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Abstract

In the Multicut problem, the input consists of a graph and a set of pairs of terminal vertices that have to be disconnected
by the removal of a set of edges with minimum total weight. The Partial Multicut problem generalizes Multicut by
only requiring a given number of pairs of terminals to be disconnected by the removal of edges. It has been shown that
Multicut remains APX-hard if the treewidth tw(G) of its input graph G is bounded, but that it is FPT w.r.t. tw(G+H),
where H is the demand graph, whose vertices are the terminals and whose edges are the pairs of terminals. We prove that
this also holds for Partial Multicut. Furthermore, it has been proved that Multicut also becomes polynomial-time
solvable if tw(G) is bounded and H is complete (this is the Multiterminal Cut problem). We extend this result in two
directions, by proving that Multicut remains polynomial-time solvable if tw(G+H̄) is bounded, and that this remains true
for Partial Multicut. Finally, we show that if we further generalize the problem to allow non-unitary profits for pairs of
terminals, then the problem is weakly NP-hard and has an FPTAS if tw(G + H) is bounded, and becomes APX-hard if
tw(G+ H̄) is bounded.

Keywords: partial multicut, graphs of bounded treewidth

1. Introduction

Cut problems in graphs are known to have strong links
with many other combinatorial problems [31], and are a
relevant framework for modeling various real-life problems.
In particular, many reliability network problems can be re-
duced to several kinds of cut problems: the failure of a node
or a link of the telecommunication network corresponds to
the removal of the associated vertex or edge in the graph
that represents it.

In the classical Multicut problem (MC), we are given
a connected (un)directed graph G = (V,E) with n = |V |
vertices, a set S ⊆ V 2 of pairs of terminals, a weight function
w : E → Z+, and we ask for a set of edges E∗ ⊆ E of
minimum weight

∑
e∈E∗ w(e) that disconnects all pairs of

terminals, i.e., such that in (V,E\E∗) there remains no path
from the first terminal (source) to the second one (sink) of
each pair in S.

MC is known to be equivalent to the Vertex Cover prob-
lem in stars with unit weights [16], and hence it is APX-
hard even in trees. However, if |S| is fixed, then MC is
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tractable in bounded-treewidth graphs [2, 20], and in pla-
nar graphs [4, 14]. In other recent articles, MC have been
proved to be FPT w.r.t. the solution size [6, 26].

We also have to mention that MC with unit weights is
APX-hard in unrestricted graphs, even if |S| = 3 [13], and
that a few interesting special cases have been proved to be
tractable: paths (and more generally directed trees) [11],
rings [5], and undirected graphs when |S| = 2 [34]. In
directed graphs, however, MC becomes APX-hard when
|S| = 2, even in acyclic graphs where the maximum de-
gree is bounded and weights are unitary [3]. In [19], the
parameter tw(G + H), which is the treewidth of the graph
G+H (the notion of treewidth will be defined properly at
the end of this section), is introduced, where H = (VH , EH)
is the support graph of S (or demand graph), i.e. VH is the
set of terminals of G, and any two vertices u, v ∈ VH are
connected by an edge iff (u, v) ∈ S. The authors prove that
MC can be expressed using monadic second order logic, and,
as such, using Courcelle’s theorem [12] in an extended and
constructive version [1], MC can be shown to be FPT w.r.t.
parameter tw(G + H). In [28], an explicit dynamic pro-
gramming algorithm is given, which also proves this result.
Moreover, MC admits a 2-approximation algorithm in trees
[16], a O(1)-approximation algorithm in planar graphs [32],
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a O(log |S|)-approximation algorithm in undirected graphs
[15], and aO(

√
n)-approximation algorithm in digraphs [21].

On the negative side, assuming the Unique Games Conjec-
ture, MC has no (2 − ε)-approximation algorithm in trees
for any ε > 0 (from [22] and the equivalence between MC
in stars with weights 1 and the Vertex Cover problem), and
no O(1)-approximation algorithm in general graphs [8].

In MC, we are interested in the minimum number of edges
whose removal makes the network entirely collapse (no pair
of terminals can communicate with each other). In this pa-
per, we investigate partial and generalized versions of MC,
which are at least as hard as MC. The motivation for consid-
ering this partial version comes from the fact that, in prac-
tice, we are not always interested in the minimum number
of link or node failures that can make the entire network
collapse, but in the minimum number of such failures that
can make a given portion of the network collapse.

Formally, in the Partial Multicut problem (PMC),
we are given an integer P ≥ 1, and we are asking for
the minimum weight of a set of edges that disconnects at
least P pairs of terminals. Hence, when P = |S|, PMC
is exactly MC. In the Generalized Partial Multicut
problem (GPMC), we additionally define a profit function
p : S → Z+, and a feasible solution must disconnect a set
of terminal pairs of total profit at least P .

PMC has been studied in [18, 25], where (8/3 + ε) and
O(log2 n log log n)-approximation algorithms are given for
trees and unrestricted graphs, respectively. The approxi-
mation ratio in trees has been improved to 2+ ε in [27], and
the O(log2 n log log n)-approximation algorithm has been
extended to GPMC in [24]. To the best of our knowl-
edge, the only known tractable case for PMC is the one of
rooted trees [18] (which immediately implies the tractability
of PMC in graphs of maximum degree two), and GPMC has
only been studied in [25] as the “prize-collecting multicut
problem”, and in [24]. As MC is also tractable in rooted
trees (which are directed trees), and as PMC is hard when-
ever MC is, this means in particular that we are not aware
of any special case where MC and PMC behave differently
(with respect to their computational complexity).

