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Weighted and locally bounded list-colorings in
split graphs, cographs, and partial k-trees

Cédric Bentz*

Abstract

For a fixed number of colors, we show that, in node-weighted split
graphs, cographs, and graphs of bounded tree-width, one can determine
in polynomial time whether a proper list-coloring of the vertices of a graph
such that the total weight of vertices of each color equals a given value
in each part of a fixed partition of the vertices exists. We also show that
this result is tight in some sense, by providing hardness results for the
cases where any one of the assumptions does not hold. The edge-coloring
variant is also studied, as well as special cases of cographs and split graphs.
Keywords: locally bounded list-colorings, dynamic programming, NP-
completeness, maximum flows, tree-width, split graphs, cographs.

1 Introduction

A proper coloring of a given graph G is an assignment of colors (integers) to its
vertices, such that any two vertices linked by an edge of G take different colors.
For any given color, the set of vertices taking this color is called a color class.
In [2], a coloring problem with non global constraints on the sizes of the color
classes was studied. More precisely, the following problem was considered:

LocALLYBOUNDEDCOLORING

Instance: A graph G = (V, E), a partition V1, ...,V of the vertex set V, and a
list of pk integral bounds (n11, ..., ik, N1, ..., N2k, - .., Np1, . . ., Np) Such that
St mij = |Vi] for each i € {1,...,p}.

Question: Decide whether there exists a proper k-coloring of G (i.e., a proper
coloring of G using k colors) that is such that, for each ¢ € {1,...,p} and for
each j € {1,...,k}, the number of vertices having color j in V; is n;;.

In this previous paper, it was shown that this problem can be solved in
O(n?%=1logn) time when G is a tree, where n = |V|. A link with a scheduling
problem consisting in processing a set of unit tasks on a set of processors with
various unavailability constraints was also presented.
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Moreover, it was shown in [I0] that the following list-coloring problem (i.e.,
where each vertex must take a color from a list of possible colors) with global
constraints on the size of the color classes is tractable in several classes of graphs:

BoUNDEDLISTCOLORING

Instance: A graph G = (V, E), a list of k integral bounds (nq,...,ng), and, for
each vertex v of G, a list of possible colors L(v) C {1,...,k}.

Question: Decide whether there exists a proper k-coloring of G such that, for
each i € {1,...,k}, the number of vertices having color i is at most equal to the
color bound n;, and the color of v belongs to L(v) for each vertex v.

More precisely, the authors of [I0] described efficient algorithms to solve this
problem in graphs of bounded tree-width and in cographs (that can be defined
as graphs with no induced path on four vertices [6]). The notion of tree-width
will be recalled formally when needed: it can be viewed as a measure of the
tree-likeness of a graph, and equals 1 in forests (and 0 in graphs with no edges).
Graphs of tree-width at most ¢ for some ¢ > 0 are also called partial t-trees [6].

In this paper, we generalize both results, and show how to solve efficiently
the list-coloring problem with non global and weighted constraints on the sizes
of the color classes in graphs of bounded tree-width (and also in cographs).
More precisely, the problem we shall study can be formally defined as follows:

WEIGHTEDLOCALLYBOUNDEDLISTCOLORING

Instance: A graph G = (V, E), a weight function w : V' — N*, a partition
WVi,...,V, of the vertex set V, alist of pk integral bounds (Wi, ..., Wik, Wa1, ...,
Wk, -, Wpt, .., Wyi) with S35 Wi = 2y w(v) for each i € {1,...,p},
and, for each vertex v of G, a list of possible colors L(v) C {1,...,k}.
Question: Decide whether there exists a proper k-coloring of G such that, for
each i € {1,...,p} and for each j € {1,...,k}, the total weight of vertices hav-
ing color j in V; is W;;, and the color of v belongs to L(v) for each vertex v.

In the scheduling application mentioned above, the weight of each vertex
would correspond to the amount of resource needed to process the associated
task. Moreover, apart from list-coloring problems, other constrained coloring
problems related to ours have been studied in the literature, see for instance
[1L 3L 4 51 [7), 8, 11, [14]. We will not review all the associated known results, as
we will not need them all, and will only recall the useful ones when needed.

The equitable coloring problem consists in finding a coloring where the sizes
of any two color classes differ by at most one, while the bounded coloring problem
consists in finding a coloring where the size of any color class does not exceed
a given bound (that is common to all color classes). Moreover, without the
requirement of being a list-coloring, the problem studied in [I0] is defined as
the capacitated coloring problem in [5]. Hence, the bounded coloring problem
is a special case of the capacitated coloring problem, where all the color bounds
(i.e., all the bounds on the sizes of the color classes) are equal.



It was observed in [5] that the equitable coloring problem is in fact a special
case of the capacitated coloring problem (and one in which the color bounds
are actually reached), by setting n; = [%w for any ¢ <n mod k, and n; = L%J
for any other i, where n is the number of vertices. It was also observed in [3]
that any instance of the bounded coloring problem is equivalent to an instance
of the equitable coloring problem with the same number of colors, by adding
sufficiently many isolated vertices (which destroys neither the property of having
bounded tree-width nor the one of being a cograph or a split graph, i.e., a graph
whose vertex set can be partitioned into a clique and an independent set [6]).

In fact, all of the above problems (including the k-coloring problem, which
is a list-coloring problem where L(v) = {1,...,k} for each vertex v) are special
cases of BOUNDEDLISTCOLORING, and this is true for WEIGHTEDLOCALLY-
BOUNDEDLISTCOLORING as well, in most of the graphs that we shall consider:
take any instance of BOUNDEDLISTCOLORING, keep the same color bounds, set
p and the weight of any vertex to 1, and add isolated vertices of weight 1 (that

can take any color), so that the total number of vertices reaches Zle n;.
Numerous applications of the list-coloring problem and of the capacitated
coloring problem were described respectively in [14] and in [4, 5]. Many papers
also consider a precolored variant of the equitable or capacitated coloring prob-
lem, where some of the vertices are already colored [3]. Observe that this can
also be achieved, when considering an instance of the list-coloring problem, by
defining the list of possible colors for each vertex that is already colored as a
singleton, corresponding to the given color. Similarly, one can transform a list-
coloring instance into a precolored one, by adding pendant vertices adjacent to
each vertex v (these pendant vertices being colored by the colors not in L(v)).
Such an operation does not destroy the property of having bounded tree-width,
but can destroy the one of being a cograph (or a split graph, depending on
whether v lies in the clique or in the independent set). Finally, when consid-
ering instances of WEIGHTEDLOCALLYBOUNDEDLISTCOLORING where p is not
fixed and L(v) = {1,...,k} for each vertex v, then precoloring some vertices
can be achieved by putting each of these vertices in one set V; of the partition
Wi,...,V, (Vi contains only this vertex), and defining the W;;’s appropriately.
The present paper is organized as follows. We begin by providing, in Sec-
tion[2 tight hardness results for WEIGHTEDLOCALLY BOUNDEDLISTCOLORING.
Then, we describe in Section [3la dynamic programming algorithm for this prob-
lem, that runs in polynomial time whenever we are not in the cases covered
by Section [ (i.e., when p, k and the tree-width of the graph are fixed, and
the vertex weights are polynomially bounded). In Section [, we prove that the
problem is tractable in cographs under similar assumptions, and that, under
weaker assumptions, it can be solved in polynomial time in several subclasses
of cographs. Section [{] is devoted to split graphs, and we show that, in such
graphs, the problem can be solved in (pseudo)polynomial time even when p is
not fixed (provided that k is), and provide additional tractable special cases.
Finally, in the last section of the paper, we extend to edge colorings all our
results concerning (vertex) colorings in the graphs studied in Sections Bl to



2 NP-completeness proofs

In this section, we prove that WEIGHTEDLOCALLYBOUNDEDLISTCOLORING,
which is clearly in NP, is NP-complete, even in very restricted special cases.
Before detailing these special cases, we note that, when k& = 3, WEIGHT-
EDLOCALLYBOUNDEDLISTCOLORING is NP-complete in general graphs (i.e.,
when the tree-width is unbounded), even when p = 1 and w(v) = 1 for each
vertex v, as deciding whether a graph can be colored using three colors is. Also
note that this latter result does not hold when k£ = 2: in this case, the coloring
problem is trivial, as the input graph is bipartite (otherwise, the answer is no).
Actually, WEIGHTEDLOCALLYBOUNDEDLISTCOLORING itself can be solved
in polynomial time when k& = 2 and p = O(1), provided that the vertex weights
are polynomially bounded (in the next subsection, we deal with the case where
they are not). Indeed, if k = 2, then any connected component of the graph is
bipartite (otherwise, the answer is no), and hence admits two possible colorings.
For each one, one can check whether such a coloring is a valid list-coloring in
the associated connected component. This implies that the whole problem can
be solved by a dynamic programming algorithm similar to the one given in [10]
Theorem 2]: we consider the connected components one after the other, keeping
track for each one of them of all the possible weights of vertices of color ¢ in
the set V},, for each ¢ and h, and then combining these weights whenever a new
component is considered. The total amount of information that we need to keep
track of is thus O((maxp, . Whe)?"), which is polynomial under our assumptions.

2.1 When vertex weights are arbitrary

We first give a short proof that WEIGHTEDLOCALLYBOUNDEDLISTCOLORING
is NP-complete in general, even when k& = 2 (there are two colors) and p = 1
(the vertex partition contains only one set). To do this, we consider the follow-
ing well-known weakly NP-complete problem [9]:

PARTITION
Instance: n + 1 positive integers (a1, ..., a,, B) such that >, a; = 2B.
Question: Decide whether there exists I’ C {1,...,n} such that )., a; = B.

Given an instance (a1, ...,a,, B) of PARTITION, we define the following in-
stance I of WEIGHTEDLOCALLYBOUNDEDLISTCOLORING: the graph G consists
of n isolated vertices v1,...,v,. We define p =1, k =2 and Wy; = Wy, = B.
We also define, for each i € {1,...,n}, L(v;) = {1,2} (i.e., any vertex can take
any color) and w(v;) = a;. Then, (ai,...,a,, B) has a solution if and only if
I admits a solution, i.e., a 2-coloring where the total weight of the vertices of
each color is B: a vertex v; will take color 1 if and only if ¢ € I’. This implies:

Theorem 1. WEIGHTEDLOCALLY BOUNDEDLISTCOLORING is NP-complete in
the weak sense in graphs consisting of isolated vertices, even if k = 2, p = 1,
and each verter can take any color.



