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This paper investigates the resource allocation problem for a multicarrier underlay cognitive radio system, under the assumption
that only statistical Channel State Information (CSI) about the primary channels is available at the secondary user.More specifically,
wemaximize the system utility under primary and secondary user outage constraints and the total power constraint.The secondary
user transmission is also constrained by the interference threshold imposed by the primary user. Moreover, the secondary
receiver adapts its decoding strategy, which is either treating interference as noise or using successive interference cancellation
or superposition coding. This leads to a nonconvex optimization problem, with either perfect or statistical CSI. Consequently, we
propose a sequential-based algorithm to efficiently obtain a solution to the problem.The simulation results show that the sequential
algorithm is convergent and that our global proposed scheme achieves larger secondary and sum rates than other algorithms where
the decoding strategy is not adapted.

1. Introduction

The time-varying channel is one of the most challeng-
ing designs in wireless communication systems. Dynamic
resource allocation algorithms have been developed for this
channel type, incorporating different elements of adaptation,
in order to optimally utilize the available resources. These
dynamic allocation procedures present a significant improve-
ment over constant resource allocation strategies. One of the
common studied scenarios for wireless communications is
the cognitive radio (CR) channel, where the unlicensed user
(known as the secondary user (SU)) coexists with the licensed
user (the primary user (PU)) in the same band under an
interference threshold constraint.

Due to their flexibility in allocating resources among SUs,
multicarrier transmissions such as Orthogonal Frequency-
Division Multiplexing (OFDM) are largely used for CR
networks [1]. Adaptive resource allocation for the OFDM
systems has been studied extensively during the past two
decades. A comprehensive survey can be found in [2] and
references therein. Moreover, resource allocation for OFDM-
based CR networks has attracted much attention recently. An

overview of the state-of-the-art research results can be found
in [3]. This issue has been studied for both single-user and
multiuser cases.

Moreover, resource allocation for OFDM-based CR sys-
tem has been the main issue of several research works [4–
6]. The authors in [4] have improved the performance of
cognitive networks by exploiting the so-called multiuser
interference diversity by using the subcarrier allocation. In
[5], two fast resource allocation algorithms were derived
for both real-time and non-real-time services in multiuser
OFDM-based CR networks. The sum capacity of a multiuser
OFDM-based CR system was maximized in [6] while satisfy-
ing the SUs’ proportional rate requirements.

Even though resource allocation for cognitive radio has
indeed been extensively studied in the literature, combining
it with advanced receiver decoding has not yet been studied
widely. In our previous work [7], we have fully detailed
the combination of CR and superposition coding (SC) at
the secondary user and provided the multicarrier power
allocation for multiuser CR systems. We have also provided a
numerical solution for the nonconvex optimization problem
and proposed new results on the robustness of the proposed
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algorithms with imperfect CSI. The original system model
presented in [7] is further studied in the present paper, with
an extension to the more realistic case where the secondary
transmitter and receiver only have statistical CSI on the
primary channels.

In all aforementioned works, it was assumed that perfect
channel knowledge is available at different nodes. However,
knowing the channel perfectly requires perfect channel mea-
surements at the receiver and a perfect feedback link to send
this channel information to the transmitter, which may be
impractical to implement. Thus, several research works have
dealt with the resource allocation subject to partial channel
knowledge for CR systems. More specifically, the impact of
imperfect Channel State Information (CSI) was investigated
in [8–13] with uncertainty, quantization, or estimation errors.
In [8], the authors considered a cognitive underlay scenario
assuming that the secondary receiver has only partial infor-
mation of the link between its transmitter and the primary
receiver.This paper studied different capacity regions consid-
ering average or peak interference constraints at the primary
receiver and introduced the concept of interference outage
allowed by the primary receiver. The same problem was
considered in [9] with average received power constraint at
the primary receiver in a discrete-time block-fading channel
with imperfect CSI. In [10], Suraweera et al. investigated
the impact of imperfect CSI of the SU-PU link on the SU
mean capacity, considering the effect of CSI quantization
with a finite number of quantization levels. The ergodic
capacity maximization problem with quantized information
about CSI available at the SU through a limited feedback
link was studied in [11], while optimum power strategy
and ergodic capacity were derived under outage constraints
in [12]. The impact of noisy CSI on spectral efficiency of
multiuser multicarrier CRs was considered in [13], where
novel interference management schemes were derived based
on different average-case and worst-case models of channel
estimation error. Resource allocation for OFDM-based CR
under primary channel uncertainty was investigated in [14–
16]. The authors in [14, 15] studied the PU chance constraint
which captures the PU system channel uncertainty inherent
to the PU interference. In [16] Gong et al. investigated the
problem of single carrier ergodic rate maximization under
primary user outage constraint by assuming primary system
statistical CSI.