We provide new results for (G)(P)MC in particular in
the case where the treewidth tw(G) of the input graph G
is bounded, together with additional assumptions on either
the demand graph H or its complement H̄. Table 1 provides
a summary of state-of-the-art and new complexity results
for MC and related problems depending on the treewidth of
G, H, H̄, G+H and G+ H̄.

We end this section by defining properly the notion of
treewidth. Given a graph G = (V,E), a tree decomposition
of G is a pair

(
{Xi|i ∈ I}, T

)
where Xi ⊆ V,∀i ∈ I, is a bag

of vertices of G, T = (I, F ) is a tree, and:

(1)
⋃
i∈I Xi = V ,

(2) For every edge uv ∈ E, there is an i ∈ I such that
u, v ∈ Xi,

(3) For all i, j, l ∈ I, if j lies in the path between i and l,
then Xi ∩Xl ⊆ Xj .

The width of a given tree decomposition of a graph G
is equal to maxi∈I |Xi| − 1. The treewidth of a graph G,
denoted by tw(G), is the minimum width of a tree decom-
position of G, taken over all tree decompositions of G. Note
that trees (and hence chains and stars) have treewidth 1.
Without loss of generality, we can also assume that the tree
decomposition is nice [23], i.e.:

• T is rooted at some node r,

• T is binary and has O(|V |) nodes,

• If a node i has two children j and k then Xi = Xj = Xk

(join node)

• If a node i has one child j, then either

(a) |Xi| = |Xj | − 1 and Xi ⊂ Xj (forget node)

(b) |Xi| = |Xj |+ 1 and Xj ⊂ Xi (introduce node)

Such a nice tree decomposition of width tw(G) can be com-
puted in polynomial time when tw(G) = O(1) [23].

2. (G)(P)MC with tw(G) = 1 when G is directed

We begin by studying MC, PMC and GPMC when G
is directed and tw(G) = 1, meaning that G is a directed
tree. Recall that, in this case, MC is tractable. Moreover,
PMC is tractable in rooted trees. We shall show that, on
the contrary, PMC (and hence GPMC with unit profits)
is strongly NP-hard in directed stars, hence providing the
first special case where MC and PMC do not have the same
behavior with respect to their computational complexity.

First, we show that PMC in directed stars is polynomially
equivalent to another partial covering problem, called the
Partial Weighted Vertex Cover problem (PWVC),
in bipartite graphs. In this problem, we are given a node-
weighted graph, and the goal is to compute the minimum
weight of a set of vertices that covers at least a given num-
ber of edges. It is clearly NP-hard in general graphs (as
optimally covering all edges is), and in [7] it was shown to
remain NP-hard in bipartite graphs as well, even when all
weights are 1. Let us show the following proposition:

Proposition 1. PMC in directed stars is equivalent to
PWVC in bipartite graphs.
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Bounded Parameter(s) MC PMC GPMC

tw(G), G undirected APX-hard even in unweighted stars [16]

tw(G), G directed P if tw(G) = 1 Strongly NP-hard in directed stars (Sec. 2)

tw(G) + tw(H) APX-hard (Sec. 3.1)

tw(G+H) FPT [19, 28] FPT (Sec. 3.3) NP-hard & FPTAS (Sec. 3.2 and 3.4)

tw(G+ H̄) P (Sec. 4.1) APX-hard (Sec. 4.2)

Table 1: Summary of complexity results for MC in graphs of bounded treewidth.

Proof. Take any PMC instance in a directed star. We can
assume without loss of generality that all sources have out-
degree 1 and in-degree 0, and that all sinks have out-degree
0 and in-degree 1. We associate an undirected bipartite
graph to this directed star by taking as vertices the sources
and sinks (the weight of each vertex being the weight of the
arc incident to the corresponding source or sink), and by
adding an edge between two vertices if the corresponding
source and sink in the directed star belong to the same ter-
minal pair. Then, in the PMC instance defined in a directed
star, removing an arc is clearly equivalent, in the PWVC
instance defined in a bipartite graph, to selecting the ver-
tex (source or sink) this arc is incident to. Conversely, any
PWVC instance in a bipartite graph can be polynomially
reduced to a PMC instance in a directed star, using the
same correspondence (edges become terminal pairs).

Together with [7], Proposition 1 immediately implies:

Corollary 1. PMC is NP-hard in directed stars, even when
all weights are 1.

The results in the rest of the paper are concerned with
undirected graphs.

3. (G)(P)MC with bounded tw(G + H)

We now study MC, PMC and GPMC when the parameter
tw(G+H) is bounded. We already know that MC is FPT
w.r.t. tw(G+H) [19], and that it is APX-hard if only tw(G)
is bounded. First, in Section 3.1, we prove that MC remains
APX-hard if both tw(G) and tw(H) are bounded. Second,
in Section 3.2, we show that GPMC is weakly NP-hard even
if tw(G+H) is bounded. Third, in Section 3.3, we provide a
pseudopolynomial-time algorithm for GPMC if tw(G + H)
is bounded. This algorithm is FPT w.r.t. tw(G+H) when
profits are unitary, thereby extending [19] to PMC. Fourth,
in Section 3.4, we show how a simple rounding scheme can
provide an FPTAS for GPMC when tw(G+H) is bounded.

