined expressive power.

Time series (TS) are intensively studied objects, but most often in a data mining per-
spective (prediction) which is quite different from ours which only considers static objects
whose internal description is made of fixed-length TS. Some relevant works are [BBC11]
and [FBF13]. In [BBC11], authors compute XQuery updates in order to synchronize mul-
tiple versions of a document. [FBF13] present similar operators on labelled structures with
timed automata to produce new time series. Both of these algebras mainly differ on the
underlying data model which implies huge differences on definitions of operators (merge,
map, select, etc.) making it inappropriate to score manipulations.

Our design involves a mapping that extracts from the raw music encoding a structured
model instance. This mapping gets rid of rendering aspects in the case of XML-encoded
scores for instance. This is reminiscent from mediation architectures used for data sources
integration (see [GMUW00, DHI12, AAC+08, TNL07]), and can be seen as an application
of methods that combines queries on physical and virtual instances. It borrows ideas from
ActiveXML [ABM08], and in particular the definition of some elements as “triggers” that

8

activate external calls.

Time series representation is a common way to model Music Information [ABSW04].
Amongst query languages based on time-series, we can cite AQuery [LS03, LSW+04] which
proposes to extend SQL to time series represented as sorted relations. Even if the data
model is dedicated to relational representation (tabular), the semantic of sequences with
order dependency and a detailed algebra gives has also inspired our data model and algebra
for temporal partitions. However, the language and algebra are more dedicated to time
aggregations than time transformations.

Since modern score formats adopt an XML-based serialization, XQuery [XQu07] has
been considered as the language of choice for score manipulation [GSD08]. THoTH [Whe15]
also proposes to query MusicXML with patterns analysis. We believe that a pure XQuery
approach is too generic to handle the specifics of music representation. Score encodings
closely mix information related to the content and to a specific rendering of this content.
This leads to an intricate encoding from which selecting the relevant information becomes
extremely difficult.

3. Music Content Modeling

This section presents our data model. We use as a running example the score fragment
of Fig. 5. It shows a score with two parts. The lower one, called the “bass” in the following,
consists of a single voice. The upper one is a vocal part which, in our model, consists of two
voices, the first one (the “soprano”) composed of sounds, and the second one (the “lyrics”)
of syllables. Note that there is no one-to-one rhythmic correspondence between syllables
and notes, as some syllables cover several notes.

Z

�

Z

Z�
tu

Z

��
qui

�
d'in

Z
�
é

Z

�
Z�

�
�

Z

�

� Z
Que

Z
de !

��Z�

� Z
� �

�

�
23

	

��Ah,

�

�
�

� �� �

�

Z

�23

�

Z
que
�
Z
je
�

��
sens

�

Figure 5: Running example (French air, http://neuma.huma-num.fr/home/opus/timbres:airsmercure)

3.1. Time

Music notations organizes temporal features (onsets and durations) with respect to a
beat which can be divided by any ratio (1:3, 3:2, 9:15 and so on). The time domain T is
therefore a discrete, countable ordered set isomorphic to Q. However, if we consider a single
piece of music, there exists a maximal level of decomposition of the beat, and this level

9

defines the time unit. In our running example (Fig. 5), the time signature (3/2) indicates
that the beat is a half note (hamped white symbol), with three beats per measure. Since a
beat is divided by four at most, the time unit is an eighth note, and each measure consists
of exactly 12 units. Measure 1 extends from timestamp 0 to 11, measure 2 from timestamp
12 to 23, etc.

Recall from the introduction that a sequence of notes is a time series of musical events,
assigned to time ranges that do not overlap with one another. This defines a temporal
partition P = {I1, · · · , In} as a set of right-open time intervals Ii = [ti1, t

i
2[such that

∀i 6= j ≤ n, Ii ∩ Ij = ∅. Note that, since a music piece covers a finite temporal range
and may contain “holes” (rests), we do not impose the usual coverage condition

⋃
i Ii = T .

Each voice in the horizontal, polyphonic perspective, defines a temporal partition. In
order to combine several voices in the harmonic perspective, we will need the notion of
merge-compatible partitions, defined as follows.

Definition 1. Two temporal partitions P1 = {I1, · · · , In} and P2 = {J1, · · · , Jm} are
merge-compatible iff their union is a temporal partition, i.e., ∀i ∈ [1, n], j ∈ [1,m], either
Ii ∩ Jj = ∅ or Ii = Jj.

Time axis
0 2 4 6 8 10

P1

P2

Time axis
2 4 6 8 10

P3

P4

Figure 6: Merge-compatible (left) and non-compatible (right) temporal partitions

For instance, P1 = {[0, 2[, [4, 6[, [8, 9[} and P2 = {[2, 4[, [6, 7[, [8, 9[} are merge-compatible.
Their union:

P1 ∪ P2 = {[0, 2[, [2, 4[, [4, 6[, [6, 7[, [8, 9[}
is a temporal partition such that each interval can be found in either P1 or P2 (Fig. 6,
left). P3 and P4 (Fig. 6, right), on the other hand, are not merge-compatible, since some
intervals overlap, or are contained in one another. The concept will prove useful for the
combination of scores.

3.2. Values

Our model is built on sets of constants, called domains. The main one, denoted dpitch,
is the set of atomic sounds. Sound is a complex notion that can be decomposed in several

10

components (frequency, intensity, timbre). In our context, we are here limited to those
captured by the notational system, i.e., essentially the frequency. As explained in the
Introduction, most of music pieces (and at least those that can be represented by music
notation) are based on less than 100 music frequencies, and can be encoded by a diatonic
letter ranging from A to G, an octave ranging from 1 to 8, and an optional accidental]
or [. The bass voice of our running example starts with a D4, followed by a C4. Both
correspond to atomic frequencies. The next value met in the bass voice however combines
two atomic sounds: a B[3 and a D4. The simultaneous production of two distinct sounds,
for the same duration, constitutes what will be called an harmonic sound, or chord, in the
following. There is no a priori limitation on the number of sounds that can be combined,
and we therefore define the domain dsound as the union of dpitch, dpitch2, dpitch3,
· · · , dpitchi, i ∈ N. The third value of the bass voice belongs to dpitch2 and will be noted
< B[3, D4 >.

Each domain comes with a set of core operators. For dsound, we consider

• the harmonic operator, Ξ, creates an harmonic sound from two harmonic sounds; for
instance, B[3 Ξ D4 =< B[3, D4 >

• the transposition operator, l, moves a frequency by a fixed number of semi-tones; for
instance, C4 l 2 = D4

dsound is the essential domain by which we can describe music but, as shown by our
examples so far, we also need the lyrics part which is a first-class component of music
content modeling. The domain, dsyll is the set units of pronunciation, or syllables. The
only required operator is the concatenation, ||.

3.3. Events

An event e is some value v from a domain dom observed during an interval [t1, t2[.

