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AN FPT ALGORITHM FOR PLANAR MULTICUTS
WITH SOURCES AND SINKS ON THE OUTER FACE

Cédric Bentz∗

Abstract

Given a list of k source-sink pairs in an edge-weighted graph G,
the minimum multicut problem consists in selecting a set of edges of
minimum total weight in G, such that removing these edges leaves no
path from each source to its corresponding sink. To the best of our
knowledge, no non-trivial FPT result for special cases of this problem,
which is APX-hard in general graphs for any fixed k ≥ 3, is known
with respect to k only. When the graph G is planar, this problem is
known to be polynomial-time solvable if k = O(1), but cannot be FPT
with respect to k under the Exponential Time Hypothesis.

In this paper, we show that, ifG is planar and in addition all sources
and sinks lie on the outer face, then this problem does admit an FPT
algorithm when parameterized by k (although it remains APX-hard
when k is part of the input, even in stars). To do this, we provide a
new characterization of optimal solutions in this case, and then use it
to design a “divide-and-conquer” approach: namely, some edges that
are part of any such solution actually define an optimal solution for a
polynomial-time solvable multiterminal variant of the problem on some
of the sources and sinks (which can be identified thanks to a reduced
enumeration phase). Removing these edges from the graph cuts it into
several smaller instances, which can then be solved recursively.

Keywords: Multicuts, Planar graphs, FPT algorithms.

1 Introduction

Given a list of k pairs (source si, sink s′i) in an undirected edge-weighted
graph G, the minimum multicut problem (MinMC) consists in selecting a
set of edges of minimum total weight in G, in such a way that removing
these edges leaves no path between si and s′i for each i. As the weight
w(e) of each edge e is commonly assumed to be a rational number, we can
actually assume without loss of generality that each w(e) is an integer (by
multiplying all w(e)’s by one sufficiently large integer).
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A well-known special case of MinMC is the minimum multiway cut prob-
lem, or minimum multiterminal cut problem (MinMTC): in any instance of
this problem, we are given a set of terminals T = {t1, . . . , t|T |}, and the
source-sink pairs in the associated MinMC instance are (ti, tj) for i 6= j.

We shall only consider undirected graphs here. When k = 1, MinMC
(which is then equivalent to MinMTC with |T | = 2) turns into the fa-
mous minimum cut problem, and can therefore be solved in polynomial time.
Moreover, MinMC remains polynomial-time solvable when k = 2 [14]. How-
ever, MinMTC is APX-hard for any fixed value of |T | ≥ 3 [8]: note that,
when |T | = 3, MinMTC is actually a special case of MinMC with k = 3.

When k is part of the input, MinMC is tractable in chains, but APX-
hard even in stars with weights 1 [10], and hence also in planar graphs
where all sources and sinks lie on the outer face. However, when k = O(1),
it becomes tractable in trees, and even in graphs of bounded tree-width [1].

Some results are known about the parameterized complexity of MinMC.
For instance, it is known to be FPT with respect to the solution size [4, 13],
but we are not aware of any non-trivial FPT result when the parameter to be
considered is k. Recall that a problem parameterized by some parameter p is
FPT with respect to p if it admits an FPT algorithm with respect to p, i.e.,
an algorithm solving it in time O(f(p)nc), where f(·) is some computable
function of p, n is the input size, and c is a constant independent of p [9].

Let us now turn to the case where G is planar. On the one hand, when all
sources and sinks lie on the outer face, it was proved that, unlike MinMC,
MinMTC can be solved in polynomial time, even when |T | is part of the
input [5]. On the other hand, when sources and sinks can lie anywhere,
it was proved in [12] that, under the Exponential Time Hypothesis (ETH),
MinMTC cannot be FPT with respect to |T | in planar graphs. Hence,
under the same hypothesis, MinMC cannot be FPT with respect to k in
these graphs. However, when k = O(1), it was proved that MinMC is
polynomial-time solvable in planar graphs if all sources and sinks lie on the
outer face [2], and later it was proved that MinMC remains polynomial-time
solvable in planar graphs even when sources and sinks can lie anywhere [3, 6].
(It was already known for MinMTC in planar graphs when |T | = O(1) [8].)