Figure 1: Example of instances I1 (left) and I2 (right).

3.1. APX-hardness of MC with bounded tw(G) and tw(H)

We now prove that MC with bounded tw(G) remains
APX-hard even if we additionally suppose that tw(H) is
bounded.

Proposition 2. MC in trees of height 1 is equivalent to MC
in trees of height 2 with H a set of vertex-disjoint edges.

Proof. Let Ii denote an instance of MC in a tree Ti of height
i, with demand graph Hi, for i ∈ {1, 2}. First, let I1 be
given with arbitrary H1, and let r be the central vertex of
T1. We can suppose w.l.o.g. that r has no incident edge in
H1. We create an instance I2 by replacing each leaf v of T1

by a star with as many leaves as there are edges incident to
v in H1. In I2, v is no longer a terminal, and each created
leaf is a terminal that is incident to a single edge of H2. The
graph H2 is thus a set of vertex-disjoint edges, implying that
tw(H2) = 1, and hence that tw(T2) + tw(H2) = 2. Figure 1
shows an example where the edges of Ti are solid, while the
edges of Hi are dashed. Moreover, the vertices appearing
both in T1 and T2 are the black ones, while the vertices
appearing in T2 only are the white ones. The equivalence
directly comes from the fact that, from each solution to I2,
we can always build an alternative solution that costs no
more, and that contains only edges incident to r.

Note that the equivalence naturally extends to the
weighted case. This proposition, together with the fact that
MC with unit weights is APX-hard in stars (Theorem 3.1
of [16]), directly leads to the following result:
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Theorem 1. MC with unit weights is APX-hard in trees
of height 2, even if H is a set of vertex-disjoint edges.

3.2. Weak NP-hardness of GPMC with bounded tw(G+H)

There is a natural reduction from the Minimum Knap-
sack problem (MinKP), which is weakly NP-hard (since
it is equivalent to the classical Maximum Knapsack prob-
lem), to GPMC where G = H is a star, and thus tw(G +
H) = 1. Given a MinKP instance, the associated GPMC
instance consists of a central vertex with one leaf for each
knapsack item. For each knapsack item, there is a terminal
pair between the central vertex and a leaf, with correspond-
ing profit and weight (on the edge). Hence the edges of H
are the edges of G. In a solution to GPMC, an isolated ter-
minal translates into a selected item in a MinKP solution.
Conversely, given a non-trivial instance of GPMC where
G = H is a star, we can build an equivalent instance of
MinKP in the same fashion: there is an item for each leaf,
whose weight (resp. profit) is the one of the edge of G (resp.
of H) incident to this leaf. This proves the following:

Theorem 2. MinKP is equivalent to GPMC if G = H is
a star.

Hence GPMC is weakly NP-hard when tw(G+H) = 1.

3.3. An algorithm for GPMC with bounded tw(G+H)

We design a dynamic programming algorithm which is
FPT w.r.t. tw(G+H) for PMC and runs in pseudopolyno-
mial time for GPMC.

Suppose that the graph G + H has bounded treewidth
tw(G + H), and that a nice tree decomposition

(
{Xi|i ∈

I}, T
)

of G+H of width tw(G+H) is provided, such that
the bag of each leaf of T contains a single vertex of G (given
a nice tree decomposition where the bag of a leaf is of arbi-
trary cardinality, adding at most tw(G+H) forget nodes is
sufficient for each leaf). We add to the root r of T a gadget
similar to the one for the leaves, that is to say a path in T ,
with r at one end, composed only of forget nodes, and which
other end is an empty bag. For each i ∈ I, Ei = E ∩ X2

i ,
i.e., Ei denotes the set of edges of G+H induced by Xi.

The output of the algorithm will be a partitioning of ver-
tices into components, determined by a coloring of vertices.
A coloring function on vertices is a function c : V → C,
where C ⊆ Z is a set of colors, such that two vertices with
different colors are not in the same component. Two ver-
tices with the same color are in the same component if and
only if there exists a path in G using only vertices with
the same color. Hence two different components may be
represented with the same color if they are not adjacent,
i.e. if there exists no edge between any vertex of the first
component and any vertex of the second component. Such

a graph coloring determines the components as well as the
set of edges between them (i.e., the bicolored ones). In gen-
eral, the number of components of a graph G is thus not
bounded by the number of colors |C|.

The weight (resp. profit) associated with a given coloring
function c in a subtree Ti rooted at an arbitrary node i ∈ I
is defined as the sum of the weights (resp. profits) over all
edges uv of G (resp. H) such that (1) both u and v lie in
a bag at a node of Ti, (2) uv 6∈ Ei, and (3) c(u) 6= c(v). At
the root r, this definition corresponds to the total weight
(resp. profit) associated with a coloring function c.

Given a partial coloring function ci on a bag Xi, we there-
fore define f(i, ci, pi) to return the minimum weight in the
subtree Ti rooted at i over all coloring functions c which
extend ci and yield a profit at least pi in Ti. If no such
coloring exists, then f(i, ci, pi) returns +∞.