Definition 2 (Event). Let dom be a domain of values. An event e = at2t1 , a ∈ dom, t1, t2 ∈
T , t1 < t2, represents the fact that value a is observed from t1 (included) to t2 (excluded).
Interval [t1, t2[is the range of the event, and we note E(dom) the set of events on dom.

Example 1. Some examples of events drawn from our running example.

• D520
12 is a dsound event representing the first note of the upper voice. The value is

a D5 ∈ dsound and it extends from timestamp 12 (beginning of second measure) to
timestamp 20 (excluded).

11

• ’Ah’ 20
12 is a (syllabic) event. The value is a syllable Ah ∈ dsyll, and it extends over

the same time period.

• < B[3, D4 >16
12 is a dsound event (a chord), in the lower voice, over [12,16[.

We do not restrict the events to musical domains. 216
12 for instance is an event in

the dint domain. It can be the result of an analysis, stating that two (2) notes are
simultaneously played from 12 to 16 by the lower voice. Such events can be inferred from
the notation, and can enrich the representation. Beyond this simplistic illustration, we can
build generalized scores that extend the usual concept by combining musical events with
non-musical domains representing, for instance, some analytic feature.

3.4. Voice

vsopr(t) =

∅, t ∈ [0, 12[
D52012, t ∈ [12, 20[
∅, t ∈ [20, 22[
E52322, t ∈ [22, 23[
F52423, t ∈ [23, 24[
D52824, t ∈ [24, 28[

C]53228, t ∈ [28, 32[
∅, t ∈ [32, 34[
A43634, t ∈ [34, 36[

vlyrics(t) =

∅ t ∈ [0, 12[

Ah2012, t ∈ [12, 20[
∅, t ∈ [20, 22[
que2322, t ∈ [22, 23[
je2423, t ∈ [23, 24[
sens3224, t ∈ [24, 32[
∅, t ∈ [32, 34[

d’in3634, t ∈ [34, 36[

vbass(t) =

D480, t ∈ [0, 8[
C4128 , t ∈ [8, 12[

< B[3, D4 >
16
12, t ∈ [12, 16[

A32016, t ∈ [16, 20[
G32420, t ∈ [20, 24[

< A3, C]4 >30
24, t ∈ [24, 30[

G33230, t ∈ [30, 32[
F33632, t ∈ [32, 36[

Figure 7: Voices as time series for our example (measures 1 to 3 of Fig. 5)

Events are not represented individually, but always as part of time series, simply called
voices.

Definition 3 (Voice). A voice v of type Voice(dom) is a partial function from T to
Ev ⊂ E(dom) such that

at2t1 ∈ Ev ⇔ v(t) = at2t1 , ∀t ∈ [t1, t2[

The definition of a voice as a function implicitly expresses a non-overlapping constraint:
at any timestamp t, there is at most one event e such that v(t) = e. Moreover, the function
is constant over the timerange covered by e. On the other hand, since the function is partial,
we might find timestamps t such that v(t) is undefined, noted v(t) = ∅, where ∅ somewhat
represents the absence of an event (rests).

Remark 1. In order to simplify the notation, we will assimilate a voice in dom to be a
total function from T to E(dom ∪ ∅).

12

It follows that the set of intervals of the events in Ev defines a temporal partition of T ,
denoted P(v), and called in the following the active temporal domain of v.

Example 2. Fig. 7 shows the three voices of our running example for the first three mea-
sures. The temporal partitions defined by the voices are:

1. P(vsopr) = {[12, 20[, [22, 23[, [23, 24[, [24, 28[, [28, 32[, [34, 36[}
2. P(vlyrics) = {[12, 20[, [22, 23[, [23, 24[, [24, 32[, [34, 36[}
3. P(vbass) = {[0, 8[, [8, 12[, [12, 16[, [16, 20[, [20, 24[, [24, 30[, [30, 32[, [32, 36[}

The voice concept is the core structure of a music piece description, and a voice is the
basic object that will be manipulated by our algebraic operators, to be presented next. Any
mapping that produces instances of our model from a digital music representation should
therefore be able to extract the voices. This is almost straightforward for XML-based
encoding formats, where the mapping simply gets rid of notational elements representing
rendering instructions and performance directives. This is obviously more difficult for
audio files (transcription) or score images (optical recognition). However, in all cases,
our modelling can be seen as a proposal to abstract, from the digital music encoding, an
information set that focuses on the music content structure.

3.5. Scores

Voices can be synchronized. The synchronization of two voices v1 in Voice(dom1) and
v2 in Voice(dom2), denoted v1 ⊕ v2, is the voice v3 in Voice(dom1 × dom2) such that
∀t ∈ T , e1 ∈ E(dom1), e2 ∈ E(dom2), the following holds:

v3(t) = (e1, e2)⇔ v1(t) = e1 and v2(t) = e2

Obviously, since v1 and v2 are functions, so is v3. Moreover, if v3(t) = (e1, e2), with
e1 = a

t12
t11

and e2 = b
t22
t21
, the range of the composite event (e1, e2) is [t11, t

1
2[∩[t21, t

2
2[. Thus, v3

is a voice unambiguously defined in a space of composite events E(dom1)×E(dom2), and
such that P(v3) = P(v1) ∩ P(v2).

Example 3. The synchronization of voices vsopr and vbass is illustrated by Fig. 8 (first
three measures). Let us focus on Measure 2 and detail its content. It is a voice represented
by:

(D520
12, < B[3, D4 >16

12), t ∈ [12, 16[
(D520

12, A320
16), t ∈ [16, 20[

(∅, G324
20), t ∈ [20, 22[

(E523
22, G324

20), t ∈ [22, 23[
(F524

23, G324
20), t ∈ [23, 24[

13

measure 1 measure 2 measure 3

D5 E5F5D5 C#5 A4 sopr

D4 bass.C4
<D4,
Bb4> A3 G3

<A3,
C#4> G3 F3

0 12 24 36

Figure 8: Voice synchronization for the running example (measures 1-3)

The atomic event D520
12 from the sopr voice appears twice, associated with two distinct

events of the bass voice, due to the non-homorythmic synchronization. Conversely, the
bass event G32420 appears also in three distinct composed events. The active domain of the
synchronized voice results from the intersection of P(vsopr) and P(vbass).

We can now define (abstract) scores. At a basic level, a score is a synchronization of
voice(s). We extend this definition to capture a recursive organization.

Definition 4 (Score). A score is a tree-like structure, inductively defined as follows:

• a voice is a score;

• if s1, · · · , sn are scores, then s1 ⊕ · · · ⊕ sn is a score.

The type of a score S is the tuple of its components’ type, each labelled by a name.

Example 4. The score S of our running example, is a tree built as follows:

• The vocal part svocal is a synchronization of vsopr and vlyrics, i.e., svocal = vsopr⊕vlyrics;

• The whole score S is a synchronization of svocal and vbass, i.e, S = svocal ⊕ vbass.