In the present paper, we prove the first non-trivial FPT result concerning
MinMC parameterized by k only, and at the same time settle the last case
left open by the results shown in [2, 3, 6, 12]. Namely, we show that MinMC
is FPT with respect to k when G is planar and all sources and sinks lie on its
outer face. In order to do this, we provide a new characterization of optimal
solutions for MinMC in such graphs, on which our algorithm is based.

In [2], it was proved that any MinMC instance in such a graph can be
reduced to a set of MinMTC instances in planar graphs (i.e., where sources
and sinks can lie anywhere). Actually, a limited number of configurations
were enumerated, and for each configuration one planar MinMTC instance
was solved (using a non-FPT algorithm, such as the one in [8]).
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Here, we prove a stronger result: there exist optimal multicuts such that
some part (i.e., some of the edges) of such a solution actually defines an
optimal solution for a MinMTC instance, obtained in the same graph by
removing some of the sources and sinks (or, equivalently, by keeping only
some of them). (In practice, determining the sources and sinks that belong
to this MinMTC instance requires some enumeration, but fortunately it
can be done in FPT time.) In the MinMTC instance obtained in this way,
all terminals lie on the outer face (and hence we can use the polynomial-
time algorithm given in [5]). Moreover, removing the edges of the optimal
solution for this MinMTC instance cuts the initial graph into several pieces
(i.e., connected components), which can then be solved recursively as smaller
MinMC instances satisfying the same assumptions as the initial one.

The proposed algorithm is thus based on a divide-and-conquer approach:
we enumerate a limited (but larger than in [2], as we will need to “guess”
slightly more information) number of configurations, and for each one we
solve a set of planar MinMTC instances (and not one planar MinMTC
instance anymore), in which, unlike in [2], all terminals lie on the outer face.
This enables us to obtain a nearly linear-time algorithm when k = O(1).

When considering any planar MinMC (or MinMTC) instance, loops
and parallel edges are useless (loops can be removed, and edges having the
same endpoints can be merged into a single edge, whose weight is the sum
of the weights of the merged edges), and connected components actually
define independent instances, so we shall assume without loss of generality
that the input graph is connected and contains neither loops nor parallel
edges, and that it is already embedded in the plane without crossings (and
with all the sources/sinks or terminals lying on the outer face, if needed).

Furthermore, as in [2] (where all the necessary details are provided),
we assume without loss of generality that all terminals are distinct and that
the input graph is 2-vertex-connected (which can easily be achieved in linear
time by doubling all edge weights, then obtaining a 2-edge-connected graph,
and finally replacing any articulation vertex by a cycle). This means, in
particular, that the boundary of the outer face is a simple cycle.

2 A reformulation using clusterings

The starting point of our FPT algorithm is basically the same as in [3]:
in any connected graph (planar or not), removing the edges of any optimal
multicut yields several connected components, each of them containing at
least one source or sink. The sources/sinks belonging to a same connected
component define a cluster. We shall call such a set of clusters a clustering
(a clustering is thus a partition of the sources and sinks), and we shall
say that the considered solution induces these clusters (and the connected
components containing them), or equivalently this clustering.

3



Hence, finding an optimal multicut is equivalent to finding a set of edges
of minimum total weight that isolates all the clusters of the clustering in-
duced by this optimal multicut. By definition, this clustering is such that
no cluster contains both si and s′i for each i. In practice (i.e., from an algo-
rithmic point of view), since we do not know this clustering as long as we
do not know the optimal multicut itself, we need to enumerate all possible
clusterings in order to ensure that the one induced by the optimal solution
we are looking for will be considered as well.

The number of possible clusterings only depends on the number k of
source-sink pairs: in other words, it is FPT with respect to k (we shall
give more details later). This immediately implies that MinMC can be
reduced in FPT time (with respect to k) to the following problem, called the
minimum multi-cluster cut problem (MinMCC): given k′ sets (or clusters)
of terminals T1, T2, . . . , Tk′ in an edge-weighted graph G, find a set of edges of
minimum total weight in G, in such a way that removing these edges leaves
no path between any vertex in Ti and any vertex in Tj , for any i 6= j. When
|Ti| = 1 for each i, MinMCC simply turns into MinMTC. Also note that
MinMCC is actually a special case of MinMC, in which the source-sink
pairs are (u, v), for each i 6= j and each u ∈ Ti and v ∈ Tj .