The function f is defined recursively via four node cases.

If i is a leaf. Then, by convention, Xi = {v}, and

f(i, ci, pi) =

{
0 if pi = 0,

+∞ otherwise.

If i is an introduce node. Let j be the child of i such that
Xi = Xj ∪ {v}. We then simply have

f(i, ci, pi) =f(j, cj , pi)

where cj is the restriction of ci to Xj .

If i is a join node. Let j and h be the children of i, such
that Xi = Xj = Xh. We then have

f(i, ci, pi) = min
pi=pj+ph

(
f(j, ci, pj) + f(h, ci, ph)

)
If i is a forget node. Let j be the child of i such that Xi =
Xj \ {v}. Then,

f(i, ci, pi) = min
a∈C

(
f(j, cj ,max(0, pi −

∑
uv∈Ej , ci(u)6=a

puv))+

∑
uv∈Ej , ci(u)6=a

wuv

)
where cj is the coloring function that extends ci over Xj

and cj(v) = a, and where puv = 0 if uv 6∈ S.

At the root node r. Calling f(r, cr, P ) returns the minimum
cost of a partition of the vertices of G which yields a profit
at least P .
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Proof of correctness. The algorithm relies on the fact that
the tree decomposition has exactly one forget node per ver-
tex of G. The algorithm provides a coloring of G, which
determines a partition of G, and therefore the set of edges
of G and H that are cut. The weight or profit of an edge
uv of G+H is taken into account at the forget node where
one of the two vertices is removed (both u and v belonging
to its child). Such a node necessarily exists by property of
the tree decomposition, and because the bag of r is empty.
Furthermore, such a node is necessarily unique, as the ver-
tex removed cannot be introduced again at a later point in
the tree decomposition.

Number of colors. The following lemmas help us establish
better running times:

Lemma 3. Given a graph G, χ(G) ≤ tw(G) + 1

where χ(G) is the chromatic number of G.

Proof. Given any graph G and a nice tree decomposition
for G of minimum width tw(G), rooted at r, we show how
to define a coloring of G using tw(G) + 1 colors. Start at
the root bag Xr, and give every vertex in Xr a different
color. We process the tree in a top-to-bottom fashion: once
a color has been assigned to a vertex, the color of this vertex
does not change. At a forget node, the new vertex is given
a color that is not used in the parent bag (it may have been
used earlier). The number of colors used in each bag is
its cardinality, hence the total number of colors needed to
color the whole graph is tw(G) + 1. This coloring is proper
since for every edge there exists a bag containing its two
endpoints.

Lemma 4. tw(G) + 1 colors are sufficient to color any fea-
sible solution of a GPMC instance in a graph G.

Proof. Suppose we have a feasible solution E′ ⊆ E to such
a GPMC instance. Let G′ be the minor of G obtained by
contracting every edge in E \ E′. Since tw(G′) ≤ tw(G)
(see [30]), we have χ(G′) ≤ tw(G) + 1 by Lemma 3. Thus,
we can compute a proper coloring c of G′ with size at most
tw(G)+1, and, in G, give each vertex the color of the vertex
of G′ it has been contracted into. This way, every edge in
E′ has endpoints with different colors, or c would not be
proper.

In the following analysis, we can thus suppose that the set
of colors C has size bounded by tw(G+H)+1. Throughout,
two vertices u and v which have been assigned the same color
lie in the same component if and only if there exists a path
in G between u and v that only goes through vertices with
the same color.

Types of Nodes Asymptotic Running Times

Leaf Node O(1)

Introduce Node O(1)

Join Node O(P )

Forget Node O(tw(G+H)2)

Root Node O(1)

Table 2: Running time for computing f on each type of node.

Running time. The running time depending on the type
of nodes is given in Table 2. There were O(n) nodes
initially, but we added some forget nodes. However, af-
ter this transformation, there are exactly n forget nodes,
hence there are still O(n) nodes in T . Moreover, there are
O((tw(G + H) + 1)tw(G+H)+1) possible colorings for each
bag and P possible profits, hence the overall running time
of this dynamic programming algorithm is O(n (tw(G+H)+
1)tw(G+H)+1P (P + tw(G+H)2)).

Theorem 5. There is a pseudopolynomial-time algorithm
that solves GPMC if tw(G+H) is bounded.

Furthermore, PMC corresponds to the case where all prof-
its are equal to 1, and therefore P ≤ n2. This yields:

Theorem 6. PMC is FPT w.r.t. tw(G+H).

3.4. An FPTAS for GPMC with bounded tw(G+H)

We present an FPTAS for GPMC in graphs with bounded
tw(G + H) based on an FPTAS by rounding for MinKP
[29]. In the traditional FPTAS for the Maximum Knap-
sack problem [33], the sum of the objective coefficients pro-
vides a trivial upper bound on the optimal value, which can
be readily used to determine an appropriate scaling factor.
By contrast, there is no trivial lower bound for MinKP. One
alternative consists in computing a lower bound using a sep-
arate algorithm (as hinted in [17]). We first show how an
FPTAS can be obtained if these bounds can be guessed cor-
rectly.
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Algorithm 1 A rounding FPTAS for GPMC with bounded
tw(G+H) and bounds

Let a precision ε > 0 and an instance of GPMC in a graph
with n vertices and bounded tw(G+H) be given.
Also suppose that 0 < LB ≤ UB are given.