The type of S is obtained by assigning pairwise distinct labels to the components:

• The type Tv of svocal is [sopr: Voice(dsound), lyrics: Voice(dsyll)]

• The type Tb of the S is [vocal: Tv, bass: Voice(dsound)]

Assigning a label to a component of a score is akin to name an axis in a multidimensional
space. A score can actually be seen as a time series in this space. Under this perspective
S is a function T → E(dsound)× E(dsyll)× E(dsound).

14

Example 5. S on measure 3 is the function from T to T → E(dsound) × E(dsyll) ×
E(dsound) defined as

S(t) =

(D520

12,Ah
20
12, < B[3, D4 >16

12), t ∈ [12, 16[
(D520

12,Ah
20
12, A320

16), t ∈ [16, 20[
(∅, ∅, G324

20), t ∈ [20, 22[
(E523

22, que2322, G324
20), t ∈ [22, 23[

(F524
23, je

24
23, G324

20), t ∈ [23, 24[

Scores are objects of a multidimensional, polymorphic space. We can now equip this
space with a set of operators: the algebra. Moreover, we will show that this algebra is closed
(the result of an operator is always a score), complete (any score S1 can be transformed in
any other score S2), and minimal (removing any operator would break the completeness
property).

4. The score algebra

The score algebra ScoreAlg consists of a set of structural operators that take score
instances as input and produce a score instance as output (algebraic closure). Our algebra
includes the mean to apply external functions to score contents. Being able to incorporate
functions allows to extend the language to arbitrary content transforms, as long as closure
constraints are fullfilled.

4.1. Functions

A temporal function is a mapping from T to T . In the context of music notation, it
seems sufficient to consider only the class of linear functions τm,n,m 6= 0 of the form:

τm,n(t) = mt+ n

A specific subclass consists of warping functions, of the form warpm : T → T , t 7→ mt ;
and shifting functions of the form shiftn : T → T , t 7→ t+ n. They respectively extend or
shrink the event durations and move events in T (temporal translation).

A domain function maps a value from some multidimensional domain dom1 × · · · ×
domn to a single value in some domain domo. We extend the interpretation of temporal
and domain functions to events naturally. If e = at2t1 is an event on dom, then:

1. (Temporal function) τm,n(e) = a
τm,n(t2)

τm,n(t1)

2. (Domain function) if f is a domain function on dom, then f(e) = f(a)t2t1

15

The native functions of the algebra consists of (i) the linear temporal functions and (ii)
the internal domain operators.

Example 6. Applying native functions to the dsound event e = D520
12,

• τ2,0(e) = D540
24 (warping)

• τ0,5(e) = D525
17 (translation)

• l (e, 2) = E520
12 (transposition)

The algebra is designed to incorporate external (or user-defined, UDF) functions beyond
the native ones. We will explain later how arbitrary functions can be integrated in a query
expression.

4.2. Structural operators

Our algebra ScoreAlg (⊕, π, σ, ◦,map) consists of five operators for, respectively,
synchronization, projection, selection, merge and a special map operator to apply external
functions. Each operator takes one or two scores as input and produces a score.

Remark 2. For the sake of simplicity, the definition of operators is given on “flat” scores.
Their extension to the full recursive structure is trivial.

The synchronization operator, ⊕, has already been introduced. It combines two scores.

Definition 5 (Synchronization, ⊕). If S1 and S2 are two scores, then S1⊕S2 is a score
defined by:

[S1 ⊕ S2](t) = (S1(t), S2(t)),∀t ∈ T .

If the component labels in S1 and S2 are not fully distinct, a renaming is necessary.
The operator ρ (not presented here) is similar to the relational renaming operator.

Example 7. The synchronization of Ssopr and Slyrics is:

[Ssopr ⊕ Slyrics](t) =

(D520
12,Ah

20
12), t ∈ [12, 20[

(∅, ∅), t ∈ [20, 21[
(E522

21, que2221), t ∈ [21, 22[
(F523

22, je
23
22), t ∈ [22, 23[

(D528
24, sens3224), t ∈ [24, 28[

(C]532
28, sens3224), t ∈ [28, 32[

(A436
34, d’in

36
34), t ∈ [34, 36[

16

The projection operator µ behaves as the corresponding relational operator. It extracts
one or several voices from a score.

Definition 6 (Projection, µ). If S is a score with type [v1 : dom1, · · · , vn : domn], then
µvi1 ,··· ,vim (S),∀ij, j ∈ [1, n] is a score defined as:

[µvi1 ,··· ,vim (S)](t) = (S.vi1(t), · · ·S.vim(t))

Example 8. The following example shows the score obtained by projecting out the lyrics
voice (measure 3).

µsopr,bass(S(t)) =

(D520

12, < B[3, D4 >16
12), t ∈ [12, 16[

(D520
12, A320

16), t ∈ [16, 20[
(∅, G324

20), t ∈ [20, 22[
(E523

22, G324
20), t ∈ [22, 23[

(F524
23, G324

20), t ∈ [23, 24[

The selection operator σF keeps unchanged the score events that satisfy a condition F ,
and replace the other events value by ∅.

Definition 7 (Selection, σ). If S is a score with type T = [v1 : dom1, · · · , vn : domn]
and F a Boolean formula on T ,dom1, · · · ,domn, then σF (S) is a score with type T such
that for each voice S.vi :

[σF (S)].vi(t) =

{
S.vi(t), if F (S.vi(t)) = true
∅, otherwise

For instance, still taking our running example and the mono-voice scores of Fig. 7.

[σt∈[12,24[(Ssopr)](t) =

D520

12, t ∈ [12, 20[
∅, t ∈ [20, 22[
E523

22, t ∈ [22, 23[
F524

23, t ∈ [23, 24[

The merge operator ◦ operates a pairwise fusion of voices from two scores sharing
the same type, under the constraint that their temporal partitions are merge-compatible
(Def. 1). It allows, in particular, the sequential alignment of two scores.

17

Definition 8 (Merge, ◦). If S1 and S2 are two scores with type T = [v1 : dom1, · · · , vn :
domn] such that the active temporal domain P(S1.vi) is merge-compatible with P(S2.vi),∀i ∈
[1, n], then S1 ◦ S2 is a score with type T defined as:

[S1 ◦ S2].vi(t) =

S1.vi(t), if S1.vi(t) 6= ∅, S2.vi(t) = ∅
S2.vi(t), if S1.vi(t) = ∅, S2.vi(t) 6= ∅
∅, if S1.vi(t) = S2.vi(t) = ∅
S1.vi(t) Ξ S2.vi(t), else

Let us turn back to the Ode to Joy. Fig. 9 shows (top part) the soprano voice (left) and
the tenor voice (right). They are obviously merge-compatible, showing a strict pairwise
correspondence of their respective notes.

Ode to joy, the soprano voice

Ode to joy, the tenor voice

Ode to joy, after merging the soprano and tenor voices

Figure 9: Illustration of the merge operator

The bottom part of the figure shows the result of the merge. It consists of a single
voice with harmonic sounds in dsound2. It is interesting to note that one obtains exactly
the same content (i.e., the same global set of events) by synchronizing the voices instead
of merging. Both operations result in a different syntactic way of representing this music
object: as a voice with complex sounds in the first case (merge), or as two voices with
atomic sounds. Recall that there exists two perspectives to explore a music score. The
harmonic point of view models the music as a sequence of simultaneous sounds, whereas the
polyphonic point of view focuses on independent voices. The merge compatibility property
characterizes the situation where the two perspectives coincide.