In the remainder of this paper, we shall focus on solving MinMCC in
FPT time (with respect to k′), and this will immediately enable us to solve
MinMC in FPT time (with respect to k) as well. Indeed, it is not hard to see
that the above-mentioned reduction from MinMC to MinMCC is actually
an FPT-reduction, as we have k′ ≤ 2k. One can even show a sharper bound
on k′: we have actually k′ ≤ k + 1, and this bound is tight (to see this,
simply consider a chain with 2k vertices, in the order s1, s

′
1, s2, s

′
2, . . . , sk, s

′
k,

where the only optimal multicut induces k + 1 clusters). This will not have
any significant impact on the asymptotic running time of our algorithm, but
we give a short proof of this fact anyway, for the sake of completeness.

Assume by contradiction that, in a given instance of MinMC, there ex-
ists an optimal multicut inducing at least k+2 connected components. Any
edge of this optimal multicut lies between two of these connected compo-
nents, and there must exist an i such that one component contains si and
the other s′i (otherwise, this edge would be useless). Hence, when adding
to the (at least) k + 2 connected components induced by such an optimal
multicut the edges lying between the two connected components containing
s1 and s′1 (if there exist such edges), we obtain at least k + 1 connected
components. We do the same for s2 and s′2 (adding edges of the optimal
multicut only if they have not already been added so far), and then for each
si and s′i for i from 3 to k. In the end, we have all the edges from the
initial graph, and we have reduced by at most k the number of connected
components. Therefore, there remain at least two connected components,
which contradicts the fact that the initial graph was connected.
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3 A characterization using planar duality

Let us now consider planar duality. It is well-known that, to any planar
graph G embedded in the plane, one can associate a dual planar graph G∗.
More precisely, to any face in G corresponds a vertex (called a dual vertex)
in G∗, and any (dual) edge between two dual vertices corresponds to the edge
(or one of the edges, if there are more than one) shared by the corresponding
faces in G. This also holds for the outer face of G. Furthermore, since G is
2-vertex-connected, there exists no edge belonging to only one face.

Given an optimal solution S for a MinMCC instance in a planar graph
G, we shall denote by S∗ the set of dual edges corresponding to S in the
dual graph G∗, and, for each i, by Vi the set of vertices of the ith connected
component induced by S, and by Si ⊆ S the set of edges of G having
exactly one endpoint in Vi. It is well-known that S∗i , the set of dual edges
corresponding to each Si, is a set of (non necessarily simple) cycles in G∗.

Moreover, if we look at the embedding of G∗ as a set of curves in the
plane (which intersect at the dual vertices), then each S∗i is represented by
a set of closed curves, denoted by C∗i . Each S∗i is actually composed of one
or several simple cycles {S∗1i , S∗2i , . . . }, i.e., each C∗i is composed of one or
several simple closed curves {C∗1i , C∗2i , . . . }. By the Jordan curve theorem,
each such simple closed curve divides the plane into an interior region and
an exterior region (a region being a set of points such that any two of
these points can be linked by a curve without crossing any closed curve):
intuitively, the interior region is the region of the plane that is enclosed by
(or that lies inside) this closed curve. The C∗i ’s thus partition the plane
into several regions. Among all these regions, there is one and only one that
is unbounded (and one and only one C∗i is associated with it, i.e., contains
all the curves adjacent to this region). Actually, the C∗i ’s may be seen as
defining the boundary of the Vi’s, that form a partition of the vertex set of
G, and hence the interior regions of any two distinct simple closed curves
that compose them cannot overlap (except if one lies inside the other).

The following lemma summarizes well-known facts for planar MinMCC:

Lemma 1 ([3, 6, 8]). Given a MinMCC instance in a planar graph G, any
optimal solution S for this instance satisfies the following properties:

(1) for each C∗i = {C∗1i , C∗2i , . . . } and for any j1 6= j2, either the interior

regions of C∗j1i and C∗j2i are disjoint, or one lies inside the other,

(2) each C∗i = {C∗1i , C∗2i , . . . }, except the one associated with the un-
bounded region, contains one simple closed curve, say C∗1i , such that

all the vertices of Vi lie inside C∗1i , but not inside C∗ji for any j ≥ 2,

(3) for each C∗i , except the one associated with the unbounded region, and

for each j ≥ 2, C∗ji lies inside C∗1i , and, for each j1 ≥ 2 and j2 ≥ 2

with j1 6= j2, the interior regions of C∗j1i and C∗j2i are disjoint.
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Proof. Each of these three properties has been more or less explicitly proved
or used for solving MinM(T)C or MinMCC in planar graphs in [3, 6, 8].
Property (1) is clear from [8], and we will justify the other two briefly.