However, the ergodic capacity which consists of the
long-term achievable rate averaging over the time-varying
channels is less viable for real-time applications because it
requires a coding procedure over infinitely many channel
realizations. On the contrary, the statistical CSI is likely to
remain unchanged over a long period of time so that a
lesser amount of information needs to be fed back to the
transmitter. Nevertheless, this may incur outage transmission
under limited delay constraints due to channel fading.Outage
happens whenever the achievable rate is less than the trans-
mission rate.

Furthermore, several works considered the effect of statis-
tical CSI rather than instantaneous channel estimation errors
[17–21]. The authors in [17] have investigated the secondary

achievable rate considering statistical CSI of secondary-
primary link, without considering the interference from the
primary transmitter to the secondary receiver. Taking this
interference into account and assuming that the SU has per-
fect CSI of this interfering link, the authors in [18] designed
the optimal and suboptimal power allocation approaches.
In [19], Smith et al. studied the impact of limited channel
knowledge on theCR system capacity by comparing the effect
of a statistical CSI and an erroneous instantaneous CSI of the
primary channel gains. In [20], the authors investigated the
effect of statistical CSI on all the channels for the primary and
secondary links on the SU capacity without addressing the
power allocation problem. Finally, in [21], the authors studied
the power allocation problem by taking into consideration
statistical CSI about both secondary-primary and primary-
secondary links.

In this paper, we investigate the dynamic resource allo-
cation problem for an underlay cognitive radio system with
the assumption that only statistical CSI on both primary-
primary and secondary-primary links is available at the SU.
More specifically, we focus on the uplink secondary utility
optimization problem under primary and secondary user
outage transmission constraints. In our scenario and due to
the adaptive decoding strategies applied at the secondary
receiver, the secondary achievable rate depends in some cases
on the primary-primary channel, which makes the problem
more complex to resolve. To the best of our knowledge, there
is no existing work that attempts to address the problem
of adaptive decoding in CR systems under statistical CSI
assumption. Compared to our previous conference paper
[22], this paper studies the possibility of using all decoding
strategies at the secondary receiver. In [22], the secondary
receiver was only able to treat interference as noise or use
SIC. In the current paper, however, it can also use SC. This
mathematically complexifies the problem but provides larger
gains in terms of secondary and sum rates.

The main contributions of the paper are highlighted
below:

(i) We design an OFDM-based resource allocation
paradigm for an uplink underlay cognitive radio
system. A heuristic approach is proposed based on
adaptive decoding and power optimization. This
heuristic is designed first for the perfect CSI scenario
by considering a cooperation between primary and
secondary systems. A complete resource allocation
problem is addressed in two steps:
(a) The decoding strategies are identified per sub-

carrier for the SU according to several condi-
tions that will be defined later.The SU can either
treat the interference received from the PU as
noise, or apply SIC or SC.

(b) An optimization problem is then formulated, in
order to maximize the secondary rate and the
sum rate of the system under the constraint of
power budget of each user and of a maximum
allowable interference at the primary receiver.

(ii) We investigate the same problem under the assump-
tion that only statistical CSI on the links between



Mathematical Problems in Engineering 3

both primary and secondary transmitters and the
primary receiver is available at the secondary user.
The problem is solved in three steps:

(a) We determine the outage probabilities corre-
sponding to each achievable rate and constraint
in the perfect CSI-based problem.