Property 1. Let v1 and v2 be two voices such that their active temporal domain are merge
compatible. Then:

v1 ⊕ v2 ≡ v1 ◦ v2

18

where ≡ expresses the equivalence of music content.

In practice, this means for instance that the two notations (synchronized or merged) can
be used equivalently to represent the same music content.

Finally, the Map operator mapf applies a function f to the voices of a score, and
returns a mono-voice score containing the result of f .

Definition 9 (Transformation, map). If S is a score with type [v1 : dom1, · · · , vn :
domn], and f a function Πn

i domi → domo then mapa: f (S) is a score with type [a: domo]
defined as:

[mapa: f (S)].a(t) = f(S.v1(t), · · ·S.vn(t)),∀t ∈ T

map is a powerful operator to process a score and apply some transformation.

Example 9. Translating a mono-voice score 12 temporal units to the right is expressed by:

mapr: τ0,12(S)

Transposing a mono-voice score 5 dsound units up is expressed as:

mapt: l5(S)

4.3. Algebraic expressions

An expression is defined in a standard way:

• If S is a score, then S is an expression.

• If E1 and E2 are two expressions, then E1 ⊕ E2, mapa: f (E1), E1 ◦ E2, σF (E1), and
µvi1 ,··· ,vim (E) are expressions, with some obvious validity conditions related to the
input and output types.

The following property is immediate from the definitions.

Theorem 1 (Correctness). Let S be a score and E a well-typed expression, then E(S)
is a score.

19

Since the result of an operator is always an instance of the model (a score), we can
compose operators to create arbitrarily complex expressions. The core algebra (without
any external function) also exhibits a completeness property related to the generation and
transformation of music scores.

Theorem 2 (Completeness). Let S1 and S2 be two scores. Then, there exists an ex-
pression E in ScoreAlg such that S1 = E(S2).

Proof. We first show that, given an elementary score S0 with a unique voice V0 and a
single event ⊥1

0, where ⊥ denotes the lowest possible pitch in the dsound domain, we can
generate S1.

Let v1 be a voice in S1, and e be some event in v1 of the form < a1, · · · an >t2
t1 for some

n > 0. The following expression creates, from S0, a voice v1e with a single event a1t2t1 .

mapv1e : la1 (mapy: shiftt1
(mapx: warpt2−t1

(S0)))

When applied to the ⊥1
0 event, this expression successively produces ⊥t2−t10 , ⊥t2t1 , and a1

t2
t1 .

Similarly, we can generate voice v2e , · · · , vne with the respective events a2t2t1 , · · · , an
t2
t1 . All

these voices are merge-compatible, and merging them

v1e ◦ v2e ◦ · · · ◦ vne

yields a voice ve with event e. We can similarly generate a voice ve′ for any other events e′
of v1. Since the ranges of e and e′ do not overlap, ve and ve′ can be merged. Merging all
these voices for all the events of v1 produces v1. The process can be repeated to generate
all the voices v2, · · · , vm in S1, and the synchronization v1 ⊕ v2 ⊕ · · · ⊕ vm produces S1.
Therefore, there exists an expression El such that S1 = El(S0).

Conversely, we can show that, from any score S, we can produce an algebraic expression
that yields S0. Indeed, let v be a voice in S@, and e be some event in v of the form
< a1, · · · an >t2

t1 for some n > 0 The following expression produces S0 from S2.

mapV0: l−a1
(mapy: warp 1

t2−t1

(mapx: shift−t1
(σpitch=a1(πv(S)))))

Therefore there exists Eq such that Eq(S2) = S0. Finally, S1 = El(Eq(S2)). �

This property relates to the transformation/generation power of the algebra: it shows
its ability to explore the space of music scores (for the part of the notation which is covered
by our score model). In practice, we can view ScoreAlg as an abstraction of the core
machinery of score editing, and as a candidate for a safe and complete score programming
paradigm. The next section shows how it can also be used as part of a querying system.

20

5. Application: The ScoreQL system

We now expose how our algebra can be used as a core component of a querying system
for Digital Score Libraries (DSLs). We implemented such a system for the Neuma DSL, lo-
cated at http://neuma.huma-num.fr. The following section focuses on architectural issues,
and discusses implementation choices.

5.1. System architecture

The objective is to use as much as possible the functionalities of an existing database
system, with a lightweight extension to integrate scores and operators. We begin with an
overview of the system architecture to explain the main aspects of this integration (Fig. 10).

Opuses
(XML documents
with embedded

vScores)

XQuery
+

ScoreAlg

Query result
(opuses)

Structure of
an opus

Virtual
part

mapping
music

document

Concrete
part

Music score
collection

Opus
collection

Physical
level

Logical
level

Figure 10: Conceptual architecture

From the user point of view, the system is a general-purpose XML database, and the
query language is essentially XQuery. What makes the queryable collections particular
is that their documents, called opus in the following, contain one or several vScore XML
subtrees. Such vScores are XML encodings of our data model, and can be manipulated
either directly with XQuery operators, or more conveniently by applying our algebraic
operators, represented in the XQuery space by functions.

A vScore is virtual, and is actually instanciated one the fly at query evaluation time.
At the physical level, indeed, opuses are represented as standard concrete XML documents
featuring score links referring to score document, encoded in MusicXML or MEI. Whenever
required, a mapping takes the score document, gets rid of useless information and exposes
its music content, in XML form, as an instance of a vScore embedded in the opus tree. To
put it differently, existing encodings are seen as a low-level, physical format, from which
structured music content can be obtained at run-time.

21

A music collection is a regular XML collection containing documents where one or
several elements are instances of a scoreType type. Here is an example of a possible Opus
schema.

<xs:complexType name="opusType">
<xs:sequence>

<xs:element name="title" type="xs:string"/>
<xs:element name="composer" type="xs:string"/>
<xs:element name="published" type="xs:string"/>
<xs:element type="scoreType"/>

</xs:sequence>
<xs:attribute type="xs:ID" name="id"/>

</xs:complexType>

According to Definition 4, a vScore is a tree of either sub-vScores or voices. This is
modeled in XML by the following schema.

<xs:complexType name="scoreType" abstract="true">
<xs:sequence minOccurs="1" maxOccurs="unbounded">

<xs:choice>
<xs:element type="scoreType"/>
<xs:element type="voiceType"/>

</xs:choice>
</xs:sequence>

</xs:complexType>

The above schema is strict regarding meta-data (title, composer) but very flexible for
the music notation, due to the generic scoreType definition. It follows that, from one
document to the other, the number of voices and their identifiers may vary. The subtyping
mechanism of XML Schema makes it easy to define more constrained types. Here is for
instance the schema of a Choral collection. It consists of standard attributes (a title, a
composer’s name) together with a music attribute of type Score that enumerates the list
of voices expected from the collections’s instances.