Note that this instance can be made connected by setting k = 3 and adding,
for each ¢ € {1,...,n — 1}, two edges (v;,u;) and (u;, vi+1), where the u;’s are
new vertices of color 3 (e.g., L(u;) = {3} for each i € {1,...,n—1}). The graph
G we obtain is then a tree (in fact, a chain), and so has tree-width 1.

Also note that, if K = 2 and G is connected, then solving WEIGHTEDLO-
CALLYBOUNDEDLISTCOLORING is a trivial task, since a connected bipartite
graph has only two proper (vertex) colorings using two colors.

In [3], Bodlaender and Fomin managed to show that the equitable coloring
problem can be solved in polynomial time in graphs of bounded tree-width (i.e.,
even if the number of colors is not fixed). In the next subsections, we rule
out this possibility by proving that, even if all vertex weights are polynomially
bounded, WEIGHTEDLOCALLYBOUNDEDLISTCOLORING remains NP-complete
in graphs of bounded tree-width, if either & or p is not fixed.

2.2 When the number of colors is not fixed

First, we look at the case where the number £ of colors is not fixed. We consider
the following well-known strongly NP-complete problem [9]:

3—PARTITION

Instance: A set of 3n positive integers A = (aq, ..., as,), and an integer B such
that S°" a; = nB and, for each i € {1,...,3n}, B/4 < a; < B/2.

Question: Decide whether A can be partitioned into n disjoint sets of three
elements Aq,..., A, such that, for each j € {1,...,n}, EaieAj a; = B.

Since this problem is strongly NP-complete, we can assume w.l.o.g. that the
a;'s are polynomially bounded in n. We construct an instance of WEIGHTEDLO-
CALLYBOUNDEDLISTCOLORING in a graph GG consisting of 3n isolated vertices
v;, by defining p = 1, k = n, Wi, = B for each ¢ € {1,...,n}, and, for each
i€ {l,....3n}, w(v;) = a; and L(v;) = {1,...,k}. It is easy to see that the
equivalence between the solutions of the two instances is given by: for each
he{l1,...,n}, a vertex v; will take color h in G if and only if a; € A;,. Hence:

Theorem 2. WEIGHTEDLOCALLY BOUNDEDLISTCOLORING is NP-complete in
the strong sense in graphs consisting of isolated vertices, even if p = 1, all the
verter weights are polynomially bounded, and each vertex can take any color.

As in the case of Theorem [I we can make this instance connected (for
instance, obtaining a chain, or a star) by defining £k = n 4+ 1 and adding new
vertices (and associated edges) that can only take color n 4+ 1. Note, however,
that in this reduction we need non uniform vertex weights. Actually, this is
unavoidable, from the following fact: the problem becomes tractable in graphs
with no edges (and hence also in stars, by a simple reduction) when w(v) = 1
for each v € V. For the sake of completeness, we give a proof of this fact.

Proposition 1. If all vertex weights are 1, WEIGHTEDLOCALLYBOUNDEDLIST-
COLORING is polynomial-time solvable in graphs consisting of isolated vertices.



Proof. Given an instance in such a graph G, we can construct a bipartite graph
H as follows: there is a vertex v; in H for each vertex v; in G, and, for each
h e {1,...,p} and ¢ € {1,...,k}, there are Wj, vertices u], . in H. There is

an edge between v; and “?1 . in H if and only if v; € V), and ¢ € L(v;): since

Ef.:l Whe = 3 pvey, W) = [Vi| for each h € {1,...,p}, this implies that the
number of vertices is the same in each side of the bipartition of H.

Then, there exists a feasible coloring for the initial WEIGHTEDLOCALLY-
BOUNDEDLISTCOLORING instance in G if and only if H admits a perfect match-
ing. (H being bipartite, such a perfect matching can be computed as a maximum
flow.) Indeed, we define the following equivalence: vertex v; € V}, has color ¢ if
and only if the edge viui)c belongs to this perfect matching, for some j.

On the one hand, each vertex v; will be incident to one edge of the matching,
and hence v; will take one color (by construction, this is a color in L(v;)); on
the other hand, each vertex ufw will be incident to one edge of the matching,
and hence in each V}, there will be exactly W, vertices with color c. O

We can nevertheless prove the strong NP-completeness of WEIGHTEDLO-
CALLYBOUNDEDLISTCOLORING in graphs of bounded tree-width when w(v) = 1
foreach v € V|, p = 1 and k is arbitrary, by using a more complex reduction from
3—PARTITION. Actually, such a reduction was already given in [3, Theorem 8]
for the precolored variant of the equitable coloring problem. In this reduction,
each instance is a set of trees of height 3 (together with additional isolated ver-
tices). The leaves are in fact precolored vertices, which are used to restrain the
set of possible colors for other vertices. Hence, if we consider list-colorings, we
can ignore (i.e., remove) these leaves, and simply define suitable lists of possible
colors for the other vertices. This yields instances consisting of trees of height
at most 2, and leaves as open the case where each connected component is a
tree of height at most 1 (which, unlike trees of height 2, are also cographs).

We now describe an alternative reduction, that needs more colors but only
makes use of stars (i.e., trees of height 1), and that will prove useful in Sections
BltoE Assume we are given an instance I = (aq,...,as,, B) of 3—PARTITION
with n > 2. We construct an instance I’ of WEIGHTEDLOCALLYBOUNDEDLIST-
COLORING as follows: we define p = 1, k = 3n? + 4n, w(v) = 1 for each vertex
v, and the graph, that contains 3n?(nB+1)+3n vertices, consists of 3n? vertex-
disjoint stars and 3n isolated vertices uy, . .., us,. We denote each star by S/, for
each i € {1,...,3n} and each j € {1,...,n}, and its central vertex by vf For
each i € {1,...,3n} and each j € {1,...,n}, Uf can take any of the n+ 1 colors
in {n+i,ni+3n+1,ni+3n+2,...,ni+4n}, and Sf has 3na; leaves, which can
only take colors j and n + i. Moreover, for each i € {1,...,3n}, vertex u; can
take any of the n colors in {ni+3n+1,...,ni+4n}. We also define W1; = 3nB
for each j € {1,...,n}, Wi(nqs) = 3nai(n — 1)+ 1 for each i € {1,...,3n}, and
Wi(nitsnsn) = 1 for each i € {1,...,3n} and each h € {1,...,n}.

Then, the following holds:

Lemma 1. I has a solution if and only if I' has a solution.



Proof. We shall prove that the following equivalence holds: a; € A; if and only

if v{ takes color n + i, for each ¢ € {1,...,3n} and each j € {1,...,n}.
Assume that we are given a solution to the 3—PARTITION instance I. For

each i € {1,...,3n}, if a; € A; for some j, then v] takes color n + 4, and the

3na; leaves in SJ take color J, while, for each j' # j, v] " takes color ni+3n+ 7',

and all the leaves in Sf take color n + i. Moreover, for each i € {1,...,3n}, u;
takes color ni+3n+j. This implies, in I’, that there are 3na;(n—1)+1 vertices
of color n+i for each i € {1,...,3n}, and there are 3na;, +3na;, +3na;, = 3nB
(assuming A; = {a;,, ai,, ai, }) vertices of color j for each j € {1,...,n}.
Conversely, assume that we are given a solution to the WEIGHTEDLOCALLY-
BOUNDEDLISTCOLORING instance I, and let a; € A;j if v} takes color n + i
for each ¢ € {1,...,3n} and each j € {1,...,n}. Observe that, for each
ie{l,...,3n}, exactly one of the v]’s takes color n + i (from the fact that
Wl(ni+3n+h) =1 for each h, and from the possible colors that can be taken by
u; and the v{’s). This means that the leaves of such a Sf must take color 5. For
each i € {1,...,3n}, the leaves of all the other Sg’s must take color n 4+ ¢, since
Wi(nti) = 3nai(n — 1) + 1. Hence, for each j € {1,...,n}, there are exactly
three ¢’s in {1,...,3n} such that Uf has color n + i: if there are at most two
such ¢, then a; < B/2 for each ¢ implies that at most 3n(B — 1) vertices have
color j, a contradiction; if there are at least four such vertices, then a; > B/4
for each 7 implies that at least 3n(B + 1) vertices have color j, a contradiction.
The sum of these three a;’s is then W1, /3n = B, which concludes the proof. O

Hence, we have proved:

Theorem 3. WEIGHTEDLOCALLYBOUNDEDLISTCOLORING is NP-complete in
the strong sense in star forests, even if p=1 and w(v) =1 for each v € V.

Corollary 1. WEIGHTEDLOCALLYBOUNDEDLISTCOLORING is strongly INP-
complete in cographs of tree-width 1, even if p=1 and w(v) =1 Vv € V.

Again, we can make the instance I’ connected by adding a new color, as well
as one or more vertices that can only take this new color. After doing this, we
can obtain a tree of height 2 (or a caterpillar), while recall that, from a direct
consequence of Proposition [I] WEIGHTEDLOCALLYBOUNDEDLISTCOLORING is
tractable in stars (i.e., in trees of height 1) when w(v) = 1 for each v € V.

Moreover, one of the features of the above reduction is that all the u;’s and
v ’s must take different colors, which will be useful in Section [ll However, one
can use a simpler reduction, in which |L(v)| = 2 for each vertex v. Too see
this, remove all the u;’s, and set k = 4n and L(v) = {j,n + i} for each vertex
v in each S]. The color bounds are then W;(,1; = 3na;(n — 1) + 1 for each
ie{l,...,3n} and Wy; = 3nB + 3(n — 1) for each j € {1,...,n}. As in the
proof of Theorem [B] and for similar reasons, we have a; € A; if and only if vf
takes color n + 4 for each ¢ € {1,...,3n} and each j € {1,...,n}.

Note that the above reductions leave as open the case of chains (which are
not cographs, except when they are also stars) where the vertex weights are 1, p



is fixed and k is not. The reduction given in [7, Theorem 3] closes this gap, and
shows that the problem is strongly NP-complete in this case, even when p =1
and |L(v)| = 2 for each v € V. However, this reduction is rather complicated, in
particular since all the chains do not play the same role. We now give a different
kind of reduction to prove this result, in which we have p = 1 and |L(v)| = 2 for
each v € V, as well as an additional restriction on the lists of possible colors:

Theorem 4. WEIGHTEDLOCALLY BOUNDEDLISTCOLORING is NP-complete in
the strong sense in linear forests, even if p = 1, w(v) = 1 and |L(v)| = 2 for
each v € V', and all the vertices of each chain share one common possible color.