(b) We circumvent the prohibitively high computa-
tional complexity of the optimization problem
by solving separable independent problems.

(c) Motivated by the alternating optimization
method [23], we propose an approach that se-
quentially solves a feasibility problemusing dual
decomposition and sequential approximation
algorithm.

The rest of this paper is organized as follows. Section 2
describes the system model and gives an overview on the
decoding strategies at the receivers. Section 3 explains the
proposed adaptive decoding algorithm to solve the resource
allocation problem with full CSI. Section 4 describes the
problem with statistical CSI. Section 5 evaluates the perfor-
mance of the proposed algorithmwith both full and statistical
CSI. Finally, Section 6 concludes the paper.

Notation. Throughout this paper, we use CN(𝜇, 𝜎2) to
indicate the proper Gaussian distribution with mean 𝜇 and
variance 𝜎2. We denote the exponential function as exp(⋅)
while log2(⋅) andP𝑟 stand for the binary logarithmic function
and the probability function, respectively. The expectation of𝑦(𝑥) over 𝑥 is represented by E𝑥{𝑦(𝑥)}.
2. System Model

Similar to our previous paper [7], we consider a cognitive
radio system model composed of one primary cell and
one secondary cell. The primary system occupies a licensed
bandwidth 𝐵 which is divided into 𝐿 adjacent and parallel
subcarriers. The secondary base station (BS) is located at a
distance 𝑑𝑠𝑒𝑐 from the primary BS. All users have a single
antenna. In the considered scenario, the SU needs to adapt
its decoding strategy to avoid disturbing the PU as in the
classic two-user G-IFC [24], with much more constraints.
Consequently, the secondary transmitter has to transmit
when the primary system is either off or under an interference
constraint fixed by the PU. Thus, the secondary transmitter
uses channel interweave when the subbands are currently left
vacant by the primary system [25]; otherwise, it uses channel
underlay. Firstly, we assume that the secondary receiver has
perfect CSI from both primary and secondary transmitters.
We study the uplink transmission in a given time slot. In
the sequel, index 𝑝 refers to the primary system, while
index 𝑠 refers to secondary system.The received primary and
secondary signals in each subcarrier 𝑘 ∈ {1, . . . , 𝐿} can be
written as (see Figure 1)𝑦𝑘𝑝 = ℎ𝑘𝑝𝑝𝑥𝑘𝑝 + ℎ𝑘𝑝𝑠𝑥𝑘𝑠 + 𝑧𝑘𝑝

𝑦𝑘𝑠 = ℎ𝑘𝑠𝑝𝑥𝑘𝑝 + ℎ𝑘𝑠𝑠𝑥𝑘𝑠 + 𝑧𝑘𝑠 (1)

where 𝑦𝑘𝑖 is the channel output and 𝑥𝑘𝑖 is the channel input
corresponding to data 𝑠𝑘𝑖 with power 𝑃𝑘𝑖 per subcarrier. 𝑃𝑖,max
is the maximum transmit power of user 𝑖. ℎ𝑘𝑖𝑗, a zero-mean
complex circular Gaussian variable with variance 𝜆𝑘𝑖𝑗 denotes
the channel gain between transmitter 𝑗 and receiver 𝑖. The
channel gains are assumed to be constant during a transmis-
sion time slot. 𝑧𝑘𝑖 denotes the additive white Gaussian noise
at receiver 𝑖. The noise variance 𝑛𝑘𝑖 = 𝑛0 is the same on each
subcarrier 𝑘.
3. Resource Allocation with Perfect CSI

In this section, we will figure out the expressions of the
achievable rates when perfect CSI is available at the SU,
in order to compare these results with the achievable rates
considering only statistical channel information.