1. Let K = εLB
m and, for each edge uv, set w̃(uv) =

dw(uv)
K e

2. Return the optimal solution Ẽ found by an algorithm
polynomial in n and W̃ = (1+ε)UB/K on the modified
instance

Theorem 7. Given LB ≤ OPT ≤ UB = g(n)LB as in-
put, where g is a polynomial, Algorithm 1 is an FPTAS for
GPMC with bounded tw(G+H).

Proof. First, we prove that Algorithm 1 achieves a (1 + ε)
ratio. For any edge uv ∈ E, we have

Kw̃(uv) < w(uv) +K,

and thus, for an optimal solution E∗,

Kw̃(E∗) < w(E∗) +mK. (1)

Finally, we can prove:

w(Ẽ) ≤ Kw̃(Ẽ) by rounding up,

≤ Kw̃(E∗) by optimality of Ẽ for w̃,

< w(E∗) +mK because of (1),

= OPT + εLB by definition of K,

≤ (1 + ε)OPT by definition of LB.

In establishing this result, we have not used the fact that we
set W̃ = (1+ ε)UB/K in Algorithm 1. We have just proved
that Kw̃(Ẽ) ≤ (1 + ε)OPT , and thus W̃ = (1 + ε)UB/K is
a valid upper bound on w̃(Ẽ).

Second, we prove that the running time of Algorithm 1 is
indeed polynomial in n and 1/ε. Step 1 is linear in the num-
ber of edges, hence in O(n2). Step 2 requires an algorithm
polynomial in n and W̃ . One such algorithm can be ob-
tained by defining a function h(i, ci, wi) similar to f(i, ci, pi)
(see Section 3.3), where h returns the maximum profit
rather than the minimum weight (for f), and essentially
exchanging the role of P and W̃ . By an analysis similar to
the one used for f , the computation of h(r, cr, W̃ ) can be
done in O(n (tw(G+H)+1)tw(G+H)+1W̃ (W̃+tw(G+H)2))
time. In the modified instance, we have

W̃ =
(1 + ε)UB

K
=
ng(n)

ε
+ ng(n),

which is polynomial in n and 1/ε. Since, when tw(G +
H) = O(1), Step 2 runs in O(n(W̃ )2) time, this enables us
to conclude that the whole running time is O(n3g2(n)/ε2),
which is polynomial in n and 1/ε.

Theorem 8. There exists an FPTAS for GPMC with
bounded tw(G+H).

Proof. Simply call the approximation algorithm given in
[24, Theorem 13] for general graphs to compute a valid up-
per bound UB with g(n) = log2(n) log(log(n)).

Theorem 8 relies on an auxiliary algorithm to produce a
valid upper bound UB. Complementary to this approach,
we present a simple scaling scheme that allows to identify
suitable LB and UB values in polynomial time by itera-
tively calling Algorithm 1. We first need a simple observa-
tion:

Lemma 9. If LB ≤ OPT , then the output SOL of Algo-
rithm 1 has the following properties:

1. SOL ≤ (1 + ε)UB ⇒ SOL ≤ (1 + ε)OPT ,

2. SOL > (1 + ε)UB ⇒ OPT > UB.

Proof. 1. Suppose SOL ≤ (1 + ε)UB. If UB ≤ OPT ,
this directly implies SOL ≤ (1 + ε)OPT . Otherwise,
LB ≤ OPT < UB, in which case Theorem 7 applies,
hence SOL ≤ (1 + ε)OPT .

2. Suppose SOL > (1 + ε)UB. If we had LB ≤ OPT ≤
UB, this would contradict Theorem 7. Hence OPT >
UB.

Lemma 9 allows us to write an algorithm which scales up
LB and UB geometrically until they define an interval on
OPT.

Algorithm 2 A scaling and rounding FPTAS for GPMC
with bounded tw(G+H)

Let a scaling factor α > 1 be given.

1. Let LB = 1.

2. Let UB = αLB

3. Call Algorithm 1 with values LB and UB. Let SOL
denote the value of the solution (+∞ if there is none).

4. If SOL > (1 + ε)UB, let LB = UB, and go to Step 2.

5. Return SOL.

Lemma 10. At any point of Algorithm 2, LB ≤ OPT .
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Proof. At the first iteration, LB = 1, hence the property
holds. The value of LB is only changed at step 4, under
the condition that SOL > (1 + ε)UB. From Lemma 9, this
implies OPT > UB, hence in the next iteration we will have
OPT > LB.

Theorem 11. Algorithm 2 is an FPTAS for GPMC with
bounded tw(G+H).

Proof. At step 4, as LB ≤ OPT holds by Lemma 10,
Lemma 9 guarantees that either (1) SOL is a (1 + ε)-
approximation, and the algorithm stops, or (2) OPT > UB,
and the algorithm iterates.