Concerning Property (2), it was noticed in [8] for MinMTC (and it can
easily be extended to MinMCC) that, except for the C∗i associated with the
unbounded region, each C∗i must enclose a region containing the terminals
in Ti. By definition, this region lies inside either the interior region or the
exterior region associated with each C∗ji . Obviously, it cannot lie inside
several of these interior regions: indeed, from Property (1), for any two of
these interior regions, either they are disjoint (and thus it is clearly not
possible), or one lies inside the other (and thus this other one is useless).
Therefore, for each i, the region containing the terminals in Ti lies inside one
of these interior regions (the one associated with C∗1i ) and outside all the
other interior regions (or, equivalently, inside all the other exterior regions).

Concerning Property (3), it is sufficient to notice that, from Property
(2), the only way for the interior region of C∗1i to intersect the exterior

region of C∗ji for any j ≥ 2 is to have C∗ji lying inside C∗1i for any j ≥ 2.

Moreover, this also implies that for any C∗j1i and C∗j2i with j1 ≥ 2, j2 ≥ 2
and j1 6= j2, the interior region of one cannot lie inside the interior region
of the other, and hence, from Property (1), they must be disjoint.

For the special case considered here, we can prove the following lemma:

Lemma 2. Given a MinMCC instance in a planar graph G where all the
terminals lie on the outer face, any optimal solution S is such that each S∗ji
contains the dual vertex corresponding to the outer face of G, and, for each
i, any two S∗ji ’s have only this vertex in common.

Proof. We begin by proving the first part of the statement. If some S∗ji did
not contain the dual vertex corresponding to the outer face of G, then the
interior region of C∗ji would not enclose any terminal (as any terminal lies
on the outer face of G), and hence it would be useless in an optimal solution.

Moreover, it is easy to see that, for each i, any two S∗ji ’s have at most
one vertex in common, even in the case where the terminals can lie anywhere
in the planar graph (and hence, in our special case, they have exactly one
vertex in common). Indeed, if two S∗ji ’s had two or more vertices in common,
then they could not belong to the boundary of a single region.

Lemma 2 implies, in particular, that, if the input graph is planar and any
terminal lies on the outer face, then any C∗i , including the one associated
with the unbounded region, actually consists of a single closed curve (that
may not be simple). Let us assume without loss of generality that the closed
curve associated with the unbounded region is C∗1 . From Lemma 1, we call
a cluster Ti with i ≥ 2 a top cluster if there is no j ≥ 2 with j 6= i such that
C∗1i lies inside C∗1j . (Besides, T1 will be referred to as a top cluster as well.)
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This notion can be interpreted in the initial graph G as well. For each i
and each j, let Sj

i be the set of edges in G associated with S∗ji . Removing
from G the edges of any S1

i for i ≥ 2 yields two connected components: one
that contains the vertices in Ti (and possibly vertices from other clusters),
and one that does not. We shall denote the former one by V ′i : we have
Vi ⊆ V ′i for each i. Then, Ti with i ≥ 2 is a top cluster if V ′i is not contained
in any V ′j for j ≥ 2 and j 6= i. In other words, the vertices of any V ′j with
j ≥ 2 such that Tj is not a top cluster are included in some V ′i with i ≥ 2
and i 6= j. As such, any V ′i such that Ti is a top cluster and i ≥ 2 can be
viewed as a maximal inclusion-wise connected component among the V ′j ’s.

However, this notion is still not strong enough to state our main result.
We refine it as follows. Take any top cluster except T1 (say, T2), and define it
as a good top cluster. Then, we define the other good top clusters iteratively:
any top cluster Ti such that S∗1i with i ≥ 2 has at least one edge in common
with S∗1j for some good top cluster Tj with j ≥ 2 will also be defined as a
good top cluster. (Besides, T1 will be defined as a good top cluster as well.)