In the studied underlay cognitive scenario, the primary
receiver is unaware of the presence of the secondary signal
and thus cannot adapt its decoding strategy. Consequently, it
always considers interference as noise.The rate of the primary
system is given by

𝑅𝑘𝑝 = 𝐵𝐿 log2(1 + ℎ𝑘𝑝𝑝2 𝑃𝑘𝑝𝑛0 + ℎ𝑘𝑝𝑠2 𝑃𝑘𝑠 ) (2)

On the other hand, the achievable secondary rate depends
on the chosen decoding strategy at the SU. Our proposed
algorithm is executed alternatively between the primary and
the secondary systems. More specifically, given a starting
power allocation P𝑝,0 and P𝑠,0, the SU applies a per subcarrier
decoding strategy which depends on the primary and SU
power allocation obtained from the iteration 𝑛−1. If𝑃𝑘𝑝,(𝑛−1) ̸=0, different decoding strategies for the SU are identified
based on the interference level. The decoding strategy on
each subcarrier 𝑘 at the 𝑛𝑡ℎ iteration is defined according to
both primary and secondary powers in the previous iteration.
These power levels are optimized using waterfilling and
Lagrangian methods for the PU and the SU, respectively, as
will be detailed in the next section. The different decoding
strategies that can be applied at the SU are obtained from the
G-IFC capacity region [24] to differentiate between weak and
strong interference. We derived the additional constraint for
strong interference at the secondary receiver in a cognitive
scenario in our previous paper [26]. In the following, we
present a quick description of these strategies along with their
different achievable rates.

(1) Strategy 1: if 𝑃𝑘𝑝,(𝑛−1) = 0, the secondary receiver
decodes its message error-free and the secondary rate
is defined by

𝑅𝑘𝑠,𝑛 = 𝐵𝐿 log2(1 + ℎ𝑘𝑠𝑠2 𝑃𝑘𝑠,𝑛𝑛0 ) (3)

In the rest of the paper, this strategy is called ’inter-
weave’
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Figure 1: Underlay cognitive channels on subcarrier 𝑘 ∈ {1, . . . , 𝐿}.

(2) Strategy 2: if 𝑃𝑝,(𝑛−1) ̸= 0 and |ℎ𝑘𝑠𝑝|2 < |ℎ𝑘𝑠𝑠|2, the
interference to the SU is weak and is treated as noise.
In this case, the achievable secondary rate is given by

𝑅𝑘𝑠,𝑛 = 𝐵𝐿 log2(1 + ℎ𝑘𝑠𝑠2 𝑃𝑘𝑠,𝑛ℎ𝑘𝑠𝑝2 𝑃𝑘𝑝,𝑛−1 + 𝑛0) (4)

(3) Strategy 3: if 𝑃𝑝,(𝑛−1) ̸= 0 and |ℎ𝑘𝑠𝑝|2 ⩾ |ℎ𝑘𝑠𝑠|2, the
interference on the SU is strong. Strategy 3 corre-
sponds to the case where the interference channel
is larger than the direct channel and interference
should be decoded at the secondary receiver. How-
ever, this strategy is optimal in terms of sum data rate
on the Gaussian interference channel according to
[24], but not necessarily on the considered cognitive
channel. Another constraint must be added in this
case, since the quantity of information transmitted
by the primary transmitter cannot be adapted so that
the secondary receiver can decode it, as the primary
transmitter is totally unaware of the secondary trans-
mission. The additional constraint is the following:
the quantity of information sent by the primary
transmitter that only depends on the primary channel
capacity (from the primary transmitter to the primary
receiver) must be lower than the channel capacity
between the primary transmitter and the secondary
receiver. This constraint provides a new condition on
the channel and power values that has been obtained
in [26]. It is given by𝑎𝑘𝑃𝑘𝑠 ⩾ 𝑐𝑘 (5)

where 𝑎𝑘 = ℎ𝑘𝑠𝑝2 ℎ𝑘𝑝𝑠2 − ℎ𝑘𝑝𝑝2 ℎ𝑘𝑠𝑠2
𝑐𝑘 = 𝑛0 (ℎ𝑘𝑝𝑝2 − ℎ𝑘𝑠𝑝2) (6)