At iteration i ≥ 0, we have LB = αi and UB = αi+1,
and thus W̃ = nα

ε +nα for any iteration. The running time
at each iteration is thus O(n3/ε2), since α is a constant.
Since the algorithm stops at the first iteration k for which
OPT ≤ SOL ≤ (1 + ε)αk+1, this means that logα(OPT ) ≤
logα(1 + ε) + (k + 1), which gives the stopping criterion
k ≥ logα(OPT ) − logα(1 + ε) − 1, hence the total running
time is O(n3 log(OPT )/ε2), which is polynomial in n, the
size of the binary encoding of w, and 1/ε.

It is interesting to notice that the maximum value W̃ of
an optimal solution considered in the modified problem with
rounded weights in Algorithm 1 is fixed for all iterations of
Algorithm 2. The modified weights of individual edges be-
come increasingly smaller, and thus more edges can belong
to an optimal solution of the modified problem. Indeed, in
Algorithm 1, any edge uv with w̃(uv) ≥ W̃ cannot be cut.

4. (G)(P)MC with bounded tw(G + H̄)

In this section we introduce the parameter H̄, which is
simply defined as the complement of H. It turns out that a
well-structured dense H can help design efficient algorithms
for MC, as a well-structured sparse H does. Indeed, the case
whereH is complete (and therefore tw(H̄) = 0) is equivalent
to the Multiterminal Cut problem, a well-studied spe-
cial case of MC, which is polynomial-time solvable if tw(G)
only is bounded [13]. Furthermore, the problem becomes
trivially linear-time solvable in trees [9, 10].

In Section 4.1, we show that PMC (and thus MC) is
polynomial-time solvable in graphs with bounded tw(G +
H̄). Note that the algorithm we design is not FPT w.r.t.
tw(G+H̄), and that, to the best of our knowledge, no result
more general than the tractability of the Multiterminal
Cut problem in graphs of bounded treewidth was known so
far, even for MC.

We then show in Section 4.2 that the generalized version
of this problem is not even solvable in pseudopolynomial
time in this case, unlike the case where tw(G+H) = O(1).
More precisely, we prove that GPMC is APX-hard when

G is a star and H is complete, i.e., when tw(G + H̄) = 1.
This highlights the fact that tw(G+ H̄) is a parameter that
does make the problem easier when bounded, and hence
may seem similar to tw(G + H) (which was introduced in
[19]) in that regard, but actually behaves a bit differently.

4.1. A polynomial-time algorithm for PMC in graphs with
bounded tw(G+ H̄)

Suppose that the graph G + H̄ has bounded treewidth
tw(G + H̄), and that a nice tree decomposition

(
{Xi|i ∈

I}, T
)

of G + H̄ of width tw(G + H̄) is provided. As in
Section 3.3, we let Ei = E ∩X2

i , and assume that a gadget
is used to set up an empty bag at the root node of T , such
that there is exactly one forget node in T per vertex of G.

The profit of a solution to a PMC instance is the num-
ber of edges of H having their two endpoints in different
components (obtained after the removal of the edges in the
solution), and can thus be computed as:

• |S|, i.e. the total number of edges of H,

• minus the number of edges of H with both endpoints
in the same component. This is itself accounted as the
sum, over each component:

– of the number of edges of a complete graph over
the vertices of H in that component,

– minus the number of edges of H̄ with both end-
points in that component.

Hence, we can compute the profit of a solution by knowing
the number of vertices of H in each of these components,
and the number of edges of H̄ with both endpoints in the
same component. In particular, the parameters of the recur-
sive function f̄ we define must keep track of these quantities.
Since we consider a tree decomposition of G + H̄, for any
pair of vertices of H that are non adjacent in H, and hence
adjacent in H̄, there must exist a bag of this tree decom-
position that contains both vertices. This implies that the
number of edges of H̄ with both endpoints in a given compo-
nent can be updated any time a vertex of H is “forgotten”,
while the number of vertices of H in a given component can
be computed only once the last vertex of this component has
been “forgotten”. The complete list of parameters of f̄ is:

• a node i of T ,

• a coloring function ci defined as in Section 3.3.

• a counting function ni : C → {0, . . . , |VH |}, which, for
each color a ∈ C, stores 0 if no vertex in Xi has been
assigned color a, and the number of vertices of H (pos-
sibly 0) not in Xi that lie in the subtree of T rooted
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at i and belong to that component (colored by a) oth-
erwise. Hence ni(a) counts the number of “forgotten”
vertices of H in the component colored by a at node i,
if there is at least one vertex of H having color a in Xi.

• pi ∈ {−|EH̄ |, . . . , |S| − P} keeps track of the uncut
edges of H in the subtree rooted at node i. More pre-
cisely, it is computed as the sum of:

1. Plus the number of edges of H for which both end-
points belong to a same “forgotten” component,
i.e. such that these components lie in the subtree
rooted at i and have no vertex in Xi.

2. Minus the number of edges of H̄ for which at
least one endpoint does not belong to Xi (i.e., has
been “forgotten”), both endpoints lie in the sub-
tree rooted at node i and have the same color, say
a, and this color appears in Xi as well as in each
bag lying between Xi and any bag containing the
first of the two endpoints that has been forgotten
(meaning that both endpoints are in the compo-
nent of color a having at least one vertex in Xi).

Note that, when there remains in Xi only one vertex
of H belonging to a component, all the edges of H̄
whose endpoints belong to that component have been
taken into account. Hence, when the last vertex of this
component is forgotten, it suffices to add the number of
edges of a complete graph over the vertices of H in that
component in order to obtain exactly the number of
edges of H whose endpoints belong to that component.