Proof. Given a 3—PARTITION instance, instead of defining 3n? stars as in The-
orem [B] we define 3n? disjoint chains !, for each i € {1,...,3n} and each
j € {l,....,n}. We also define p = 1, k = 7n + 3n?, and w(v) = 1 for each
veV. Foreachi € {1,...,3n} and each j € {1,...,n}, ] has 2a; + 2 vertices,
and (i) the first and the last vertices in u? can only take colors (i — 1)n+j+7n
and n+1, (i7) the vertices with an odd index different from 1 in uz can only take
colors j and n + i, (iii) the vertices with an even index different from 2a; + 2
in p can only take colors n + ¢ and 4n + i. Hence, for each vertex v in ), we
have n +i € L(v). To end the reduction, we define Wy (,44) = n(a; + 1) and
Wiants = (n — 1)a; for each i € {1,...,3n}, Wirpyjt@—1)n) = 1 for each
ie{l,...,3n} and each j € {1,...,n}, and Wy, = B for each j € {1,...,n}.

Note that, for each ¢ € {1,...,3n} and each j € {1,...,n}, any feasible
coloring has exactly one vertex (either the first one or the last one) in ! of
color Tn + j + (¢ — 1)n, while there can be at most a; + 1 vertices of color n + ¢
in this chain. Since each W;(,4,) is equal to n(a; 4 1), this implies that in any
feasible coloring there are exactly a; + 1 vertices of color n + 4 in ,ug , for each
i€ {1,...,3n} and each j € {1,...,n}: the vertices of color n 4 i in u/ are
either all the vertices with an odd index, or all the vertices with an even index.
Hence, in each chain, the a; remaining vertices either all have color j, or all have
color 4n + 4. Moreover, since each W44 is equal to (n — 1)a;, this implies
that in any feasible coloring there are exactly n —1 integers j in {1,...,n} such
that there are a; vertices of color 4n + 4 in !, for each i € {1,...,3n}.

We can thus define the following equivalence between the two instances: for
each i and each j, a; € A; if and only if there are a; vertices of color j in ]
(for each j, there will be exactly three such i’s, for reasons similar to the ones
mentioned in the proof of Theorem [3B]), which concludes the proof. o

We conclude by pointing out that we can turn the previous instance into a
chain by adding a new color and new vertices that can only take this new color.

2.3 When p is not fixed

Now, we prove the NP-completeness of the case where k is fixed but p is not,
by considering the following well-known strongly NP-complete problem [9]:



MONOTONEONEINTHREESAT

Instance: A set X of v boolean variables x1,...,x,, and a set of u clauses, each
one containing exactly three (non negated) boolean variables from X.
Question: Decide whether there exists a truth assignment for the variables in
X such that in every clause there is exactly one variable equal to true.

Theorem 5. WEIGHTEDLOCALLYBOUNDEDLISTCOLORING is NP-complete in
the strong sense in star forests, even if k = 2, and each vertex has weight 1 and
can take any color.

Proof. Given an instance of MONOTONEONEINTHREESAT, we construct an
instance of WEIGHTEDLOCALLYBOUNDEDLISTCOLORING as follows: the graph
G consists of v vertex-disjoint stars, one star per variable x;. We denote by v;
the central vertex of the ith star, and by u?, ... ,ufcc(l) its leaves, where occ(i)
is the number of occurrences of x; in the set of clauses. Then, we define k = 2,
p = v+ p, and, for each vertex v, w(v) = 1 and L(v) = {1,2}. The partition
of the vertices of G and their target weights are given by: Vj, = {vs,u?} and
Whi1 = Wpa = 1 for each h € {1,...,v}, and V}, = {uf,u?—,uz}, Wh1 =1 and
Whe =2 for each h € {v +1,...,v + u}, where we consider that the (h — v)th
clause consists of the ath occurrence of the variable z;, of the bth occurrence of
the variable z;, and of the cth occurrence of the variable xy,.

It is easy to check that we have the following equivalence between the initial
MONOTONEONEINTHREESAT instance and this WEIGHTEDLOCALLYBOUND-
EDLISTCOLORING instance: for each i € {1,...,v}, variable x; is equal to true
if and only if v; has color 2, which concludes the proof. o

Corollary 2. WEIGHTEDLOCALLYBOUNDEDLISTCOLORING is strongly INP-
complete in cographs of tree-width 1, even if k = 2, and each vertex has weight
1 and can take any color.

As in the case of Theorem [Bl we can make the previous instance connected
(obtaining a tree of height 2, or a caterpillar) by defining k¥ = 3 and adding new
vertices (and associated edges, to link the stars together) that can only take
color 3 (for instance, we can define p = v+p+1 and Wy = |V}, and include all
these new vertices of weight 1 in the new V},, keeping the other V3,’s unchanged).

Again, this reduction, that will prove useful both in Sections[Band [ (thanks
to Corollary[2), leaves as open the case of chains where w(v) = 1 for eachv € V,
k is fixed and p is not. The next theorem closes this gap.

Theorem 6. WEIGHTEDLOCALLY BOUNDEDLISTCOLORING is NP-complete in
the strong semse in linear forests, even if k = 2, and each vertexr has weight 1
and can take any color.

Proof. Given a MONOTONEONEINTHREESAT instance, we define a WEIGHT-
EDLOCALLYBOUNDEDLISTCOLORING instance as follows: the graph G consists

of v vertex-disjoint chains (one per variable z;) and of isolated vertices. The ver-

tices of the ith chain are v}, u}, ... v 4@ (

s Y )

in this order), where occ(4) is



defined as in the proof of Theorem[Bl For each chain, we also add occ(i) isolated
vertices v'%, e v'fcc(i). Then, we define k = 2, p = p+ >, occ(i), and, for
each vertex v, w(v) =1 and L(v) = {1,2}. It remains to define the partition of
the vertices of G and their target weights. We have V}, = {uf, ug’-, ull, Whr =1
and Wy = 2 for each h € {1,..., u}, where we consider that the hth clause
consists of the ath occurrence of the variable x;, of the bth occurrence of the

variable z;, and of the cth occurrence of the variable . For each i € {1,...,v}
and each [ € {1,...,0cc(i)}, we define V}, = {vé,v’li} and Wy = Wpa = 1,
where h =14 p+ Z;;ll oce(j).

As in the proof of Theorem[5] for each i € {1,...,v}, variable z; is equal to
true if and only if v has color 2. Indeed, for each 4, all the v!’s must have the
same color, and all the ug ’s must have the same color (the v’z ’s are only useful
to ensure that v} can freely take color 1 or 2). Theorem [@ follows. O

As in the case of Theorem [l we can make the previous instance connected
(obtaining a chain) by defining £ = 3 and adding new vertices (and associated
edges) that can only take color 3. Also note that, in the reductions used to
prove Theorems [B] and 6] we only need colorings (not list-colorings), although
we did need to make use of list-colorings in the proofs of Theorems Bl and [l

3 An algorithm for graphs of bounded tree-width

This section deals with WEIGHTEDLOCALLY BOUNDEDLISTCOLORING in partial
k-trees. Given a graph G = (V, E), a tree decomposition of G is a pair ({X;|i €
I},T) where X; C V| Vi € I, is a bag of vertices of G, T = (I, F) is a tree, and:

(1) Uiel Xi=V,
(2) For every edge uv € E, there is an ¢ € I such that u,v € X,
(3) For all 4,4,1 € I, if j lies in the path between ¢ and [, then X; N X; C Xj.

The width of a given tree decomposition of a graph G is equal to max;ey | X;|—
1. The tree-width of a graph G, denoted by tw(G), is the minimum width of
a tree decomposition of G, taken over all tree decompositions of G. Note that
trees (and hence chains and stars) have tree-width 1. Without loss of generality,
we can also assume that the tree decomposition is nice [15], i.e.:

e T is rooted at some node r,
e T is binary and has O(]V]) nodes,
e If a node ¢ has two children j and k then X; = X; = X, (join node)

If a node ¢ has one child j, then either

(a) |Xi| =1X;]—1and X; C X; (forget node)
(b) |Xi|=1X;]+1and X; C X, (introduce node)

10



Given two vertices i,j of T', we will use the notation j > i to denote the fact
that j is either ¢ or a descendant of i with respect to r. Given a node i € I, let
Y; = EN(X; x X;), i.e., Y; is the subset of E induced by the vertices in X;.
Moreover, let T; = Ujh» X, and let G[T;] be the subgraph of G induced by T;.

In order to design a standard dynamic programming algorithm that solves
WEIGHTEDLOCALLYBOUNDEDLISTCOLORING, we use the following function f:

o f(i,Ci, Wity Wiky .-, Wpl,-..,wpk) = true if there exists a list-coloring
of G[T;] where each vertex v € X; has color ¢;(u) and where the total
weight of vertices of G[T;] having color ¢ in V}, is wp., and false otherwise.

To describe our algorithm, we now simply need to write down the induction
equations defining the values of f(-), for each type of nodes of T'. Then, these
values will be computed in a bottom-up fashion, starting from the leaves of T.

Note that, by the definition of tree decompositions, any two vertices linked
by an edge in G must both belong to at least one common bag of the tree
decomposition (Condition (2)). This implies that a (list-)coloring that is proper
in each bag is also proper in the whole graph G, provided that each vertex has
the same color in each bag it belongs to. Moreover, Condition (3) ensures that
the subgraph of T" induced by the bags any given vertex belongs to is connected,
and hence in all these bags this vertex will have the same color if we do not
change its color whenever we move (in T') from one bag to an adjacent one.

If i is a forget node. Let j denote its child such that X; = X; U {v}:

f(ivc’ivwlla"'awpk): \/ f(j?cjvwlla"'awpk)
cji(ej(u)=ci(u) YueX;)A(c;j(v)EL(v))

If ¢ is an introduce node. Let j denote its child such that X; = X; \ {v},
and assume that v € Vj,:

f(iaciawllv" '7wpk) = g/\f(jvcjvwlla' "7whci(v) —U)(’U),.. . ,wpk)

where & = (¢;(v) € L(v)) Alci(v) # ci(u) Yu : uv € ¥;) A(cj(u) = ¢(u) Vu €
X5) AN Whe; (v) = w(v)).

If i is a join node. Let j and [ denote its two children, and let w}, be the

total weight of vertices v € X; NV}, such that ¢;(v) = ¢, for each h and c.

f(iuciuwlla"'uwpk) = \/ (f(jaciuwll—"wil_qlh"'7wpk+w;k_qpk)/\f(luci7q117"'7ka))
(q11,---,0pk ) EQ*

where Q° = {(q11, . .. L Qpk) - w}w < ghe < wpe Vh Vel

11



If i is a leaf node. In this case, we just have to check that the coloring
function ¢; provides a valid locally bounded list-coloring of G[X;].

f@, ci,wit, ..., wpr) =& /\(w({v € X; NV :ci(v) =c}) = whe Vh Vo)
where € = (¢;(v) € L(v) Yv € X;) A(ci(v) # ci(u) Vu,v € X; : uwv € Y;).