All the previous notions are illustrated in Figure 1, where the terminals
are the small black rectangles, while the other vertices are the small black
circles. The clusters are numbered from 1 to 9, and any terminal is labeled
by the number of the cluster it belongs to. The dual vertices and edges asso-
ciated with the optimal solution drawn in Figure 1 are respectively the small
grey diamonds and the grey dashed lines. The top clusters are numbered
1, 2, 5, 7 and 8, and the good top ones are numbered 1, 2 and 5 (another
possible choice would be the ones numbered 1, 7 and 8). Moreover, the big
grey diamond is the dual vertex associated with the outer face, and the three
S∗j2 ’s are indicated on the associated dual edges, as well as some other S∗ji ’s.

Our main result is the following lemma:

Lemma 3. Assume we are given a MinMCC instance I in a planar graph G
where any terminal lies on the outer face, and let S be an optimal solution for
I. Then,

⋃
i:i is a good top cluster S

1
i is an optimal solution for the MinMTC

instance I ′ obtained as follows: (i) the input graph G′ is the graph G without

the edges in S \
(⋃

i:i is a good top cluster S
1
i

)
, and with one terminal for each

good top cluster, and (ii) all the terminals lie on the outer face.

Proof. Consider the planar graph G′ as defined above, and assume that
the embedding of G′ is computed by taking the one of G and then simply

removing the edges in S \
(⋃

i:i is a good top cluster S
1
i

)
. Clearly, if, for each

good top cluster Ti, we add in G′ a new vertex (called a cluster vertex )
linked by an edge (called a cluster edge) having a sufficiently large weight
to each terminal of Ti (assume for now that it can be done in such a way
that (ii) holds), then, by the definitions of S and G′, removing the edges in⋃

i:i is a good top cluster S
1
i leaves no path between any two cluster vertices. In

other words,
⋃

i:i is a good top cluster S
1
i is actually a feasible solution to I ′.

7



2
2

2

9 93
4

5

5

6

7

8

1 1

1

S*1
2

S*2
2

= S*1
9

S*2
9

= S*1
3

S*3
2

= S*1
4

S*1
2

Figure 1: A planar MinMCC instance and the associated optimal solution,
whose edges have weight 1 (while all the other edges have large weights).
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Moreover, any edge in
⋃

i:i is a good top cluster S
1
i lies between two con-

nected components associated with two good top clusters. Indeed, on the
one hand, by definition of a good top cluster, such an edge cannot belong to
S∗1i (and hence, from Property (3) in Lemma 1, to S∗i ) for some top cluster
Ti which is not good. On the other hand, from Property (3) in Lemma 1 and
the definition of a top cluster, a connected component associated with a non
top cluster lies inside a closed curve of the form C∗ji for some j ≥ 2, where

i ≥ 2 is such that Ti is a top cluster. From Lemma 2, the set of edges S∗ji
associated with such a closed curve has one and only one vertex in common
with any other S∗hi , and hence, in particular, S∗ji shares no edge with S∗1i .

This implies that in G′ there is no path from any terminal of any good
top cluster to any other terminal, except for the terminals of any other
good top cluster. Therefore, replacing

⋃
i:i is a good top cluster S

1
i in G′ by

any feasible solution to I ′, whose total weight does not exceed the one of⋃
i:i is a good top cluster S

1
i and that contains no cluster edge, yields another

feasible solution to I in G which is at least as good as S. As S is an op-
timal solution to I, and as any optimal solution to I ′ contains no cluster
edge (their common weight being too large), this implies in particular that⋃

i:i is a good top cluster S
1
i is an optimal solution to I ′.

It remains to prove the last part of the lemma: namely, let us prove that
we can add the cluster vertices and edges in such a way that (ii) holds.

To do this, we shall proceed in a way similar to the one described in [2]:
the claim that the cluster vertices can then be assumed to lie on the outer
face will simply come from the fact that, unlike in [2], there is not a cluster
vertex associated with each cluster, but only with each good top one. To
describe our way of achieving this, we shall need some additional definitions.