The returned value of f̄(i, ci, ni, pi) is defined as in Section
3.3.

If i is a leaf. Then, by convention, Xi = {v}, and

f̄(i, ci, ni, pi) =

{
0 if ni = 0 and pi = 0,

+∞ otherwise.

If i is an introduce node. Let j be the child of i such that
Xi = Xj ∪ {v}. We then simply have

f̄(i, ci, ni, pi) =f̄(j, cj , ni, pi),

where cj is the restriction of ci to Xj .

If i is a join node. Let j and h be the children of i, such
that Xi = Xj = Xh. We then have

f̄(i, ci, ni, pi) = min
pi=pj+ph,
ni=nj+nh

(
f̄(j, ci, nj , pj) + f̄(h, ci, nh, ph)

)
where ni = nj + nh is an element-wise vector addition.

If i is a forget node. Let j be the child of i such that Xi =
Xj \ {v}. Then,

f̄(i, ci, ni, pi) = min
(cj ,nj)∈comp(ci,ni)

(
f̄(j, cj , nj , pi

−



nj(a)(nj(a)+1)
2 if cj(v) = a, v ∈ H,

and ci(w) 6= a ∀w ∈ Xi,
nj(a)(nj(a)−1)

2 if cj(v) = a, v /∈ H,
and ci(w) 6= a ∀w ∈ Xi,

0 otherwise.

+ |{uv ∈ H̄, u ∈ Xi, ci(u) = cj(v)}|)

+
∑

uv∈Ej , ci(u)6=a

wuv

)
,

where ci and ni are such that, for each a ∈ C, ci(w) 6=
a ∀w ∈ Xi ⇒ ni(a) = 0, and where comp(ci, ni) is the
set of (cj , nj) compatible with (ci, ni). For all ci ∈ C, ni ∈
{0, . . . , |VH |}|C|, (cj , nj) ∈ comp(ci, ni) if and only if

• cj is a coloring function that extends ci over Xj , such
that cj(v) ∈ C \ {a ∈ C, ni(a) = 0,∃u ∈ Xi : ci(u) = a}
if v ∈ H.

• for all a ∈ C,

nj(a)



= ni(a)− 1 if cj(v) = a, ni(a) ≥ 1,

and v ∈ H,

∈ {0, . . . , |VH |} if cj(v) = a and

ci(w) 6= a ∀w ∈ Xi,

= ni(a) otherwise.

At the root node r. We have added to r the same gadget as
in Section 3.3. We call f̄ with parameters i = r, ci = 0, ni =
0, pi = |S| − P .

Proof of correctness. This algorithm relies on the fact that
we can keep track of the number of vertices of H in the com-
ponents of G associated with coloring c by using ni. When
the last vertex of a component with color a is “forgotten” at
a forget node i, we know the number of vertices of H in this
component, and thus we know how many edges of H would

not be cut if H was complete (this is the term
nj(a)(nj(a)+1)

2

or
nj(a)(nj(a)−1)

2 ). Since H is in general not complete, we
count the uncut edges of H̄ as follows: each such edge is
taken into account when its first endpoint v of color a is
forgotten (this is the term |{uv ∈ H̄, u ∈ Xi, ci(u) = a}|).
We know that, in this way, all uncut edges of H̄ will be
taken into account, as T is a tree decomposition of G+ H̄,
and hence, for each edge in H̄, there is a bag in T contain-
ing its two endpoints. Thus, we can retrieve the number of
edges of H which were not cut. The other parts of f̄ are
similar to those of f .
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Type of Nodes Asymptotic Running Time

Leaf Node O(1)

Introduce Node O(1)

Join Node O(ntw(G+H̄)+3)

Forget Node O(n tw(G+ H̄)2)

Root Node O(1)

Table 3: Running time for computing f̄ on each type of node.

Running time. The running time depending on the type
of nodes is given in Table 3. Since there are O(n)
nodes, O((tw(G+H) + 1)tw(G+H)+1) possible colorings for
each bag, |S| − P + |EH̄ | = O(n2) possible profits, and
O(ntw(G+H̄)+1) possible countings, the overall running time
of the dynamic programming algorithm is O(n2tw(G+H̄)+7).

Theorem 12. PMC can be solved in polynomial time if
tw(G+ H̄) is bounded.

4.2. APX-hardness of GPMC in stars with complete H

We have proved in Section 4.1 that Partial Multi-
cut is polynomial-time solvable in graphs with bounded
tw(G + H̄). We now prove that the generalized version
of this problem, GPMC, is actually APX-hard in these
graphs. This result may seem surprising considering the
fact that the algorithm for PMC in graphs with bounded
tw(G + H) can be extended naturally to handle arbitrary
profits in pseudopolynomial time, as shown in Section 3.3.
However, the one given in Section 4.1 cannot be adapted to
GPMC, as in this case the edges of H̄ have no associated
profit, and hence cannot be used to compute the total profit
of the uncut edges of H.

Theorem 13. The Generalized Partial Multicut
problem with unit weights is APX-hard if G = (V,E) is
a star and H is complete.