Root value. The answer true or false for the initial instance is obtained at
the root r by computing the following value:

\/ f(T7CT7W117"'7ka)
cricr(u)EL(u) VueX,

Lemma 2. The values of f(i,¢i,wit, ..., Wiks ..., Wpl,- - .,Wpk) computed by the
above algorithm are correct.

Proof. In order to show that a vertex list-coloring is proper in Tj;, first notice
that, from our preliminary remark, it suffices to show that (¢) it is a proper list-
coloring in X; and (i) the color of any vertex remains the same when moving
from one bag of T; to an adjacent one. We now show the correctness of the
above equations by considering each possible node type for 1.

Assume i is a forget node. Then, since T; = T}, f(i,¢,w11,-..,wWpk) IS
true if and only if f(j,¢;,wi1,...,wpk) is true for some coloring c;, such that
¢j(u) = ¢;i(u) for each u € X; (each vertex must keep its color when moving
from X, to X;) and vertex v € X; takes some color in L(v).

Assume 7 is an introduce node. Then, f(i,¢;, w11, ... ,wpk) is true if and only
if f(j,¢jywits e s Whey(v) — W), ..., wpr) is true (v € Vj, has weight w(v) and
color ¢;(v), so the total weight of vertices of color ¢;(v) in V4 is wpe, () —w(v) > 0
in T}), each vertex keeps its color when moving from X; to X;, and the color of v
defines a valid list-coloring in the subgraph of G induced by X; (i.e., ¢;(v) € L(v)
and ¢;(v) # ¢;(u) for each u such that uwv € Y;).

Assume i is a join node. Then, f(i,¢;,w11,...,wpk) is true if and only if
both f(4, ¢, ¢4q,-- -, q;k) and f(l,¢;, qi1, ..., qpr) are true for some qi1,. .., ¢k
and i1, .-, q]’ok such that gne+q},, = wpe+w} , for each h and ¢ (with obviously
wh. < gne < wpe and wi, < q},. < wpe for each h and c), since the weights of
the vertices in X; are counted twice, i.e., both in T; and in 7; (and any other
vertex weight in T; U T} is counted only once).

Assume i is a leaf node. Then, f(7,c;,wi1, ..., wpk) is true if and only if the
coloring function ¢; provides a valid locally bounded list-coloring of G[X,].

Finally, the root value is obtained by requiring that ¢, is a list-coloring in
the subgraph of G induced by X,., which concludes the proof. o

Running time. Let Wiyax = maxy, c Wi (with Winax < nmax,ey w(v)). The
running time for a given node of T', that depends on its type, is given by:

12



node type | running time

forget O(tw(G) + k)
introduce | O(tw(G) + k)

join O(WEy)

leaf O(tw(G) (tw(G) + pk))

There are O(n) nodes in T, O(k**(©)*1) possible colorings of any given bag,
and O(WPE ) possible pk-tuples w11, . . . , Wpk, o when running the algorithm we
have O(nWEE k! (@+1) values f(-) to compute. Since computing the optimal
value only takes O(k“(%)*1) time, the overall running time is O(nWpPk gt (G)+1

(WeE + tw(G) (tw(G) + pk))). Together with Lemma 2] this implies:

Theorem 7. In graphs of bounded tree-width, WEIGHTEDLOCALLYBOUND-
EDLISTCOLORING can be solved:

e in pseudopolynomial time when p and k are fized,

e in polynomial time when (i) p and k are fized, and (ii) all vertex weights
are polynomially bounded.

Observe that these results are best possible, in the sense that, from Theorems
[Mto B dropping any of the assumptions (on p, k, and the vertex weights) leads
to NP-completeness. They also generalize the results in [2] [10] [14].

We close this section by mentioning that this approach can be adapted to
solve an optimization version of WEIGHTEDLOCALLYBOUNDEDLISTCOLORING.

More precisely, one can associate a profit function 7 : V x {1,...,k} = Z to
the vertices of G; the profit of a vertex then depends on its color. By slightly
modifying the above dynamic programming algorithm, one can compute a valid
weighted and locally bounded list-coloring of maximum (or minimum) profit (if
any). In this case, the value of f(-) is no longer equal to true or false, i.e.:

o f(i,¢i,wit,. .. ,Wiky...,Wpl,-..,wpk) = the maximum total profit of a list-
coloring of G[T;] where each vertex u € X; has color ¢;(u) and where the
total weight of vertices of G[T;] having color ¢ in V}, is wp, (if any).

In order to compute the value of this “new” function f(-), we must make some
changes in the equations. We provide them without proofs, as the arguments are
quite similar to the ones used in the proof of Lemma[2] (note that, by convention,
infeasible solutions will have a value of —co, as we maximize f()):

e (in forget nodes and root value) “\/” becomes “max”.

e (in introduce nodes) f(i,¢;, wi1,. .., Wik, ..., wWpk) is equal to —oo if &£ is
false, and to f(j, cj,wit, ..., Whe,(v)—w(V), ... ,wpr)+7(v, c;(v)) otherwise.

e (in join nodes) “\/” becomes “max”, “A” becomes “+”, and we add the
value “— > _+ m(v,c;(v))” at the end of the line.

e (in leaf nodes) f(i,ci,wi1,. .., Wik, ..., wpk) is equal to 3 7(v,ci(v))
if both £ and the condition “w({v € X; NV}, : ¢;(v) = ¢}) = wpe Yh V7
are true, and to —oco otherwise.
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4 Locally bounded list-colorings in cographs

In this section, we study the tractability of WEIGHTEDLOCALLYBOUNDEDLIST-
COLORING in cographs. Cographs, as defined in Section[I] can be characterized
in several ways. For instance, a graph G = (V, E) is a cograph if and only if it
can be associated with a cotree T: the leaves of T" are the vertices of G, and the
internal nodes of T' are either union nodes or join nodes. A subtree of T having
a union node as a root corresponds to the disjoint union of the subgraphs of
G associated with the children of this node, and a subtree of T' having a join
node as a root corresponds to the complete union of the subgraphs of G associ-
ated with the children of this node (i.e., we add an edge between every pair of
vertices with one vertex in each subgraph). Moreover, this cotree can easily be
transformed in linear time into a binary cotree with O(|V]) nodes [6].

First note that WEIGHTEDLOCALLYBOUNDEDLISTCOLORING is still NP-
complete in cographs, even when k is arbitrary, p = 1, and each vertex has
weight 1. Indeed, on the one hand, it was proved in [I4] that the list-coloring
problem is NP-complete in complete bipartite graphs (which are cographs),
when k is not fixed. On the other hand, the bounded coloring problem was
proved to be NP-complete in cographs in [4], by a reduction from bin packing
(which, by [13], also shows its W[1]-hardness with respect to k in cographs).

However, the instances used in [4] [I4] have a large tree-width (as otherwise
the list-coloring and bounded coloring problems are tractable [3, [14]): since star
forests and isolated vertices are cographs, Corollary [l shows that this remains
true even when the tree-width is 1 (the case of tree-width 0 and polynomially
bounded vertex weights being covered by Theorem [2)). Corollary 2] shows that,
under the same assumption of being a cograph of tree-width 1 (the case of tree-
width 0 will be discussed later in this section), this is also true as soon as k = 2
(provided that p is arbitrary), even when each vertex has weight 1 and can
take any color. Finally, as in the case of partial k-trees, Theorem [ shows that
allowing arbitrary vertex weights leads to weak NP-completeness in cographs
of tree-width 0, even if £ = 2, p = 1, and any vertex can take any color.

Moreover, the instances from the previous reductions can be made connected
by adding a new vertex, adjacent to all the other vertices, that must take a new
color (this increases the tree-width by 1). In particular, when the graph in the
reduction consisted of isolated vertices, it then becomes a star.

However, when both p and k are fixed, we can design an efficient dynamic
programming algorithm, based on standard techniques, to solve WEIGHTEDLO-
CALLYBOUNDEDLISTCOLORING in cographs, by using the associated (binary)
cotrees. In order to describe this algorithm, we define the following function:

o (i, w11, .. s Wiky--.,Wpl,-..,wpk) = true if there exists a list-coloring of
the subgraph of G induced by the leaves of the subgraph of T rooted at
node ¢, where the total weight of vertices of this induced subgraph of G
having color ¢ in V}, is wpe, and false otherwise.

The value of each f'(-) is then computed in a bottom-up fashion, as follows.

14



If i is a join node. Let j and [ denote its two children.

(G wit, e wpk) = \/ (o=, wpk—qui)A (L qurs - - - Gpk)
(@11,0pK) €EQY

where Q%o = {(q11,-- 5 qpr) 0 < Gre < wne Yh Ve} N {(qur, -5 qpr)
(3oh=1@ne) X (=1 (wWhe — ane)) = 0 Ve}.

If i is a union node. Let 5 and [ denote its two children.

Fli,wins. o wpr) = V (f'Grwn—airs - wpr—ape)Af (L i, - -, Gpk))
(QII ----- qu)GQLnion

where Q! ={(q11,-- -, qpk) : 0 < gne < wpe Vh Vel

union

If i is a leaf node. Let v; € V} be the vertex of G corresponding to this leaf.

Fliwnwp) =\ (o= (o) Awy = 0¥, 5) # (h,4)))

JEL(vi)

Lemma 3. The values of f'(i,w11,..., Wik, .-, Wpl,--.,Wpk) computed by the
above algorithm are correct.

Proof. In order to show that a vertex list-coloring is proper in the whole graph,
it is sufficient to prove that it is a valid list-coloring at each step (i.e., during
the computation of the value of f/(-) at each node of the cotree).

Assume i is a join node. Then, the graph induced by the leaves of the
subgraph of T rooted at node ¢ is the complete union of two graphs. For each
h and j, the sum of the weights of the vertices of color j in V} in these two
graphs must be equal to wy.. However, when taking the complete union of two
subgraphs of G, vertices not belonging to the same subgraph cannot have the
same color (otherwise, the coloring would not be proper).

Assume i is a union node. Then, the graph induced by the leaves of the
subgraph of T rooted at node ¢ is the disjoint union of two graphs, and thus,
for each h and j, the sum of the weights of the vertices of color j in V}, in these
two graphs must be equal to wp..