<xs:complexType name="quartetType">
<xs:complexContent>

<xs:restriction base="scoreType">
<xs:sequence>

<xs:element name="soprano" type="soundVoiceType"/>
<xs:element name="alto" type="soundVoiceType"/>
<xs:element name="tenor" type="soundVoiceType"/>
<xs:element name="voices" type="soundVoiceType"/>

22

</xs:sequence>
</xs:restriction>
<xs:attribute type="xs:ID" name="id"/>

</xs:complexContent>
</xs:complexType>

Enforcing the schema of an opus ensures that all the opuses of a collection share a com-
mon, homogeneous structure, and that queries can safely address fine-grained components
of a vScore, such as a voice referred to by its name.

We could develop further the data model by introducing XML representation for events,
and specify the content of a voice instance as a sequence of events. However, we chose to
limit the granularity exposed to the user to voices, the content of which is a black box
queryable only by applying algebraic functions. This is not really necessary, since our
algebra is designed to operate on voices and, as shown in the previous section, supplies all
the possible manipulations that can be applied to voices. The following section illustrates
the resulting XQuery-based facility with some representative examples.

5.2. Querying Music Collections

The following examples are based on a collection of Bach’s chorales. Each opus consists
of four voices, respectively named soprano, alto, tenor and bass, matching the Choral XML
Schema given in the previous section7.

Our first example extracts the first 5 measures of the soprano voice for all the chorales.
Creating such a collection of incipits is quite useful to obtain at a glance a summary of
the collection (in this specific case, the first measures of soprano voice is usually sufficient
to identify a single choral). The XQuery expression is as follows:

for $o in collection("Chorals")/opus
let $incipit := scoreql:select ($o/score/soprano, "measure() in [1,5]")
return <result>

<title>{$o/title}</title>
<incipit>{scoreql:eval($incipit)}</incipit>

</result>

Query 1: Metadata filtering, Select and Projection operators

7The full collection is accessible on-line at http://neuma.huma-num.fr/home/corpus/composers:bach:
chorals/

23

Let us first explain the main aspects of the integration of XQuery and ScoreAlg.
The latter is represented by functions in the scoreql namespace, with the exception of the
projection operator π which is conveniently expressed by XPath. Thus, $o/score/soprano
corresponds to πsoprano($o.score). The selection operator select ($o/score/soprano,
"measure() in [1,5]") is an example of an algebraic function call. The select operator
(Definition 7) takes as input a vScore, a Boolean expression e, and filters out the events
that do not satisfy e, replacing them by a null event. The selection formula is sent as a
string since it does not belong the XQuery scope. Note that this is different from selecting
a score based on some property of its voice(s), an operation which can be achieved with
standard XQuery expressions such as highest() in Query 2.

ScoreAlg expressions are evaluated lazily. This allows to decompose a complex ex-
pression in steps, assigned to XQuery variables, and to refer to the same variable several
times without incurring multiple evaluations. Function eval() triggers the query evaluation.

A common operation is to transpose a score, if for instance one of the voice is too high
or too low for the singer. The following query transposes down the soprano and bass voices
by 2 semi-tones, if the soprano goes up higher than the F5.8

for $o in collection("Chorals")/opus
where scoreql:highest($o/score/soprano) > scoreql:frequency("F5")
let $transpS := scoreql:map ($o/score/soprano, "transpose (-2)")
let $transpB := scoreql:map ($o/score/bass, "transpose (-2)")
return scoreql:eval (scoreql:sync ($transpS, $transpB))

Query 2: Synchronize, Map & User Defined Function

This second query shows also how to define variables that hold new content derived
from vScores via UDFs. Function highest() that takes a score as input and returns a value
(here, the highest note in the soprano voice). Operator map applies the transposition,
whereas operator sync (Def. 5) creates the resulting score from transposed voices. Map is
the operator that opens the query language to the integration of external functions. Any
library can be integrated as a first-class component of the querying system, requiring only
a small amount of technical work to wrap it conveniently.

Our system may also take several vScores as input and produce a document with several
vScores as output. Assume for instance that we wish to compare two chorals by inspecting
pairwise combinations of their voices. The following example takes those two chorals as
input, and produces two vScores, synchronizing respectively the alto and tenor voices.

8The whole choral should be transposed with the same mechanism.

24

for $o1 in coll("Chorals")/opus[@id="BWV250"],
$o2 in coll("Chorals")/opus[@id="BWV320"]

return <result>
<title>Excerpts, chorals 250, 320</title>,
<soprani>{scoreql:eval(scoreql:sync($o1/score/alto, $o2/alto))}</soprani>
<tenors>{scoreql:eval(scoreql:sync($o1/score/tenor, $o2/tenor))}</tenors>

</result>

Query 3: Synchronize operator on two scores

Finally, our last example shows the extended concept of score as a voice synchronization
which is not necessarily a “music” voice. A basic step of music analysis is to compute the gap
(interval) betwen two voices, in order to determine their harmonic profile. The following
query produces, for each choral, a vScore containing the soprano and bass voices, and a
third voice measuring the interval between the two.

for $o in collection("Chorals")/opus[@id="BWV250"]
let $soprAndBass := scoreql:sync($o/score/soprano, $o/score/bass)
let $intervals := scoreql:map($soprAndBass, "intervals()")
return scoreql:eval (scoreql:sync($soprAndBass, $intervals))

Query 4: Sync & Map operators, generation of a new voice

5.3. Implementation

Our system has been fully implemented, integrated in an existing Digital Score Library
(Neuma), and publicly released as a virtual (Docker) machine at http://hub.docker.com.
It relies on off-the-shelf tools, namely a native XML database, BaseX9 and a music nota-
tion library, music2110[CA10].

Query evaluation

The query evaluation mechanism is illustrated by Fig. 11. First (step 1), the query is
submitted to the XQuery processor, and retrieves the set of opuses matching the where
clause. Recall that each such opus (say, the circled green node on Fig. 11) is linked to a
serialized score.

During the evaluation of the return clause, function eval(exp) is called, and this triggers
the execution of the ScoreAlg expression exp embedded in the query. The evaluation of
exp requires three steps:

9http://basex.org
10http://web.mit.edu/music21

25

XQuery
processor

2

4

Serialized
scores

Opuses
…

1

links

3

Mapper

selected opuses
…

XQuery
processor

vScore MusicXML
/ MEI

ScoreAlg
+ Music21

links

vScores
…

…

+

result

Figure 11: Anatomy of query evaluation

1. Step 2 retrieves the XML score document S (encoded in either MusicXML or MEI)
associated to the current opus; this is achieved with a query qS that simply gets the
document from its reference.

2. Step 3 applies a mapping M to extract the vScore from the music content,
3. Finally (step 4), exp is evaluated on the vScore; this requires calls to the ScoreAlg

library for algebraic operators, and to the Music21 toolkit for User Defined Functions.