If constraint (5) is verified, SIC can be applied. Then,
the achievable secondary rate is

𝑅𝑘𝑠,𝑛 = 𝐵𝐿 log2(1 + ℎ𝑘𝑠𝑠2 𝑃𝑘𝑠,𝑛𝑛0 ) (7)

This rate will be referred as 𝑅𝑘,𝑆𝐼𝐶𝑠,𝑛 in the rest of the
paper

(4) Strategy 4: if 𝑃𝑝,(𝑛−1) ̸= 0 and |ℎ𝑘𝑠𝑝|2 ⩾ |ℎ𝑘𝑠𝑠|2 but (5) is
not verified, the ability to apply superposition coding
(SC) at the SU is tested subject to the validation of the
following set of inequalities, derived in our previous
paper [7]:

(ℎ𝑘𝑝𝑝2 − ℎ𝑘𝑠𝑝2)ℎ𝑘𝑝𝑠2 ℎ𝑘𝑠𝑝2 < 𝑃𝑘𝑠,𝑛𝑛0 (8a)

𝑃𝑘𝑠 𝑎𝑘 < 𝑐𝑘 (8b)

Thus, the secondary achievable rate can be given by

𝑅𝑘𝑠,𝑛 = 𝐵𝐿 log2(1 + 𝛼𝑘 ℎ𝑘𝑠𝑠2 𝑃𝑘𝑠,𝑛𝑛0 )
+ 𝐵𝐿 log2(1 + (1 − 𝛼𝑘) ℎ𝑘𝑠𝑠2 𝑃𝑘𝑠,𝑛𝛼𝑘 ℎ𝑘𝑠𝑠2 𝑃𝑘𝑠,𝑛 + ℎ𝑘𝑠𝑝2 𝑃𝑘𝑝,𝑛 + 𝑛0)

(9)

with

𝛼𝑘 = (ℎ𝑘𝑠𝑝2 − ℎ𝑘𝑝𝑝2) 𝑛0 + ℎ𝑘𝑝𝑠2 ℎ𝑘𝑠𝑝2 𝑃𝑘𝑠,𝑛ℎ𝑘𝑝𝑝2 ℎ𝑘𝑠𝑠2 𝑃𝑘𝑠,𝑛 (10)

(5) Strategy 5: if 𝑃𝑝,(𝑛−1) ̸= 0 and |ℎ𝑘𝑠𝑝|2 ⩾ |ℎ𝑘𝑠𝑠|2 but
neither SIC nor SC can be applied, the SU is turned
off.

These different decoding strategies lead to four differ-
ent expressions for the secondary rate defined in different
domains and described in (11) to (14). 𝑅𝑘,𝑖𝑛𝑡𝑠,𝑛 is the achievable
ratewhen the interference is treated as noise.𝑅𝑘,𝑆𝐼𝐶𝑠,𝑛 represents
both SIC and interweave cases and 𝑅𝑘,𝑆𝐶𝑠,𝑛 the achievable rate
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when SC is applied. 𝑅𝑘,𝑜𝑓𝑓𝑠,𝑛 denotes the null rate when the
secondary transmitter is turned off.

𝑅𝑘,𝑖𝑛𝑡𝑠,𝑛 = 𝐵𝐿 log2(1 + ℎ𝑘𝑠𝑠2 𝑃𝑘𝑠,𝑛ℎ𝑘𝑠𝑝2 𝑃𝑘𝑝,𝑛−1 + 𝑛0) , 𝑘 ∈ S2 (11)

𝑅𝑘,𝑆𝐼𝐶𝑠,𝑛 = 𝐵𝐿 log2(1 + ℎ𝑘𝑠𝑠2 𝑃𝑘𝑠,𝑛𝑛0 ) , 𝑘 ∈ S1 and S3 (12)