Assume i is a leaf node. Then, in any valid list-coloring, the vertex v; of G
associated with ¢ takes only one color, which belongs to L(v;). O

The above algorithm runs in O(nWEE (WPk 4 pk)) time, where Wiax =

max max

maxp, c Whe. Together with Lemma [3] this yields the following result:
Theorem 8. WEIGHTEDLOCALLYBOUNDEDLISTCOLORING can be solved:

e in pseudopolynomial time in cographs when p and k are fized,

e in polynomial time in cographs when (i) p and k are fived, and (ii) all

vertex weights are polynomially bounded.
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Note that this result generalizes the ones in [4 [10, 14]. Again, one can
associate a profit function 7 to the vertices of G, and modify slightly this dy-
namic programming algorithm (by replacing “\/” by “max” and “A” by “+”
in union and join nodes, and by returning max;er,,) 7(vi,j) in leaf nodes if
the above conditions are satisfied, and —oo otherwise) in order to compute a
feasible weighted and locally bounded list-coloring of maximum profit (if any).
Note that we return —oo if Q,,,;,,, = 0 or Q% ,,;,, = 0 for some i.

Theorem [§] can also be used to show the following proposition:

Proposition 2. If k = O(1), WEIGHTEDLOCALLYBOUNDEDLISTCOLORING
can be solved in (pseudo)polynomial time in graphs consisting of isolated vertices.

Proof. Since there are no edges in this case, any coloring will be proper, and
hence any set V; of the partition can be considered independently from the p—1
other V;’s. Hence, solving such an instance of WEIGHTEDLOCALLYBOUND-
EDLISTCOLORING is then equivalent to solving p independent instances where
the partition contains only one vertex set. Since k is fixed as well, any such
instance can be solved in (pseudo)polynomial time thanks to Theorem[8 O

To close this section, we study WEIGHTEDLOCALLYBOUNDEDLISTCOLOR-
ING in particular cographs. We begin by studying complete bipartite graphs
K, n, (which are cographs represented by binary cotrees containing ni +mns —2
union nodes and only one join node, at the root), where this problem is trivial
when k& = 2 (so we shall assume k& > 3). Since the complexity of WEIGHTED-
LocALLYBOUNDEDLISTCOLORING is the same in graphs consisting of isolated
vertices and in stars (which are the graphs K7 ,,), Theorems[Iland Rlimply that
WEIGHTEDLOCALLYBOUNDEDLISTCOLORING is NP-complete in complete bi-
partite graphs if k is not fixed or if the vertex weights are not polynomially
bounded, even if any vertex can take any color. Moreover, it was proved in
[14] that the list-coloring problem (without constraints on the sizes of the color
classes) is strongly NP-complete in complete bipartite graphs when the number
k of colors is arbitrary. However, adding isolated vertices cannot yield complete
bipartite graphs, so this result does not directly apply to our problem. We now
show that a more complex reduction, partly inspired by the one given in [14],
can be obtained for WEIGHTEDLOCALLYBOUNDEDLISTCOLORING in this case:

Theorem 9. WEIGHTEDLOCALLYBOUNDEDLISTCOLORING is strongly NP-
complete in complete bipartite graphs, even if p and all vertex weights are 1.

Proof. Given a MONOTONEONEINTHREESAT instance I with p clauses and
v variables z1,...,z,, we construct a WEIGHTEDLOCALLYBOUNDEDLISTCOL-
ORING instance I’ in a complete bipartite graph G as follows.

On the left side of G, there are p vertices us,...,u, associated with the
p clauses, and, for each i € {1,...,v}, there are occ(i) vertices v}, ... ,vfcc(z)

associated with each variable x;, where occ(i) is the number of occurrences
of z; in the set of clauses. On the right side of G, there are occ(i) vertices
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w} ... ,wfcc(i) associated with each variable z;. Weset p =1,k = 2v+1, w(v) =

1 for each vertex v, and, for each ¢ € {1,...,v} and each j € {1,...,0cc(i)},
we define L(v]) = {z 2v + 1} and L(w]) = {i,u + ¢}. Furthermore, for each
h e {1,... ,,u}, we set L(up) = {v + i1,v + 2,V + i3}, assuming that the
hth clause is z;, V &4, V 24, Finally, we set Wi; = Wy(,44) = occ(i) for each
i € {1,...,v}, and Wygy41) = p. Then, we have the following equivalence
between the solutions of I and I': for each i € {1,...,v}, all the wf’s take color
1 if and only if variable x; takes value true. Let us justify such an equivalence.

First assume that we know a solution to I. For each h € {1,...,u}, if we
denote by z;, V x;, V x;, the hth clause, then vertex uy, takes color v 4+ ¢;, where
it € {i1,12,13} is such that z;, is the only variable of value true in the hth
clause. Moreover, for each i € {1,...,v}, all the ’U] ’s take color 2v + 1 if z; has
value true, and color 7 otherwise (meamng that the number of vertices of color
2v+1 is exactly the number of occurrences of variables of value true). It can be
easily checked that this yields a feasible solution to I’, since there are exactly u
vertices of color 2v + 1 (as each of the u clauses has exactly one true literal).

Assume now that there is a solution to I’. Consider any i € {1,...,v}. If
there is some w] that takes color v + 4, then, by construction, no vertex uy can
take color v + 4. Hence, the only vertices that can take color v+ are the wf ’s.
So, the only way to have Wy, = occ(i) vertices of color v + i is that each
vertex w‘ takes color v + ¢. This implies, in turn, that the only way to have
Wi = occ( ) vertices of color 7 is that each vertex v! takes color i. Now, if there
is some w; that takes color i, then, by construction, each vertex v] must take
color 2v + 1. So, the only way to have Wy; = occ(z) vertices of color i is that
each vertex w] takes color i. This implies, in turn, that the only way to have
Witiy = occ( ) vertices of color v +1 is that occ(i) vertices uy, take color v + 1.
The only such vertices that can take color v + i are the occ(i) ones associated
with the clauses where x; appears, so a_ll these up’s must take color v + 1.

In short, for each i, either all the w]’s take color i (in which case the occ(i)
vertices v] take color 2v+ 1, and the occ( ) vertices up, corresponding to clauses
where z; appears take color v +1), or all the w]’s take color v +1 (in which case
no vertex uy, takes color v + 4, and the occ(i) vertices v} take color 7). Hence,
whenever a vertex up (assomated with the clause x;, V 4, V x;,) takes color
v + 4; for some 7; E {41,12,13}, then this means that all the wj ’s take color i,

and that all the w] ’s take color v + iy for each iy € {i1, iz, 23} \ {i;}. In other
words, there is exactly one literal of value true in each clause of I. O

On the positive side, we show that WEIGHTEDLOCALLYBOUNDEDLISTCOL-
ORING can be solved in (pseudo)polynomial time in complete bipartite graphs
if k is fixed but p is not. Note that, in such a graph, all the vertices of a given
color belong to the same side of the bipartition of G. So, if k is fixed, we can
“guess” which colors are on each side by enumerating all the possibilities (there
are 2% such possibilities). For each configuration (i.e., for each such assignment
of colors to both sides) we enumerate, we consider each side of the bipartition
independently, and for each one we check whether this configuration is feasible
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(note that, for each side, we can consider each V; independently, since they do
not interact). We are left with a set of independent instances where p = 1, k is
fixed and all the vertices are isolated vertices, so we can solve each one of them
in (pseudo)polynomial time thanks to Proposition[2l This yields:

Theorem 10. If k = O(1), WEIGHTEDLOCALLYBOUNDEDLISTCOLORING can
be solved in (pseudo)polynomial time in complete bipartite graphs.

Now, we turn to the case of complete graphs G = K,, (which are cographs
represented by binary cotrees containing n — 1 join nodes and no union node).
Notice that, in a complete graph, all the nodes must take different colors. So,
we must have k > n. If k > n, then in any feasible coloring one of the colors will
not be used: this is possible only if we have >} _, Wy, = 0 for this color ¢, and
thus we can remove it. Hence, we know that we necessarily have k = n, and that
each color will appear exactly once. In particular, since the V;’s are disjoint, this
implies that, for each color ¢, we have Wj, . > 0 for some h, and W}, = 0 for
each h' # h.. We solve WEIGHTEDLOCALLYBOUNDEDLISTCOLORING in this
case (for arbitrary values of p and for arbitrary vertex weights) by reducing it
to a matching instance in a bipartite graph H: there is one vertex in H for each
vertex v; in G = K,,, and one vertex for each color ¢ € {1,...,n}. There is an
edge between vertex v; and color ¢ when (i) ¢ € L(v;), (i) w(v;) = Wh, and (i)
v; € V.. Due to the rule we used to define the edges of H (by linking vertices of
G with “compatible” colors only), it is easy to see that we have a solution to the
WEIGHTEDLOCALLYBOUNDEDLISTCOLORING instance if and only if we have a
perfect matching in H (a vertex v; is linked to color j in this matching if and only
if it has color j in G): therefore, WEIGHTEDLOCALLYBOUNDEDLISTCOLORING
can be solved in polynomial time in this case (using for instance an efficient
algorithm computing a maximum flow, since H is bipartite). This yields:

Theorem 11. WEIGHTEDLOCALLYBOUNDEDLISTCOLORING can be solved in
polynomial time in complete graphs.

Again, one can associate a profit function 7 : V x {1,...,k} — Z to the
vertices of G. Then, we can obtain a feasible solution to WEIGHTEDLOCALLY-
BOUNDEDLISTCOLORING with maximum profit (if any) by finding a perfect
matching of maximum weight in H (or, equivalently, by solving a linear assign-
ment instance optimally), where, for each i and each j, the weight of the edge
between a vertex v; and a color j in H is 7(v;, j).

5 Locally bounded list-colorings in split graphs

In this section, we study the tractability of WEIGHTEDLOCALLYBOUNDEDLIST-
COLORING in split graphs. Recall that a split graph G is a graph whose set of
vertices can be partitioned into a vertex set inducing a clique K, and a vertex
set inducing a stable (or independent) set S. For the sake of simplicity, we will
denote by | K| (resp. |S|) the number of vertices of K (resp. of S).
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From Section[2, WEIGHTEDLOCALLYBOUNDEDLISTCOLORING remains NP-
complete in split graphs: from Theorems [Il and 2] it is weakly NP-complete
when the vertex weights are arbitrary, even if p = 1, £ = 2, and each vertex
can take any color, and strongly NP-complete when k is arbitrary, even if the
vertex weights are polynomially bounded, p = 1, and each vertex can take any
color. However, when £ is fixed, it can be solved in (pseudo)polynomial time:

Theorem 12. WEIGHTEDLOCALLYBOUNDEDLISTCOLORING can be solved in
(pseudo)polynomial time in split graphs when k = O(1).