Proof. We reduce MC with arbitrary HMC = (VMC , EMC)
to GPMC with complete HGPMC = (VMC , EGPMC), i.e.,
HGPMC is the complete graph on VMC , and in both prob-
lems G = (V,E) is a star with unit weights. As in [16], we
can suppose w.l.o.g. that the central vertex r of G is not
a terminal in MC and thus not in GPMC, and that every
leaf is a terminal, i.e., that VMC = V \ {r}. We define the
profits of pairs of terminals (u, v) ∈ EGPMC to be

puv =

{
|EGPMC | if (u, v) ∈ EMC ,

1 otherwise.

We set the target profit to be P = |EMC ||EGPMC |.

For any w ≥ 0, we prove that there exists a solution of
size w to MC if and only if there exists a solution of size w
and profit at least P for GPMC.

(⇒ direction) Suppose that a solution to an instance of
MC is a set of edges E∗ of size w. Then, in the associated
instance of GPMC, E∗ disconnects each pair of terminals
that has a profit |EGPMC |, therefore the profit retrieved is
at least |EMC ||EGPMC |.

(⇐ direction) Suppose that a set of edges E∗ of size w is
a solution to an instance of GPMC, i.e., that it disconnects
pairs of terminals in HGPMC with a total profit at least P .
Suppose now that there exists a pair of terminals (u, v) ∈
EMC that is not disconnected in G by the removal of E∗.
Then, even if every other pair of terminals in EGPMC is
disconnected, the associated profit is

(|EMC | − 1)|EGPMC |+ (|EGPMC | − |EMC |) = P − |EMC |,

which is a contradiction. Therefore, in any solution E∗ to
this GPMC instance, all pairs of terminals in EMC must be
disconnected. Since the set of edges E∗ has size w, it is a
solution to the associated MC instance.

The encoding size of the additional input in GPMC is
polynomial in the size of the MC instance, as at most |V |2
profits of value |EGPMC | ≤ |V |2 must be encoded, and the
reduction itself can be performed in a time polynomial in
the size of the MC instance. Since MC is APX-hard in
stars with unit weights [16], the result follows.

Intuitively, the proof of Theorem 13 shows that we can
emulate an arbitrary HMC for MC with a complete HGPMC

in GPMC using hierarchical profits.

5. Conclusion and open problems

We summarize our main results, and highlight two open
questions:

• We prove that PMC is strongly NP-hard in directed
stars, while it is tractable in rooted trees, and while in
addition MC is tractable in directed trees. This is the
first such case we are aware of: are there other cases
where MC and PMC behave differently, with respect
to their computational complexity?

• We prove that MC remains APX-hard even if tw(G)+
tw(H) = 2, while it was known to be FPT w.r.t.
tw(G+H).

• We prove that, like MC, PMC is FPT w.r.t. tw(G +
H), and that GPMC, which is weakly NP-hard when
tw(G + H) = O(1), admits both a pseudopolynomial-
time algorithm and an FPTAS in this case.
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• We prove that PMC (and hence MC) can be solved
in polynomial time when tw(G + H̄) = O(1), general-
izing the tractability of MC when tw(G) = O(1) and
tw(H̄) = 0. Can we also prove that (P)MC is not FPT
w.r.t. tw(G+ H̄)?

• We finally prove that, on the contrary, GPMC remains
APX-hard even if tw(G + H̄) = 1 and all profits are
polynomially bounded.
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ticut is FPT. In Proceedings of the 43rd annual ACM symposium
on Theory of computing, STOC ’11, pages 459–468. ACM, 2011.

[7] Bugra Caskurlu, Vahan Mkrtchyan, Ojas Parekh, and K. Sub-
ramani. Partial vertex cover and budgeted maximum coverage
in bipartite graphs. SIAM J. Discrete Math., 31(3):2172–2184,
2017.

[8] Shuchi Chawla, Robert Krauthgamer, Ravi Kumar, Yuval Ra-
bani, and D. Sivakumar. On the hardness of approximating mul-
ticut and sparsest-cut. Computational Complexity, 15(2):94–114,
2006.

[9] Sunil Chopra and Mendu R. Rao. On the multiway cut polyhe-
dron. Networks, 21:51–89, 1991.

[10] Marie-Christine Costa and Alain Billionnet. Multiway cut and
integer flow problems in trees. Electronic Notes in Discrete Math-
ematics, 17:105–109, 2004.

[11] Marie-Christine Costa, Lucas Létocart, and Frédéric Roupin.
Minimal multicut and maximal integer multiflow: A survey. Eu-
ropean Journal of Operational Research, 162:55–69, 2005. (An
erratum can be found in: C. Bentz, M.-C. Costa, L. Létocart,
F. Roupin. Erratum to “Minimal multicut and maximal integer
multiflow: A survey” [European Journal of Operational Research
162 (1) (2005) 55–69]. European Journal of Operational Research
177 (2007) 1312).

[12] Bruno Courcelle. Graph rewriting: An algebraic and logic ap-
proach. In Jan Van Leeuwen, editor, Handbook of Theoretical
Computer Science, Volume B: Formal Models and Sematics (B),
pages 193–242. Elsevier Science Publishers, 1990.

[13] Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou,
Paul D. Seymour, and Mihalis Yannakakis. The complexity of
multiterminal cuts. SIAM Journal of Computing, 23(4):864–894,
1994.
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