We finally obtain one or several vScore(s), that can be associated with the opus and
delivered as a result item. The whole mechanism is somehow similar to those used in
mediation systems [GMUW00] with Global As View paradigm (GAV), where items are
obtained from a source thanks to a local query (here, qS on the XML database of score
documents), mapped toward a global schema (here, our data model of vScores) and finally
processed by the query language associated to the global schema (in our case, the score
algebra). The “evaluation plan” of an algebraic expression exp is therefore a sequence
[exp←M ← qS]. We examine execution strategies for such plans in the next section.

5.4. Query optimization and evaluation

Two queries are equivalent if they yield the same result on any input. Given a sequence
[exp←M ← qS], an optimizer explores the space of equivalent evaluations [exp′ ←M ′ ←
q′S]. Since we do not consider alternative evaluations of M , the problem reduces to find q′S
and exp′ such that [exp′ ←M ← q′S] is equivalent to [exp←M ← qS] and achieves better
performances. There are three rewriting possibilities:

1. rewriting qS to an equivalent q′S (i.e., [exp← M ← qS] is then equivalent to [exp←
M ← q′S];

26

Name Rule Comment
R1 σF1(σF2(S)) ≡ σF1∧F2(S)) Standard selection decomposition
R2 σF (S1 ⊕ S2) ≡ σF (S1)⊕ σF (S2) Same comment as above.
R3 σF (S1 ◦ S2) ≡ σF (S1) ◦ σF (S2) Same comment as above.
R4 µvi...vn(σF (S)) ≡ σF (µvi...vn(S)) NB: σ is a filter applied to all the events

of a score, hence the equivalence
R5 µvi...vn(S1 ⊕ S2) ≡ µvi...vj (S1)⊕ µvj+1...vn(S2) With vi..j ∈ S1, vj+1..n ∈ S2
R6 µvi...vn(S1 ◦ S2) ≡ µvi...vn(S1) ◦ µvi...vn(S2) Merge commutes with projection
R7 (S1 ⊕ S2) ◦ S3 ≡ (S1 ◦ µ1(S3))⊕ (S2 ◦ µ2(S3)) Synchronization can be applied on dis-

jointed set of voices
R8 (S1 ⊕ S2)⊕ S3 ≡ S1 ⊕ (S2 ⊕ S3) Associativity of synchronization
R9 (S1 ◦ S2) ◦ S3 ≡ S1 ◦ (S2 ◦ S3) Associativity of merge
R10 [πvi...vn(S)←M ← qS] ≡ [S ←M ← πvi...vn(qS) Projecting out voices can be done with

XQuery
R11 [σF (E)←M ← qS] ≡ [S ←M ← σF (qS) Only for selection formulas F expressible

in XQuery.

Table 1: Rewriting rules

2. rewriting exp to an equivalent exp′ (i.e., [exp ← M ← qS] is then equivalent to
[exp′ ←M ← qS]);

3. or finding a global rewriting that “moves” some operations between exp to qS.

The first possibility resorts to the XQuery optimizer. We focus on the others. Table 1
gives a set of equivalent rules which can be applied for query rewriting, assuming that
syntactic constraints are fullfilled. The first part (R1-R9) addresses local rewriting rules
of ScoreAlg expressions, the second (R10 and R11) shows how we can “push” through
the mapper operations from ScoreAlg to XQuery.

The last two rules deserve somes explanations: they rely on the fact that both the
projection and the selection operators can be equivalently applied either in ScoreAlg and
XQuery. This is always true for the projection: indeed, projecting on voices in ScoreAlg
can be done with XQuery on both MusicXML or MEI documents since voices are explicitly
(though intricately) encoded. Rule R10 (selection) entails more restrictions, since the
equivalence depends on the selection formula F and on the ability to transpose it in XQuery.

Let us take as an example from our query 1:

for $o in collection("Chorals")/opus
let $incipit := scoreql:select ($o/score/soprano, "measure() in [1,5]")
return (...)

The score query evaluation plan is [σmeasure()in[1,5](πsoprano(O.score)) ← M ← qS], O ∈

27

Chorals. Thanks to rule R10, it can be rewritten as

[σmeasure()in[1,5](O.score)←M ← πsoprano(qS)]

In other word, we can apply the mapping on a score that contains only the voices of interest
to the ScoreAlg expression. This is likely to improve significantly the performance since,
as measured by our experiments (see next section), the mapping is the dominant cost in
the query evaluation, and depends on the size of the input score.

Pushing the selection is more difficult. In this specific case, it depends on the presence
of the measure number in the score encoding, in such a way that it can easily be used in
an XQuery filter. We did not incorporate rule R11 in our current implementation, but it
would certainly be worth considering in a system dealing with large collections.

Our optimization algorithm is based on a common heuristic: limit as much as possible
the size of the data items submitted to the operators.

• Push down selections (R1 to R3) and projections (R4 to R6); in particular, rule R4
should push the projection close to the input score.

• Apply R10 to push the projection, through the mapping operator M , to qS.

The next section reports the performance of these evaluation steps in our current im-
plementation.

5.5. Performances

XQuery Mapping Alg # result Mapping/doc Alg/doc
Q1 1,042 35,061 12,493 403 87 31
Q2 1,172 333 466 2 166.5 233
Q3 515 270 28 2 138.5 14
Q4 537 121 166 1 166 121

Table 2: Running time decomposition for each query (ms)

Queries 1 to 4 have been evaluated on the corpus of 403 scores of Bach Chorales11.
Table 2 gives their running time (in ms) with our system. We decompose this cost according
to the three steps of an evaluation plan [exp ← M ← qS], where qS is the standard part
of XQuery, M is the mapping, and exp is the algebraic expression applied to each score.
Since the pair (M, exp) is evaluated for each document of the XQuery result, we also

11Available at http://neuma.huma-num.fr/home/corpus/composers:bach:chorals/

28

Time (ms) Ratio # op
Mapping 87 73% 1
Select operator 26 22% 1
Result 5 5% 1
Total 118

Table 3: Time to process a ScoreAlg expression for each score in Query 1

Time (ms) Ratio # op
Mapping 166.5 41.68% 1
UDF 13 3.25% 1
Map 207 51.81% 2
Sync 3.5 0.88% 1
Result 9.5 2.38% 1
Total 399.5

Table 4: Time to process a ScoreAlg expression for each score in Query 2

report the cardinality of this result, and the average cost of M and exp per document. For
instance, the first query retrieves 403 scores, and the average unit cost of the mapping is
35, 061/403 = 87ms.

The XQuery cost is almost constant for the two first queries. The execution plan is then
simply a sequential scan of the collection. Queries 3 & 4 contain a where clause (brackets
on the opus path) on the document ID, and BaseX uses in that case a direct access thanks
to an internal index.