Proof. Since we are looking for a proper vertex coloring, any vertex in K cannot
have more than k£ — 1 neighbors. Hence, K cannot contain more than k vertices.
When k& = O(1), one can then enumerate in constant time all the possible
colorings of K (for each one, we must check that it is proper and that the color
of each vertex v € K is in L(v)). Then, for each such coloring, we remove K,
update the value of each of the W),.’s and the list L(v) for each vertex v € S
accordingly. This way, we obtain an instance in a graph consisting of isolated
vertices, and where k¥ = O(1): from Proposition 2] such an instance can be
solved in (pseudo)polynomial time, which concludes the proof. O

The list-coloring problem in complete bipartite graphs (and thus in cographs)
is strongly NP-complete from [14]. Actually, in the reduction that is used, one
side of the bipartite instances can be replaced by a clique: hence, the proof also
holds in split graphs (while the one of Theorem [0 does not, despite the fact that
the former one partly inspired the latter one). Adding, for each initial vertex,
(k — 1) new isolated vertices that can take any color, yields (NP-complete)
instances of the equitable list-coloring problem. However, a straightforward
adaptation of the proof of Theorem [l yields a stronger result:

Theorem 13. WEIGHTEDLOCALLYBOUNDEDLISTCOLORING is strongly INP-
complete in split graphs, even when p =1, w(v) = 1 for each vertex v, and the
degree of each vertex in the part S inducing an independent set is one.

Proof. Start from the reduction described in the proof of Theorem 3] and add a
clique K on 3n(n+1) vertices, namely all the u;’s and all the v]’s. As any two of
these vertices do receive different colors in the original reduction, we obtain an
equivalent instance. Then, the independent set S contains all the leaves of the
S7’s, and hence any vertex of S has degree one, which concludes the proof. [

Note, however, that the list-coloring problem is easy in split graphs if every
vertex in S has degree at most 1: remove any v € S with only one possible color,
update the possible colors for each uw € K accordingly, use an optimal flow to
color the vertices of K appropriately (as in Theorem [I1]), and then give to any
other vertex a color not used by its unique neighbor (if such a neighbor exists).

Moreover, the lists of possible colors play a major role in the above reduction,
so one may wonder what happens when each vertex can take any color. When p
and k are arbitrary, and w(v) = 1 for each vertex v, the following result holds:
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Theorem 14. WEIGHTEDLOCALLYBOUNDEDLISTCOLORING is strongly INP-
complete in split graphs, even when Wy, € {0,1} for each h and ¢, and each
vertex has weight 1 and can take any color.

Proof. Take an instance of 3SAT [9], that consists of i clauses of size 3 defined on
v boolean variables x1, ..., x,. To each variable z;, we associate two vertices y;
and z;. To the jth clause, we associate three vertices u;, v;, w;, for each j. Then,
we add edges in the following way, in order to obtain a split graph: the vertices
y; and z; over all ¢ induce a clique on 2v vertices, and the vertices u;, v;, w; over
all j induce an independent set on 3y vertices. For each j € {1,...,u}, if we
let the jth clause be z} V] V] (where z} € {z;,Z; } for each | € {1,2,3}),
we also add an edge between w; and y;,, for each [ € {1,2,3}. Finally, we let
k = 2v and p = v + p, and then define V; = {y;, z;} and Wy = Wy, 44y = 1 for
each i e {1,...,v}, as well as V,,4; = {u;,v;, w;} and Woiie, = Wotje, =
Wivtjye, = 1 for each j € {1,...,pu}, where, for each I € {1,2,3}, ¢;, = v+ 14
if x’il = 24, and ¢;, = 4; otherwise. Note that any other W}, is equal to 0, and
that, for each vertex v, w(v) =1 and L(v) € {1,...,2v}.

We can define the following equivalence between the solutions of these two
instances: for each i, x; = true if and only if the color of y; is i. Note that, for

each j € {1,...,p}, the vertex w; must take a color ¢;, for some [ € {1,2,3}
such that y;, takes color ¢;, (and hence the literal z} is true), where ¢;, =i, if
¢, = v +1;, and ¢;, = v + 4 otherwise. This concludes the proof. O

Actually, we can even prove a stronger result, and get rid of the assumption
that p must be arbitrary, while allowing each vertex to take any color.

Theorem 15. WEIGHTEDLOCALLYBOUNDEDLISTCOLORING s strongly NP-
complete in split graphs, even when p = 1, Wi, € {1,4} for each color ¢, and
each vertex has weight 1 and can take any color.

Proof. We reduce from the NP-complete problem 3-DIMENSIONALMATCHING,
in which we are given three sets X,Y, Z of elements such that |X| = Y| =|Z|,
and a list of triples 7 C X x Y x Z. One wants to decide whether there exists
T’ C T covering all the elements of X, Y, and Z, and such that |77| = | X|.
Given an instance I of 3-DIMENSIONALMATCHING, we define the following
instance I' of WEIGHTEDLOCALLYBOUNDEDLISTCOLORING. There are 3| X| +
|T| vertices, that can take any color, and have weight 1: one vertex ¢, for each
triple in 7, one vertex z; for each element in X, one vertex y; for each element in
Y, and one vertex z; for each element in Z. Moreover, there is an edge between
each t;, and all the other vertices, except x;,, y;, and z;,, provided that the hth
triple of T is composed of the i,th element of X, of the j,th element of Y, and
of the Ijth element of Z. In particular, we have |K| = |T| and |S| = 3| X|, and
we define £ = |7] and p = 1. Finally, we define the color bounds as follows:
Wie =4 for each c € {1,...,|X|}, and Wy, =1 for each c € {|X|+1,...,k}.
Then, it is easy to see that the following equivalence holds: for each h, the
hth triple in I is in 7' if and only if ¢, takes a color ¢ with Wi, = 4 in I'.
Indeed, in I’, each color must appear exactly once in K, as |K| = k. Moreover,
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each vertex t;, € K is non adjacent to exactly three vertices: hence, if ¢; takes
some color ¢ with Wi, = 4, then the three vertices non adjacent to it must take
color ¢. The | X| such colors must cover all the vertices of S, and | X| vertices of
K. Each of the k — | X| other vertices of K takes a color ¢ with Wy, =1. O

Corollary 3. The capacitated coloring problem is NP-complete in split graphs.

Note that, on the contrary, the bounded coloring problem is easy in split
graphs [4]. We end this section by providing three last tractable special cases.

The first one is obtained by assuming that |S| = O(1). In this case, we
enumerate the O(k!S!) potential colorings of S (for each one, we must check
that it is proper, and that the color of each vertex v € S is in L(v)). Then,
for each such coloring, we remove S, update the values W, and the lists L(v)
for all the vertices v € K accordingly, and we are left with an instance in a
complete graph, that we can solve in polynomial time thanks to Theorem [I11

The second one is obtained by assuming that the tree-width is O(1) (i.e., that
|K| = 0(1)) and w(v) = 1 for each vertex v (without the latter assumption, the
problem is NP-complete from Theorems[Iland[2]). In this case, we enumerate the
O(k!E1) potential colorings of K (for each one, we must check that it is proper,
and that the color of each v € K is in L(u)). Then, for each such coloring, we
remove K, update the values Wj,. and the list L(v) of each v € S accordingly,
and we are left with an instance in a set of isolated vertices and where each
vertex has weight 1, that we can solve efficiently thanks to Proposition [l

The third one complements Corollary Bl and is obtained by assuming that
each vertex has weight 1 and can take any color, and that, for all colors ¢ except
a constant number k' of them, W), = B for each h, for some common constant
B (the assumption k' = O(1) being less restrictive than k = O(1)).

Recall that it was proved in [4] that the bounded coloring problem can
be solved in polynomial time in split graphs, by means of a reduction to an
intermediate problem, which is then solved using a maximum flow algorithm.
The construction we will use to solve this third special case (in which the number
k of colors is arbitrary) also solves the bounded coloring problem, with a more
direct reduction to a maximum flow problem. Namely, we prove:

Theorem 16. WEIGHTEDLOCALLYBOUNDEDLISTCOLORING can be solved in
polynomial time in split graphs when (i) each vertex has weight 1 and can take
any color, and (i) for all colors ¢ except a constant number k/ of them (called
the singular colors), Wy. = B for each h, for some constant B.

Proof. Let us consider such an instance in a split graph G, and let us, ..., ux
be the vertices of K, and v1,...,v|g the vertices of S. We start by “guessing”
the singular colors that will appear in K, and for each such color which (unique)

vertex of K uses it. This can be done in O ((|K| + 1)’“/) time by a brute-force

enumeration. Any other vertex of K will take an arbitrary (but different for
each of them) color ¢ such that Wy, = B for each h, and some singular colors
may appear only in S. Also, for each h and each ¢, we set W}, = Wy —w(u;) =
Whe — 1 if some vertex u; € K NV, takes color ¢, and W}, = W, otherwise.

21



Since k > |K| (otherwise, there is no solution), we always end up with a
proper coloring of K. Then, we define for each v; € S a list of possible colors
L(v;) ={1,...,k}\{c: there exists u; € K adjacent to v; that takes color c}.
Now, we can remove the vertices of K, and we are left with an instance of
WEIGHTEDLOCALLYBOUNDEDLISTCOLORING in a graph consisting of isolated
vertices of weight 1 (i.e., in the subgraph of G induced by the vertices of S). The
color bounds are the W} s, and we can solve this instance in polynomial time
(as a maximum matching problem in a bipartite graph, and hence as a maximum
flow problem) thanks to Proposition [Il which concludes the proof. O

Again, note that this generalizes the polynomial-time solvability of the case
where p =1 and k' = 0, i.e., of the bounded coloring problem in split graphs.

Moreover, without the assumption that each vertex can take any color, the
problem becomes hard, even when p = 1. Indeed, take the reduction from
Theorem [I5] and, for each color ¢ such that Wi, = 1, add three isolated vertices
that can only take color c. This way, we obtain (NP-complete) instances where
Wi. = 4 for each color ¢, and hence where ¥’ = 0. Similarly, adapting the
proof of Theorem [I4] shows that, without the above assumption, the problem is
NP-complete when p is arbitrary and W, = 1 for each h and each c.