Clearly, from the definition of a top cluster, all the terminals of such a
cluster, except T1, are consecutive on the outer face (among all the terminals
of top clusters), as otherwise C∗1i would lie inside C∗1j for two distinct top
clusters Ti and Tj with i ≥ 2 and j ≥ 2, which would be a contradiction.
Therefore, if we go through the outer face of the graph G clockwise (which
can be done in a well-defined way, as G is 2-vertex-connected), then, for
each top cluster Ti of S with i ≥ 2, there is a “first” terminal of this cluster
that is encountered when doing so while staying inside C∗1i . In other words,
each such top cluster Ti has a unique terminal (which we shall call the first
terminal of Ti) from which we can encounter every other terminal of Ti by
going through the outer face of the graph G clockwise and without leaving
the interior region of C∗1i . From this first terminal, we can then define a
unique ordering of the other terminals of Ti, which is simply the order in
which they are encountered while going through this outer face clockwise.

We can define the first (and last) terminal of T1 in a similar way, i.e., as
the unique terminal of T1 from which we can encounter every other terminal
of T1 by going through the outer face of the graph G clockwise and without

9



entering the interior region of C∗1i for any good top cluster Ti with i ≥ 2.
Such a first terminal exists, as otherwise it would mean that, among the
terminals in the good top clusters, the terminals in T1 are not consecutive
on the outer face. In other words, it would mean that, for any choice of a
first terminal of T1, there is a good top cluster Ti with i ≥ 2 (resp. another
good top cluster Tj with j ≥ 2 and j 6= i) whose terminals are encountered
while going clockwise (resp. counterclockwise) from the first terminal of T1
to its last one on the outer face. However, S∗1i and S∗1j for such i and j could
not share an edge (as otherwise either the first or the last terminal of T1
would lie inside a closed curve belonging to S, contradicting the definition
of T1), which would contradict the fact that Ti and Tj are good.

Hence, the point of introducing the notion of good top clusters is to
extend the consecutiveness property associated with top clusters, even when
considering the cluster T1. In other words, all the terminals of any good top
cluster are consecutive on the outer face among all the terminals of good
top clusters. The notion of first vertices is illustrated in Figure 1, where the
first vertex of each of the three good top clusters (numbered 1, 2 and 5) in
the optimal solution to the considered instance is indicated as follows: the
number of the corresponding cluster is underlined and written in bold.

Now we can proceed almost as in [2]. For each good top cluster Ti of
S that contains at least two terminals (otherwise, there is nothing to do),
we draw a curve (called a cluster curve) from the first terminal of Ti to its
last one. Thanks to the consecutiveness property associated with good top
clusters, these curves can easily be drawn in such a way that no two of them
intersect, and the curve corresponding to each Ti must be homotopic, with
respect to the boundary of the outer face of G, to the chain µi that goes
clockwise from the first terminal of Ti to its last one, and uses only vertices
lying on the boundary of this outer face. As in [2], being homotopic means
that it can be continuously transformed into µi without being blocked by
the boundary of this outer face while doing so (see also [7]).

Then, we let each cluster vertex lie on the associated cluster curve, and
add the cluster edges, in such a way that they do not intersect and all lie
inside the region bounded by the cluster curve and µi. This allows us to
conclude that, after adding the cluster vertices and edges as above, all the
cluster vertices do lie on the outer face, which ends the proof.

4 Crafting the algorithm

We now focus on using the results from the two previous sections to
come up with an algorithm solving MinMC in time FPT with respect to k.

Let I be an instance of MinMC in a planar graph where all sources and
sinks lie on the outer face, and let S be an optimal multicut for I (S exists,
even if we do not know it yet explicitly).

10



First of all, we can “guess” the clustering associated with S by enumer-
ating all the possible clusterings containing at most k+ 1 clusters, and this
can be done in time FPT with respect to k (see Section 2).

Then, we have to know the structure of the clusters in S, i.e., in par-
ticular, which clusters are the top ones, and which are the good top ones
(see Section 3): we can “guess” this structure by using another enumeration
(which, again, can be done in time FPT with respect to k).

Moreover, recall from the proof of Lemma 3 in Section 3 that, if we
go through the outer face of the input graph G clockwise, then, for each
good top cluster Ti of S with i ≥ 2, there is a first terminal lying inside
C∗1i that is encountered while doing so (a similar notion of a first terminal
holds for T1 as well). As mentioned in this proof, we will need to know this
terminal in order to ensure that, in the planar MinMTC instance that we
will construct, all the terminals will lie on the outer face.