𝑅𝑘,𝑆𝐶𝑠,𝑛 = 𝐵𝐿 log2(1 + 𝛼𝑘 ℎ𝑘𝑠s2 𝑃𝑘𝑠,𝑛𝑛0 ) + 𝐵𝐿
⋅ log2(1 + (1 − 𝛼𝑘) ℎ𝑘𝑠𝑠2 𝑃𝑘𝑠,𝑛𝛼𝑘 ℎ𝑘𝑠𝑠2 𝑃𝑘𝑠,𝑛 + ℎ𝑘𝑠𝑝2 𝑃𝑘𝑝,𝑛 + 𝑛0) ,

𝑘 ∈ S4

(13)

𝑅𝑘,𝑜𝑓𝑓𝑠,𝑛 = 0, 𝑘 ∈ S5 (14)

S1 = {𝑘 ∈ {1, . . . , 𝐿} for “Interweave”}
S2 = {𝑘 ∈ {1, . . . , 𝐿}

when interference is treated as a noise}
S3 = {𝑘 ∈ {1, . . . , 𝐿} for “SIC”}
S4 = {𝑘 ∈ {1, . . . , 𝐿} for “SC”}
S5 = {𝑘 ∈ {1, . . . , 𝐿}

when the secondary is turned off}

(15)

To optimally allocate the available power on different
subcarriers, the power optimization problem is written, at the𝑛𝑡ℎ iteration, as

max
P𝑠,𝑛

𝑅𝑠,𝑛 (16a)

s.t. 𝐿∑
𝑘=1

𝑃𝑘𝑠,𝑛 ⩽ 𝑃𝑠,𝑚𝑎𝑥 (16b)

s.t. 𝑃𝑘𝑠,𝑛 ⩾ 0 ∀𝑘 ∈ {1, . . . , 𝐿} (16c)

s.t. ℎ𝑘𝑝𝑠2 𝑃𝑘𝑠,𝑛 ⩽ 𝐼𝑘𝑡ℎ ∀𝑘 ∉ S1 (16d)

s.t. (5) , ∀𝑘 ∈ S3 (16e)

s.t. (8a) and (8b) , ∀𝑘 ∈ S4 (16f)

where𝑅𝑠,𝑛 = ∑
𝑘∈S2

𝑅𝑘,𝑖𝑛𝑡𝑠,𝑛 + ∑
𝑘∈S1∩S3

𝑅𝑘,𝑆𝐼𝐶𝑠,𝑛 + ∑
𝑘∈S4

𝑅𝑘,𝑆𝐶𝑠,𝑛 (17)

and 𝐼𝑘𝑡ℎ is the interference threshold. The solution of problem
(16a), (16b), (16c), (16d), (16e), and (16f) is detailed and
analyzed in our previous paper [7].

4. Resource Allocation with Statistical CSI

In this section, we suppose that the SU has only statistical
knowledge about the channel gains of the links between
both primary and secondary transmitters and the primary
receiver. Since ℎ𝑘𝑖𝑗 ∼ CN(0, 𝜆𝑘𝑖𝑗) with (𝑖, 𝑗) ∈ {𝑠, 𝑝}2, |ℎ𝑘𝑖𝑗|2 is
exponentially distributed and its probability density function
is expressed by (1/𝜆𝑘𝑖𝑗)exp−|ℎ𝑘𝑖𝑗|2/𝜆𝑘𝑖𝑗 . We now assume that only𝜆𝑘𝑝𝑝 and 𝜆𝑘𝑝𝑠 are known at the secondary receiver.Then, in this
section, we first study the convexity of the power optimization
problem. Different outage terms are investigated. The first
one represents the outage on the secondary rate when SC
is applied, since this rate depends on |ℎ𝑘𝑝𝑝|2 and |ℎ𝑘𝑝𝑠|2. The
second one, which is called ”interference outage probability,”
is related to (16d). The other outage probabilities result from
the SIC and SC constraints in (5) and (8a) and (8b). Only
the interference outage probability is shown to be convex;
consequently, the optimization problem is nonconvex. In
the next section, a sequential approximation algorithm is
proposed to solve the problem.