However, if each vertex in the clique part K of G has both a list of possible
colors and an arbitrary weight, then the proof of Theorem can easily be
adapted to show that the problem remains tractable, provided that each vertex
of S has weight 1 and is allowed to take any color. Indeed, after the “guess”
part, we can give appropriate non singular colors to the remaining uncolored
vertices of K by solving another matching instance (and not in a greedy way
anymore), in a way similar to the one used in the proof of Theorem [Tl

6 Extension to edge colorings

In this last section, we extend to edge colorings all our previous results con-
cerning (vertex) k-colorings in cographs, split graphs, and graphs of bounded
tree-width. An edge coloring of a graph is an assignment of colors (integers)
to its edges, in such a way that any two edges sharing a vertex take different
colors. The problem we consider in this section is thus the following:

WEIGHTEDLOCALLYBOUNDEDLISTEDGECOLORING

Instance: A graph G = (V, E), a weight function w : E — N*, a partition
Eq, ..., E, of the edge set I, a list of pk integral bounds Wiy, ..., Wig, ..., Wy,
..., Wpy such that Z?:l W;; = w(E;) for each ¢ € {1,...,p} (where w(E;) =
> ecer, w(e)), and, for each edge e, a list of possible colors L(e) C {1,...,k}.
Question: Decide whether there exists an edge coloring of G such that, for each
i€{1,...,p} and for each j € {1,...,k}, the total weight of edges having color
j in E; is W;;, and the color of e belongs to L(e) for each edge e.
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6.1 NP-completeness proofs for edge colorings

We can prove that this problem is NP-complete by using a reduction from
PARTITION, similar to the one in Theorem [ (so we have p = 1, k = 2 and
W11 = Wia = B). Each isolated vertex v; becomes an isolated edge ¢;, and we
define w(e;) = a; and L(e;) = {1,2} foreach i € {1,...,n}. Again, we can make
this instance connected, and obtain a chain, by setting k¥ = 3 and adding new
edges of color 3 between the e;’s. However, the problem is trivial when k& = 2
and G is connected, since G has maximum degree 2 in this case, and hence G
is either a path or an (even) cycle, and has only two possible edge-colorings.

The main goal of this section is to prove that WEIGHTEDLOCALLYBOUND-
EDLISTEDGECOLORING is tractable in the graphs considered in the previous
sections, under the same assumptions as its vertex coloring counterpart. How-
ever, we shall first justify that, as in the case of vertex colorings, dropping any
of these assumptions leads to NP-completeness, without looking further into
other possible special cases, for the sake of brevity. The previous paragraph
settles the case of arbitrary edge weights, so let us look at the other cases.

When the input graph is neither a cograph nor a split graph, and has an
unbounded tree-width, WEIGHTEDLOCALLYBOUNDEDLISTEDGECOLORING is
NP-complete even when k = 3, p = 1, and we have both L(e) = {1,2,3} and
w(e) = 1 for each edge e. Indeed, deciding whether the edges of a graph can be
properly colored using three colors is known to be NP-complete [12].

When p is arbitrary, we need an adaptation of the proof of Theorem

Theorem 17. WEIGHTEDLOCALLYBOUNDEDLISTEDGECOLORING is strongly
NP-complete in graphs where each connected component is either a cycle of
length four or a single edge, even when k = 2, w(e) = 1 for each edge e, and
each edge can take any color.

Proof. Given an instance of MONOTONEONEINTHREESAT, we construct such
a graph. More precisely, for each variable x;, there are occ(i) isolated edges
(denoted by e]) and occ(i) vertex-disjoint cycles of length four, where occ(i) is
the number of occurrences of z; in the set of clauses. For each i € {1,...,v}
and each j € {1,...,0cc(i)}, let us denote by a},b’,c!,d! the four edges of the
jth of these cycles, and assume for instance that a{ and cg are vertex-disjoint,
and that so are bg and dg . Moreover, each edge has weight 1 and can take any
of the two colors. Intuitively, in the jth cycle associated with variable z;, the
edge b will be used to interact with the j 4+ 1th one, the edge ¢} will be used
to interact with the j — 1th one, the edge dz will only be useful to obtain a
cograph, and the color of the edge az will reflect the value of x; (true or false).

Let us define formally the partition that we use, and the associated color
bounds. For each i € {1,...,v} and each j € {1,...,0cc(i)}, we set Wy =

Wha = 1, as well as Vi, = {b?, d T} if j < oce(i) and Vj, = {67°°Y | ¢!} otherwise,

where h = 222;11 oce(q) + 5. Mor_eoyer, for each ¢ € {1,...,v} and each
Jj € {l,...,0cc(i)}, we set Vi = {d’,el} and Wpq = Wyo = 1, where b/ =

2 E;;ll oce(q)+oce(i)+j. Note that k = 2, and hence, in the jth cycle of length
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four associated with variable z;, edges az and ¢! must take the same color, and
edges bz and dz must take the same color. For each i, by the way we defined
the V3’s and Vj,/’s so far, all the af’s must take the same color (1 or 2). We
end the reduction by defining one set of the partition for each clause: if the [th
clause consists of the jith occurrence of variable x;,, of the jaoth occurrence of
variable z;,, and of the jsth occurrence of variable z;,, then we define Vj,» =
{al},ai2,al’}, Wi = 1 and Wyig = 2, where B = 23/, occ(q) + 1. This
implies that p = 2 Egzl oce(q) + p, and this yields the following equivalence
between the solutions of the two instances: for each i, x; = true if and only if

ag has color 1 for each j, which concludes the proof. o

When the number of colors is arbitrary, WEIGHTEDLOCALLYBOUNDEDLIST-
EDGECOLORING is strongly NP-complete, as shown by an easy reduction from
3—PARTITION, similar to the one in Theorem 2] (so we have p = 1, k = n, and
Wi, = B for each ¢ € {1,...,n}). Each isolated vertex v; becomes an isolated
edge e;, and we define w(e;) = a; and L(e;) = {1,...,k} foreachi € {1,...,3n}.

Note that the graphs used in the reductions described above consist of vertex-
disjoint cycles of length four (i.e., complete bipartite graphs with two vertices
on each side) and/or of isolated edges. In other words, they are both cographs
and graphs of tree-width at most 2. Moreover, we can easily turn the instances
used in the case where the number £ of colors is arbitrary into split graphs.

To see it, start from the above reduction, but define & = n + 3n(Sn=1)
instead of kK = n. Then, choose one endpoint of each ¢;, i € {1,...,3n}, and
add w edges (i.e., a clique) between these 3n vertices (this yields a split
graph). These edges will be denoted by fi, fa,..., and can take any color. We
define w(f;) = 1 and Wy(,44) = 1 for each j € {1,...,%}. As we can
assume without loss of generality that a; > 1 for each ¢ (simply multiply B and
each a; by two in the original instance of 3—PARTITION, in order to obtain such
an equivalent instance), this implies that each color ¢ > n+1 will be used by one
and only one edge f;, which shows the equivalence between the two reductions.

Hence, from now on, we shall assume that k is fixed, as otherwise WEIGHT-
EDLOCALLYBOUNDEDLISTEDGECOLORING is NP-complete. In the following
subsection, we give efficient algorithms to solve this problem when k = O(1).

6.2 Efficient algorithms for edge colorings when k£ = O(1)

We start by considering graphs of bounded tree-width. We assume that such
a graph G is given, together with a tree-decomposition T' = (I, F') of G having
minimum width, and that p is fixed (as otherwise WEIGHTEDLOCALLY BOUND-
EDLISTEDGECOLORING is NP-complete from Theorem[I7)). We then define the
following function, before showing how to compute it for each node type:

® g(1,Ci Wity vy Wiky .-, Wpl,-..,wpk) = true if there is a list-edge-coloring
of G[T;] where each edge e € Y; has color ¢;(e) and where the total weight
of edges of G[T;] having color ¢ in Ej, is wpe, and false otherwise.
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If i is a forget node. Let j denote its child such that X; = X; U {v}:

g(i7ci7wllu'-'7wpk): \/ g(jucjuwlla"-uwpk)
cj:(cj(e)=ci(e) Ye€Yi)A(c;(uv)EL(uv) YueX;:uveYy)

If 7 is an introduce node. Let j denote its child such that X; = X; \ {v}.
We denote by ey, ..., eq the edges incident to v in Y; (i.e., the edges in ¥; \ Yj),
and assume that ey € Ey) for each h € {1,...,d}.

9(27 Ciy W11, - - - 7wp/€) =& /\g(ju Cj, Wity - - - 7w¢7(1)ci(81)_w(61)7 oo 7w¢(d)ci(ed)_w(ed)7 ) 7wp/€)

where £ = (c;(e) = ¢;(e) Ve € Y;) A(ci(e) € L(e) Ve € {e1,...,eqa}) N(ci(e) #
ci(f) Ve € {er,...,eq},Vf €Y;:e# f and both edges share a common vertex)

/\(w¢(h)ci(€h) >w(ep) Vh € {1,....d}).

If i is a join node. Let j and [ denote its two children, and let w}, be the
total weight of edges e € Y; N Ej, such that ¢;(e) = ¢, for each h and c.

g(iaciawllu'-wwpk) = \/ (g(jaciuwll+w7]il_qll7"'7ka+w:7k_qpk)/\g(l7Ci7q117'"

(q115-+,9pk) EQ?

where Q° = {(q11,- -, qpk) : Wi < qne < wpe Vh Vel

If i is a leaf node. In this case, we just have to check that the coloring
function ¢; provides a valid locally bounded list-edge-coloring of G[X;].

g(i, ¢, win, .., Wpk) = 5/\(w({e €YiNE} : ci(e) =c}) = wpe Yh V)

where £ = (c;(e) € L(e) Ve € Y;) A(ci(urv) # ¢i(ugv) Yug,uz,v € X; : ugv €
Yi, ugv € Yy, u1 # us).

Root value. Again, the answer true or false for the initial instance is obtained
at the root r by computing the following value:

\/ g(TaC’I“;Wllv"'vak)
cr:cr(e)€L(e) VeeY,

The proof of correctness is similar to the one given in Lemma[2] and the analysis
of the running time is similar to the one given just before stating Theorem [7l
Therefore, they are both omitted. This yields the following result:

Theorem 18. In graphs of bounded tree-width, WEIGHTEDLOCALLYBOUND-
EDLISTEDGECOLORING can be solved:

e in pseudopolynomial time when p and k are fized,

e in polynomial time when (i) p and k are fized, and (ii) all edge weights
are polynomially bounded.
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Again, one can associate a profit function to the edges of G, and then modify
slightly this dynamic programming algorithm, in order to compute a feasible
weighted and locally bounded list-edge-coloring of maximum profit (if any).