Again, for each good top cluster Ti, we can “guess” such a terminal by
enumerating all the possibilities (i.e., trying the |Ti| terminals of Ti one by
one). Once we know the first terminal of each such cluster, we can construct
a planar MinMTC instance as explained in the proof of Lemma 3.

By solving the above-defined planar MinMTC instance (where all the
terminals lie on the outer face), we obtain from Lemma 3 a set of edges S′

that we can use to replace
⋃

i:i is a good top cluster S
1
i in S. However, the main

drawback of Lemma 3 is that it considers a MinMTC instance defined on
a graph G′ that is obtained from the input graph G, but that we do not
know explicitly (as it would require to already know some part of an optimal
solution). We now show how we can overcome this issue, by considering a
particular optimal solution to the MinMCC instance we wish to solve:

Corollary 1. Assume we are given a MinMC instance I in a planar graph
G where all the sources and sinks lie on the outer face, and consider an op-
timal solution S for I that induces the maximum number of clusters. Then,⋃

i:i is a good top cluster S
1
i is an optimal solution for the MinMTC instance I ′

obtained as follows: (i) the input graph is G, with one additional terminal
for each good top cluster, and (ii) all the terminals lie on the outer face.

Proof. From Lemma 3, we just have to prove that, in this case (i.e., when we
consider an optimal solution S to I inducing the maximum number of con-

nected components), we do not have to know S \
(⋃

i:i is a good top cluster S
1
i

)
explicitly in order to define I ′. In other words, that any optimal solution to

I ′ does not interact with S \
(⋃

i:i is a good top cluster S
1
i

)
, i.e., does not share

any edge with it. If these sets of edges did intersect, then from the proof of
Lemma 3 this would yield another optimal solution for I, that would induce
more connected components than S does, contradicting the choice of S.

11



Since the first step of our algorithm is to enumerate all the possible cluster-
ings containing at most k+ 1 clusters, we will in particular consider the one
associated with such an optimal solution S.

By solving the above-defined planar MinMTC instance with n ver-
tices (where all the terminals lie on the outer face), which can be done
in time O(k3n + k2n log n) thanks to the algorithm proposed in [5], we
obtain from this corollary a set of edges S′ that we can use to replace⋃

i:i is a good top cluster S
1
i in S, and, furthermore, that does not intersect S \(⋃

i:i is a good top cluster S
1
i

)
. Moreover, the graph of this instance is obtained

from G simply by adding cluster vertices and edges, and hence we do not

have to know S \
(⋃

i:i is a good top cluster S
1
i

)
explicitly. After removing S′

from G, we obtain two or more connected components (and hence knowing

S \
(⋃

i:i is a good top cluster S
1
i

)
explicitly or not is irrelevant).

These components, in turn, define smaller MinMCC instances, which
can then be solved recursively by using the same strategy as above (without
the first step, where we guessed the clustering), in a divide-and-conquer
way. Each time an instance is solved, the number of connected components
increases by at least one: as S contains at most k + 1 such components,
there is a total of at most k instances to be solved.

Putting all together, we obtain the following algorithm A1, which makes
a call to another algorithm, that will be detailed after A1:

Algorithm A1

Input: A connected planar graph G with n vertices, and a set of k
source-sink pairs (s1, s

′
1), . . . , (sk, s

′
k) lying on the outer face of G.

Output: An optimal multicut for the input graph.

• For each clustering containing 2k terminals and ≤ k + 1 clusters do:

– Build the associated planar MinMCC instance, where any ter-
minal lies on the outer face of G, and the clusters are T1, T2, . . . ,

– Run Algorithm A2(G, {T1, T2, . . . }), and store its output.

• Output the best feasible solution found.

Observe that the input of Algorithm A1 is a MinMC instance, while the
input of Algorithm A2 will be a MinMCC instance. If a given clustering is
induced by an optimal multicut but does not contain the maximum number
of clusters, then the solution computed by A1 for this cluster may not be
optimal (which simply means that we need to consider another clustering).

Moreover, in Algorithm A1, each call to Algorithm A2 is actually the
first call of a series of recursive calls. In other words, Algorithm A2 is a
recursive algorithm, that can be described as follows:

12



Algorithm A2

Input: A connected planar graphG with n vertices, and a set {T1, T2, . . . }
of clusters of terminals, all lying on the outer face of G.