4.1. Determination of the Outage Probabilities. In this section,
we detail the outage probabilities on different constraints. The
index 𝑛 is dropped to simplify equations writing.

4.1.1. Interference Constraint with Statistical CSI. The outage
probability on constraint (16d) is

P𝑟 {ℎ𝑘𝑝𝑠2 𝑃𝑘𝑠 > 𝐼𝑘𝑡ℎ} ⩽ 𝜃𝑘 (18)

where 𝜃𝑘 is the authorized interference outage. Therefore, the
interference outage constraint can be written as

exp−𝐼
𝑘
𝑡ℎ/𝑃
𝑘
𝑠 𝜆
𝑘
𝑝𝑠 ⩽ 𝜃𝑘 (19)

which is equivalent to

𝑃𝑘𝑠 ⩽ 𝐼𝑘𝑡ℎ𝜆𝑘𝑝𝑠log2 (1/𝜃𝑘) (20)

4.1.2. SIC Constraint with Statistical CSI. The outage proba-
bility on constraint (5) is calculated with

P𝑟
{{{

ℎ𝑘𝑝𝑝2 𝑃𝑘𝑝𝑛0 + ℎ𝑘𝑝𝑠2 𝑃𝑘𝑠 > ℎ𝑘𝑠𝑝2 𝑃𝑘𝑝𝑛0 + ℎ𝑘𝑠𝑠2 𝑃𝑘𝑠
}}} ⩽ 𝜇𝑘 (21)

and it is equal to

exp−]
𝑘𝑛0/𝜆

𝑘
𝑝𝑝𝑃
𝑘
𝑝

11 + ]𝑘 (𝑃𝑘𝑠 /𝑃𝑘𝑝) (𝜆𝑘𝑝𝑠/𝜆𝑘𝑝𝑝) ⩽ 𝜇𝑘 (22)

where

]𝑘 = ℎ𝑘𝑠𝑝2 𝑃𝑘𝑝𝑛0 + ℎ𝑘𝑠𝑠2 𝑃𝑘𝑠 (23)
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4.1.3. SC Constraints with Statistical CSI. If statistical CSI on|ℎ𝑘𝑝𝑝|2 and |ℎ𝑘𝑝𝑠|2 is available at the SU, outage probability has
to be calculated on 𝛼𝑘 and on both constraints (8a) and (8b).

We recall the equation with which 𝛼𝑘 has been calculated
with perfect CSI ℎ𝑘𝑝𝑝2ℎ𝑘𝑝𝑠2 𝑃𝑘𝑠 + 𝑛0 = ℎ𝑘𝑠𝑝2𝛼𝑘 ℎ𝑘𝑠𝑠2 𝑃𝑘𝑠 + 𝑛0 (24)

which can be equivalently written asℎ𝑘𝑝𝑝2ℎ𝑘𝑠𝑝2 = ℎ𝑘𝑝𝑠2 𝑃𝑘𝑠 + 𝑛0𝛼𝑘 ℎ𝑘𝑠𝑠2 𝑃𝑘𝑠 + 𝑛0 (25)

With statistical CSI, constraint (24) becomes

Pr
{{{

ℎ𝑘𝑝𝑝2ℎ𝑘𝑠𝑝2 = ℎ𝑘𝑝𝑠2 𝑃𝑘𝑠 + 𝑛0𝛼𝑘 ℎ𝑘𝑠𝑠2 𝑃𝑘𝑠 + 𝑛0
}}} = 1 (26)

This constraint can be written as𝜆𝑘𝑝𝑝ℎ𝑘𝑠𝑝2 +
𝜆𝑘𝑝𝑠𝑃𝑘𝑠 + 𝑛0𝛼𝑘 ℎ𝑘𝑠𝑠2 𝑃𝑘𝑠 + 𝑛0 = 1 (27)

which is equivalent to

𝛼𝑘 = ℎ𝑘𝑠𝑝2 𝜆𝑘𝑝𝑠𝑃𝑘𝑠 + 𝜆𝑘𝑝𝑝𝑛0ℎ𝑘𝑠𝑠2 𝑃𝑘𝑠 (ℎ𝑘𝑠𝑝2 − 𝜆𝑘𝑝𝑝) (28)