We then turn our attention towards cographs, and assume that p is fixed (as
otherwise an NP-completeness result holds, from Theorem [IT). Since we are
looking for a proper edge coloring, the maximum degree of such a graph G is
bounded by the number k of colors. As a cograph contains no induced path on
four vertices, the diameter of any of its connected components is at most two.
In other words, any vertex v has at most k neighbors, each of its neighbors has
at most k—1 other neighbors, and there can be no other vertex in the connected
component v belongs to. This implies that any connected component contains
at most 1+ k + k(k — 1) = O(k?) vertices, and hence O(k*) edges. Therefore,
when k& = O(1), each connected component has O(1) possible edge colorings.
For each one of them, one can easily check whether it defines a proper list-
coloring of the component. Moreover, as p and k are fixed, these colorings can
be combined one by one, by using an efficient dynamic programming algorithm
similar to the one outlined at the beginning of Section 2 that needs to store a
(pseudo)polynomial amount of information, namely O((maxy, . Wh.)*?).

Finally, let us study the case of split graphs. Again, since we are looking
for a proper edge coloring, the maximum degree of such a graph G is bounded
by the number & of colors, and isolated vertices play no role in this case (they
can be removed). Hence, each vertex in K, the clique part of G, cannot have
more than k neighbors, which implies that K cannot contain more than k + 1
vertices. As any edge of G is incident to one of these vertices, and as each of
these vertices cannot have more than k incident edges, the graph G contains
O(k?) edges. Therefore, when k = O(1) (and hence O(k?) = O(1)), WEIGHT-
EDLOCALLYBOUNDEDLISTEDGECOLORING is trivial in split graphs.

7 Conclusion and open problems

We conclude by giving an overview of all our results concerning WEIGHT-
EDLOCALLYBOUNDEDLISTCOLORING in cographs, split graphs, and graphs of
bounded tree-width. The three following tables summarize these results, each
one being devoted to one of these classes of graphs (here, NPC means NP-
complete, P means solvable in polynomial time, ”?” means arbitrary, and tw(G)
denotes the tree-width of the input graph G).
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GRAPHS OF BOUNDED TREE-WIDTH

tw(G) | w(v) | k | p | List-coloring | Result |
tw(G) =0 ? k=2 D= NO NPC (in the weak sense) from Theorem [I]
tw(G) =0 w(v) =poly(n) Yo eV | 7 p=1 NO NPC from Theorem 2
tw(G) =0 wv)=1YWweV ? ? YES P from Proposition[I]
tw(G) =0 w(v) =polyin) Yo eV | k=0(1) | ? YES P from Proposition 2
tw(G) =1 wv)=1YVweV ? p=1 YES NPC from [3|[7] and Theorems B and @
tw(G) =1 wv)=1YweV k=2 ? NO NPC from Theorems [B] and [6]
tw(G) =0(1) | w(v) = poly(n) Vv e V =0(1) | p=0(1) | YES P from Theorem [
| COGRAPHS |
[ w(v) | k | p | List-coloring | Result |
? k= p= NO NPC (in the weak sense) from Theorem [I]
w(v) =poly(n) Yo e V | ? p=1 NO NPC from Theorem [2I
wv) =1V eV p=1 YES NPC from Corollary [l and [4] (without list-coloring)
wv)=1YWweV =2 ? NO NPC from Corollary 2]
w(v) =poly(n) Yo eV | k=0(1) | p=0(1) | YES P from Theorem [§
wv)=1YWweV ? p= YES NPC in complete bipartite graphs from Theorem [9]
w(v) = poly(n) Yv € V =0(1) | ? YES P in complete bipartite graphs from Theorem [0
? ? ? YES P in complete graphs from Theorem [I]
SPLIT GRAPHS |
w(v) | k | p | List-coloring | Result |
? k=2 p=1|NO NPC (in the weak sense) from Theorem [I]
w(v) =poly(n) Yo e V | ? p= NO NPC from Theorem [2I
wv) =1Vv eV ? p= YES NPC from [14] and Theorem [I3]
wv)=1YWweV ? ? NO NPC from Theorem [I4] (even if W, € {0,1} for each h and ¢)
wv) =1Vv eV ? p=1|NO NPC from Theorem [I5]
wv)=1YWweV ? ? NO P if O(1) singular colors from Theorem [T6]
w(v) =poly(n) Yo eV | k=0(1) | ? YES P from Theorem [I2]

The following table summarizes results concerning arbitrary graphs:

| w(v) | k | D | List-coloring | Result |
w) =polyin)Vw eV | k=2 | p=0(1) | YES P from Section 2]
w)=1YWweV Ek=3|p=1 NO NPC (since 3-coloring is)

Again, we highlight that, in Section [ similar results for edge colorings
(including some specific hardness proofs, such as the one of Theorem [I7) are
provided in cographs, split graphs, and graphs of bounded tree-width.
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One may actually wonder how WEIGHTEDLOCALLYBOUNDEDLISTCOLOR-
ING behaves in bipartite graphs, which we did not mention yet. The instances
used in the proofs of Theorems [ to B being such graphs, the only relevant
question would be: is this problem polynomial-time solvable in bipartite graphs
when k = O(1), p = O(1), and all the vertex weights are polynomially bounded?
Unfortunately, the answer is no. Indeed, Bodlaender and Jansen proved in [4]
Theorem 5.1] that the equitable coloring problem is strongly NP-complete in bi-
partite graphs (this theorem was stated only for the bounded coloring problem,
but the proof actually holds in this case as well, without any modification), even
with only & = 3 colors, and so is WEIGHTEDLOCALLYBOUNDEDLISTCOLORING
when p =1, k = 3, and any vertex has weight 1 and can take any color.

One may also be interested in FPT algorithms for WEIGHTEDLOCALLY-
BOUNDEDLISTCOLORING with polynomially bounded vertex weights. Unfortu-
nately, the results in Theorems[7] [}l and [I2] are best possible, as this problem is
‘W{[1]-hard with respect to k in graphs of tree-width 0 (which are also cographs
and split graphs) if p = 1, even with no list-coloring. To see it, take any instance
of unary bin packing with I bins, which is W[1]-hard with respect to [ [I3], and
build an equivalent instance of the target problem: each of the n items becomes
a vertex (of the same weight w;), the k = [ color bounds equal the common bin
capacity B, and we add kB — ", w; more isolated vertices of weight 1.

Finally, the main open question we would like to mention as worth studying
is a direct consequence of our results in SectionsPland Bl Indeed, Theorems[] to
[[1eave as open the case where p = 1, the tree-width is O(1), and each vertex has
weight 1 and can take any color. In other words, what is the complexity of the
capacitated coloring problem (as defined in [5]) in graphs of bounded tree-width
when k is arbitrary? Bodlaender and Fomin managed to prove in [3] that the
bounded coloring problem is tractable in this case, a question that was open for
a long time before they finally settled it. The capacitated coloring problem is
more general, and should probably be harder (even in this case), but no one has
been able to prove it so far. Actually, there is a reduction from the capacitated
coloring problem to the bounded (or equitable) coloring problem: to see it, take
any instance of the former problem with color bounds n; > no > ... > ng,
add isolated vertices so that the total number of vertices reaches Zle n;, and
then add k sets of vertices inducing independent sets, in such a way that the
1th of these sets contains n; — n; + 1 isolated vertices and any two vertices in
any two different sets are linked by an edge. We obtain an instance of the latter
problem by setting the common color bound to n; + 1, as it can be checked
that all the vertices in the ith set must take color . However, in general, this
reduction preserves neither the property of having bounded tree-width nor the
one of being a split graph (although it does preserve the one of being a cograph).
Also recall that the capacitated coloring problem is NP-complete in cographs
and split graphs when k is arbitrary, from [4] and Corollary [ respectively.

28



References

[1] B. Baker and E. Coffman Jr. Mutual exclusion scheduling. Theoretical
Computer Science 162 (1996) 225-243.

[2] C. Bentz and C. Picouleau. Locally bounded k-colorings of trees. RATRO-
RO 43 (2009) 27-34.

3] H.L. Bodlaender and F.V. Fomin. Equitable colorings of bounded treewidth
g
graphs. Theoretical Computer Science 349 (2005) 22-30.

[4] H.L. Bodlaender and K. Jansen. Restrictions of graph partition problems:
Part I. Theoretical Computer Science 148 (1995) 93-109.

[5] F. Bonomo, S. Mattia and G. Oriolo. Bounded coloring of co-comparability
graphs and the pickup and delivery tour combination problem. Theoretical
Computer Science 412 (2011) 6261-6268.

[6] A. Brandstddt, V.B. Le and J.P. Spinrad. Graph Classes: A Survey. STAM
Monographs on Discrete Mathematics and Applications 2, Society for In-
dustrial and Applied Mathematics, Philadelphia (1999).

[7] M. Dror, G. Finke, S. Gravier and W. Kubiak. On the complexity of a
restricted list-coloring problem. Discrete Mathematics 195 (1999) 103-109.

[8] J. Fiala, P.A. Golovach and J. Kratochvil. Parameterized complexity of
coloring problems: Treewidth versus vertex cover. Theoretical Computer
Science 412 (2011) 2513-2523.

[9] M.R. Garey and D. S. Johnson. Computers and Intractability, a Guide to
the Theory of NP-Completeness. Ed. Freeman, New York (1979).

[10] S. Gravier, D. Kobler and W. Kubiak. Complexity of list coloring problems
with a fixed total number of colors. Discrete Applied Mathematics 117
(2002) 65-79.

[11] P. Hansen, A. Hertz and J. Kuplinsky. Bounded vertex colorings of graphs.
Discrete Mathematics 111 (1993) 305-312.

[12] I. Holyer. The NP-Completeness of Edge-Colouring. SIAM Journal on Com-
puting 10 (1981) 718-720.

[13] K. Jansen, S. Kratsch, D. Marx and I. Schlotter. Bin packing with fixed
number of bins revisited. Journal of Computer and System Sciences 79
(2013) 39-49.

[14] K. Jansen and P. Scheffler. Generalized coloring for tree-like graphs. Dis-
crete Applied Mathematics 75 (1997) 135-155.

[15] T. Kloks. Treewidth: Computations and Approximations. Lecture Notes in
Computer Science 842 (1994).

29



	1 Introduction
	2 NP-completeness proofs
	2.1 When vertex weights are arbitrary
	2.2 When the number of colors is not fixed
	2.3 When p is not fixed

	3 An algorithm for graphs of bounded tree-width
	4 Locally bounded list-colorings in cographs
	5 Locally bounded list-colorings in split graphs
	6 Extension to edge colorings
	6.1 NP-completeness proofs for edge colorings
	6.2 Efficient algorithms for edge colorings when k = O(1)

	7 Conclusion and open problems