Output: An optimal multi-cluster cut for the input graph.

• For each possible choice of good top clusters among all the clusters of
the clustering {T1, T2, . . . }, and for each possible choice of first termi-
nals for all these good top clusters, do:

– Construct and solve the associated planar MinMTC instance,
where the terminals, that are the cluster vertices associated with
the good top clusters, all lie on the outer face (see Corollary 1),

– Remove from the input graph the edges of the optimal solu-
tion computed above, obtaining several connected components
G1, G2, . . . , and then store these edges in the current solution,

– For each of these connected components Gi that contains the
terminals of at least two clusters, run Algorithm A2(Gi, T (Gi)),
where T (Gi) is the set of clusters whose terminals belong to Gi,
and then add the associated output to the current solution.

• Output the best feasible solution found.

Thanks to the above discussion, it should be clear that Algorithm A1

is correct, and runs in time O(f(k)n log n), for some function f(·) to be
specified, in graphs with n vertices. This running time is actually obtained
by multiplying the different factors associated with the successive steps:

1. Enumerating all the possible clusterings containing 2k terminals and

at most k + 1 clusters incurs a factor O
(
(k+1)2k

(k+1)!

)
, as noted in [8],

2. Enumerating all the possible good top clusters among the (at most
k + 1) clusters of a given clustering, and then all their possible first
terminals (among O(k)), incurs a factor O(k2k+1) = O(k2k),

3. Solving each planar MinMTC instance with all the terminals lying on
the outer face can be done in time O(k2(kn+ n log n)),

4. Finally, there are at most k such instances to solve.

The overall running time is thus O
(
k42k (k+1)2k

(k+1)! (kn+ n log n)
)

, i.e., it is

nearly linear when k = O(1). Hence, we have proved:

Theorem 1. In planar graphs where all sources and sinks lie on the outer
face, MinMC is FPT with respect to the number k of source-sink pairs.

13



5 Extensions and open problems

In this paper, we have provided an FPT algorithm for MinMC param-
eterized by the number k of source-sink pairs, in the case where the input
graph is planar and all the sources and sinks lie on the outer face. This
algorithm actually runs in O(n log n) time when k = O(1), where n is the
number of vertices of the input graph. In [2], it was proved that the time
for solving this problem can be improved to linear when k = 2, but the
proof cannot be generalized to greater values of k. Therefore, this set of
results leaves as open the following question: does there exist a linear-time
algorithm (i.e., running in time O(n) for any k = O(1)) in this case?

Moreover, our FPT algorithm can easily be extended to a generalization
of MinMC, called partial MinMC (or k-multicut problem [11]), which asks
to select a minimum-weight set of edges whose removal leaves no path from
si to s′i, for at least a given number of source-sink pairs (si, s

′
i). Indeed,

partial MinMC can be reduced in FPT time to MinMC, by “guessing” the
subset of source-sink pairs between which there will remain no path in an
optimal solution (there are O(2k) such possible subsets to enumerate).

Let us now consider MinMCC. On the one hand, it is easy to see that
MinMCC is polynomial-time solvable in general graphs with two clusters
(by reducing it to the minimum cut problem), but Dahlhaus et al. (that call
it the colored multiterminal cut problem) proved in [8] that it is NP-hard
in planar graphs, even with only four clusters (and they claimed that this
remains true with only three clusters). On the other hand, when the input
graph is planar and has all its terminals lying on the outer face, MinMTC
(the special case of MinMCC where clusters have size 1) is polynomial-
time solvable, even when |T | is part of the input [5], and our FPT algorithm
precisely solves MinMCC parameterized by the total number of terminals in
such a graph (or, equivalently, parameterized both by the number of clusters
and by the maximum number of terminals per cluster).

However, when the number of clusters is part of the input, we do not
even know the complexity of MinMCC in such a graph. Observe that this
question remains open even if there are O(1) terminals in each cluster.

When the number of clusters is viewed as a parameter, one may hope that
our approach is able to solve the problem even when there is an arbitrary
number of terminals in each cluster, as we only need to “guess” the first
terminal of each good top cluster. Unfortunately, this is true only if each
cluster induces exactly one connected component in any optimal solution
(see Corollary 1 and the discussion preceding its statement), and hence,
when such a property does not hold, this question remains open as well.
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