Let us now examine the details of the score manipulation operators for each query. The
relative costs of M and exp depend on the complexity of the latter. Table 3 shows this
detail for Q1 which simply executes a selection σmeasure<5 to obtain the first 5 measures
of the soprano voice. This is done for each document in 26 ms on average, whereas the
mapping itself takes 87 ms (the Result line corresponds to the time spent by BaseX to
built the result item, and #op is number of applications of the operator). Clearly, the
time spent to access the score and map its content as an instance of our data model is
predominant for such basic algebraic expressions.

Table 4 reports the detailed cost for each operator in Q2. The selection based on an
UDF call (highest note above "F5") has a minor impact. The synchronize operator is also
quite efficient because it simply builds a new structure without accessing to the values. On
the other hand, the Map operator counts for half of the global cost. This makes sense if we
remember that it requires an access to each individual event, in order to apply some domain
function. Its cost is therefore proportional to the size of the voices, and also depends on
the complexity of the function itself. We must notice that the Map is applied on two voices
of each score and thus counts twice.

29

Time (ms) Ratio # op
Mapping 138.5 90.82% 1
Sync 6.5 4.26% 1
Result 7.5 4.92% 1
Total 152.5

Table 5: Time to process a ScoreAlg expression for each score in Query 3

Time (ms) Ratio # op
Mapping 121 42.16% 1
Sync 16 5.57% 2
Map 140 48.78% 1
Result 10 3.48% 1
Total 287

Table 6: Time to process a ScoreAlg expression for each score in Query 4

This is confirmed by the analysis of Q3 (Table 5) which does not feature a Map. The
last query extracts two voices, synchronized in a new score $SoprAndBass that is processed
to produce intervals. The new resulting voice is then resynchronized with $SoprAndBass
to produce the final result. In spite of this apparently complex structural manipulations,
the analysis of the Sync operations shows that they count for a marginal part. Computing
with Map the intervals between the two voices constitutes the main part of the evaluation
cost (Table 6).

Regarding the impact of Rule R10 that “pushes” projections from ScoreAlg to XQuery,
we can note that it reduces significantly the running time. Query 1 uses only one voice
while the three other queries projects two. For Query 1, the XML document to be parsed
is therefore shorter and the Mapping step costs less, as can be seen in Table 3. This also
explains the difference (130ms less) between Query 1 and Query 2 for the XQuery part.

In summary, this short performance study illustrates the main characteristics of an
implementation which is not designed to achieve high speed for very large collections, but
rather aims at limiting implementation efforts by relying as much as possible on off-the-
shelf tools and systems. In this specific case, the system can be seen as a tight integration
of a database system (BaseX) with specialized music score manipulation functions (our
algebra and UDFs supplied by music21). If we leave apart the special case of the Map
operator, it appears that the cost of executing algebraic operators is negligible regarding
the time spent to load and parse the score’s XML document. Indeed, once a vScore instance
is obtained from the mapping phase, our algebra operates in RAM and yields very fast
response time. Introducing a Map in a query is, as explained in Section 4, a powerful mean
to extend the expressive power of the algebra to user-defined functionalities. This power
has a cost: the function might be complex, and more importantly it has to be applied to

30

the lowest level of the score hierarchy, i.e., events.

Overall, we believe that our implementation choices constitute a satisfying trade-off. On
the one hand, a limited implementation effort results in a declarative system which allows
to express concisely complex operations on score collections. This has to be compared
with the time spent to write, test, run and deploy an equivalent Python or Java code in a
standard programming environment. On the other hand, the overhead of our algebra has a
minimal impact on the query evaluation which, as shown above, is dominated by the time
spent by loading a score and applying UDFs with Map. In other words, the cost in that
case is similar to that of running a dedicated program.

5.6. ScoreQL in practice

The ScoreQL system has been packaged as a lightweight Docker image that can be
downloaed and instantiated easily in any Docker environment12. This image contains all
the necessary components to store and query a collection of digital scores, via its REST in-
terface, documented at http://cchum-kvm-scorelibneuma.in2p3.fr/ScoreQL/. This image
is available on DockerHub at https://hub.docker.com/r/traversn/scoreql/.

We usw the system as part of the Neuma public digital library. Fig. 12 shows the Web
querying interface. Queries such as those given as examples in the previous section can be
expressed. The result are proposed as a list of document links.

6. Conclusion

Music is everywhere in the digital world, present in many forms, accessed by countless
people and institutions, for all kinds of usages. Organizing and searching large collections
of music documents has so far mostly focused on a generic information retrieval approach
that either exploits metadata, or applies similarity-based content retrieval techniques. But
music has a structure, and there exists a language to describe this structure: music nota-
tion. Our work uses this language as a basis for the description of music content.

Our approach leads to the design and implementation of a query language that operates
on the music structure, extracted on the fly from the raw document encoding. We proposed
an algebra dedicated to time-dependent objects represented as synchronized time series,
with a strong focus on the particular case of music content as it is captured by its traditional
notation. Finally, we showed how this algebra can be integrated at low cost in an existing
database system, and provided implementation guidelines and a working implementation.

12https://www.docker.com/

31

Figure 12: Screenshot of the querying interface integrated to Neuma

In principle, the approach applies to music documents in any format. In practice, it
requires a mapping that transforms the raw content to instances of our model, and this
mapping is, in the moment, easier and more reliable for music scores. Nothing however
prevents our model in the future to be applied to other music document formats as well.

We believe that the work has an interest by itself, as it constitutes an attempt to
formalize the core manipulation operators needed to create and transform scores. It has
also a practical scope, since its integration with a collection-oriented query language such as
XQuery yields a tool that allows to access large collections of music documents in general.
In addition to its integration as part of the Neuma system, we chose to release our system
as a virtual Docker component, equipped with a REST interface, and thus directly usable
by any user who wishes to enrich her music repository with data management facilities.

Finally, in a context where the volume of copyright-free music is constantly expanding,
we hope that proposing a robust and well-founded language to manage large collections of
music documents brings the well-known advantages of a database approach to the so-far
mostly ignored field of structured data management for music collections. We also hope
that our approach, that identifies and exploits implicit structures hidden in the encoding
of digital documents, can serve as an inspiration in the fields of humanities. The revolution
brought by Internet technologies has encouraged the production, release and publication of
countless digitized archives related to history, arts or culture. Designing tools that help to
figure out their implicit structure, and the data management machineries that can process

32

them, are important requirements to make sense of these repositories and leverage the
information and knowledge they contain.

Acknowledgments This work is partially supported by the ANR MuNIR project. We
are quite grateful to Florent Jacquemard for in-depth discussions and careful readings of
the paper.

[AAC+08] Serge Abiteboul, T. Allard, P. Chatalic, G. Gardarin, A. Ghitescu, F. Goas-
doue, I. Manolescu, B. Nguyen, M. Ouazara, A. Somani, N. Travers, and
G. Vasile. WebContent: Efficient P2P Warehousing of Web Data. In VLDB’08
Very Large Data Base, pages 1428–1431, August 2008.

[ABM08] Serge Abiteboul, Omar Benjelloun, and Tova Milo. The active XML project:
an overview. VLDB J., 17(5):1019–1040, 2008.

[ABSW04] Norman H. Adams, Mark A. Bartsch, Jonah B. Shifrin, and Gregory H. Wake-
field. Time series alignment for music information retrieval. In Proceeding
of International Conference on Music Information Retrieval (ISMIR), pages
303–311, 2004.

[Bal96] Mira Balaban. The music structures approach to knowledge representation for
music processing. Computer Music Journal, 20(2):96–111, 1996.

[BB01] David Bainbridge and Tim Bell. The challenge of optical music recognition.
Computers and the Humanities, 35(2):95 – 121, 2001.

[BBC11] Mohamed-Amine Baazizi, Nicole Bidoit, and Dario Colazzo. Efficient encod-
ing of temporal xml documents. In International Symposium on Temporal
Representation and Reasoning (TIME), pages 15–22. IEEE Computer Society,
2011.

[BDG+13] Emmanouil Benetos, Simon Dixon, Dimitrios Giannoulis, Holger Kirchhoff,
and Anssi Klapuri. Automatic music transcription: challenges and future
directions. Journal of Intelligent Information Systems, 41(3):407–434, 2013.

[Bel11] Juan Pablo Bello. Measuring Structural Similarity in Music. IEEE Transac-
tions on Audio, Speech, and Language Processing, 19:2013–2025, 2011.

[CA10] Michael Scott Cuthbert and Christopher Ariza. Music21: A Toolkit for
Computer-Aided Musicology and Symbolic Music Data. In Proceeding of Inter-
national Conference on Music Information Retrieval (ISMIR), pages 637–642,
2010.

33

[CVG+08] MA Casey, Remco Veltkamp, Masataka Goto, Marc Leman, Christophe
Rhodes, and Malcolm Slaney. Content-based music information retrieval: cur-
rent directions and future challenges. Proceedings of the IEEE, 96(4):668–696,
2008.

[DHI12] AnHai Doan, Alon Halevy, and Zachary Ives. Principles of Data Integration.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition, 2012.

[FBF13] Elie Fares, Jean-Paul Bodeveix, and Mamoun Filali. Event algebra for tran-
sition systems composition application to timed automata. In International
Symposium on Temporal Representation and Reasoning (TIME), pages 125–
132. CPS, 2013.

[FLOB13] Dominique Fober, Stéphane Letz, Yann Orlarey, and Frédéric Bevilacqua. Pro-
gramming Interactive Music Scores with INScore. In Sound and Music Com-
puting, pages 185–190, Stockholm, Sweden, July 2013.

[FSRT16a] R. Fournier-S’niehotta, P. Rigaux, and N. Travers. Is There a Data Model
in Music Notation? In Richard Hoadley, Chris Nash, and Dominique Fober,
editors, Intl. Conf. on Technologies for Music Notation and Representation
(TENOR’16), pages 85–91. Anglia Ruskin University, 2016.

[FSRT16b] R. Fournier-S’niehotta, P. Rigaux, and N. Travers. Querying XML Score
Databases: XQuery is not Enough! In Proceeding of International Confer-
ence on Music Information Retrieval (ISMIR), 2016.

[GMUW00] H. Garcia-Molina, J.D. Ullman, and J. Widom. Database System Implemen-
tation. Prentice Hall, 2000.

[Goo01] Michael Good. The Virtual Score: Representation, Retrieval, Restoration,
chapter ”MusicXML for Notation and Analysis”, pages 113–124. W. B. Hewlett
and E. Selfridge-Field, MIT Press, 2001.

[GSD08] Joachim Ganseman, Paul Scheunders, and Wim D’haes. Using XQuery on Mu-
sicXML Databases for Musicological Analysis. In Proceeding of International
Conference on Music Information Retrieval (ISMIR), 2008.

[Hud15] Paul Hudak. The Haskell School of Music – From Signals to Symphonies.
(Version 2.6), January 2015.

[JBDC+13] David Janin, Florent Berthaut, Myriam Desainte-Catherine, Yann Orlarey,
and Sylvain Salvati. The T-Calculus : towards a structured programing of
(musical) time and space. In Proceedings of the first ACM SIGPLAN workshop
on Functional art, music, modeling and design (FARM’13), pages 23–34, 2013.

[Kla04] Anssi P Klapuri. Automatic music transcription as we know it today. Journal
of New Music Research, 33(3):269–282, 2004.

34

[LS03] A. Lerner and D. Shasha. AQuery: Query Language for Ordered Data, Op-
timization Techniques, and Experiments. In Proc. Intl. Conf. on Very Large
Data Bases (VLDB), pages 345–356, 2003.

[LSW+04] A. Lerner, D. Shasha, Z. Wang, X. Zhao, and Y. Zhu. Fast Algorithms for
Time Series with applications to Finance, Physics, Music, Biology, and other
Suspects. In Proc. ACM SIGMOD Symp. on the Management of Data, pages
965–968, 2004.

[MEI15] Music Encoding Initiative. http://music-encoding.org, 2015. Accessed April
2019.

[RFP+12] Ana Rebelo, Ichiro Fujinaga, Filipe Paszkiewicz, André R. S. Marçal, Carlos
Guedes, and Jaime S. Cardoso. Optical music recognition: state-of-the-art
and open issues. International Journal of Multimedia Information Retrieval,
1:173–190, 2012.

[Rol02] Perry Rolland. The Music Encoding Initiative (MEI). In Proceedings of the
International Conference on Musical Applications Using XML, pages 55–59,
2002.

[SGU14] Markus Schedl, Emilia Gómez, and Julián Urbano. Music Information Re-
trieval: Recent Developments and Applications. Foundations and Trends in
Information Retrieval, 8:127–261, 2014.

[SYBK16] Diego Furtado Silva, Chin-Chia Michael Yeh, Gustavo E. A. P. A. Batista, and
Eamonn J. Keogh. SiMPle: Assessing Music Similarity Using Subsequences
Joins. In Proceeding of International Conference on Music Information Re-
trieval (ISMIR), 2016.

[TNL07] Nicolas Travers, Tuyêt Trâm Dang Ngoc, and Tianxiao Liu. Tgv: A tree
graph view for modeling untyped xquery. In 12th International Conference
on Database Systems for Advanced Applications (DASFAA), pages 1001–1006.
Springer, 2007.

[TWV05] Rainer Typke, Frans Wiering, and Remco C. Veltkamp. A Survey Of Music
Information Retrieval Systems. In Proceeding of International Conference on
Music Information Retrieval (ISMIR), 2005.

[USG14] Karen Ullrich, Jan Schlüter, and Thomas Grill. Boundary detection in music
structure analysis using convolutional neural networks. In Proceeding of Inter-
national Conference on Music Information Retrieval (ISMIR), pages 417–422,
2014.

[Whe15] Philip Wheatland. Thoth music learning software, v2.5, Feb 27, 2015.
http://www.melodicmatch.com/.

35

[XQu07] XQuery 3.0: An XML Query Language. World Wide Web Consortium, 2007.
https://www.w3.org/TR/xquery-30/.

36