The proof is given in the appendix.
The outage probability on constraint (8a) is calculated as

P𝑟

{{{{{
(ℎ𝑘𝑝𝑝2 − ℎ𝑘𝑠𝑝2)ℎ𝑘𝑝𝑠2 ℎ𝑘𝑠𝑝2 ⩾ 𝑃𝑘𝑠𝑛0

}}}}} ⩽ 𝜌𝑘 (29)

and it is equivalent to

exp−|ℎ
𝑘
𝑠𝑝|
2/𝜆𝑘𝑝𝑝

11 + ℎ𝑘𝑠𝑝2 𝑃𝑘𝑠 𝜆𝑘𝑝𝑠/𝑛0 ⩽ 𝜌𝑘 (30)

The outage probability on constraint (8b) is calculated as

P𝑟
{{{

ℎ𝑘𝑝𝑝2 𝑃𝑘𝑝𝑛0 + ℎ𝑘𝑝𝑠2 𝑃𝑘𝑠 ⩽ ℎ𝑘𝑠𝑝2 𝑃𝑘𝑝𝑛0 + ℎ𝑘𝑠𝑠2 𝑃𝑘𝑠
}}} ⩽ 𝛾𝑘 (31)

which can be equivalently formulated as

1 − P𝑟
{{{

ℎ𝑘𝑝𝑝2 𝑃𝑘𝑝𝑛0 + ℎ𝑘𝑝𝑠2 𝑃𝑘𝑠 > ℎ𝑘𝑠𝑝2 𝑃𝑘𝑝𝑛0 + ℎ𝑘𝑠𝑠2 𝑃𝑘𝑠
}}} ⩽ 𝛾𝑘 (32)

The outage probability on (8b) can be then deduced from (22)
and it is equal to

exp−]
𝑘𝑛0/𝜆

𝑘
𝑝𝑝𝑃
𝑘
𝑝

11 + ]𝑘 (𝑃𝑘𝑠 /𝑃𝑘𝑝) (𝜆𝑘𝑝𝑠/𝜆𝑘𝑝𝑝) ⩾ 1 − 𝛾𝑘 (33)

Consequently, the power allocation problem with statis-
tical CSI and outage limits 𝜇𝑘, 𝜃𝑘, 𝜌𝑘, and 𝛾𝑘 is formulated
as

max
P𝑠

�̃�𝑠 (34a)

s.t. exp−]
𝑘𝑛0/𝜆

𝑘
𝑝𝑝𝑃
𝑘
𝑝

11 + ]𝑘 (𝑃𝑘𝑠 /𝑃𝑘𝑝) (𝜆𝑘𝑝𝑠/𝜆𝑘𝑝𝑝)
⩽ 𝜇𝑘, ∀𝑘 ∈ S3

(34b)

s.t. exp−𝐼
𝑘
𝑡ℎ/𝑃
𝑘
𝑠 𝜆
𝑘
𝑝𝑠 ⩽ 𝜃𝑘, ∀𝑘 ∉ S1 (34c)

s.t. exp−|ℎ
𝑘
𝑠𝑝|
2/𝜆𝑘𝑝𝑝

11 + ℎ𝑘𝑠𝑝2 𝑃𝑘𝑠 𝜆𝑘𝑝𝑠/𝑛0 ⩽ 𝜌𝑘,
∀𝑘 ∈ S4

(34d)

s.t. exp−]
𝑘𝑛0/𝜆

𝑘
𝑝𝑝𝑃
𝑘
𝑝

11 + ]𝑘 (𝑃𝑘𝑠 /𝑃𝑘𝑝) (𝜆𝑘𝑝𝑠/𝜆𝑘𝑝𝑝)
⩾ 1 − 𝛾𝑘, ∀𝑘 ∈ S4

(34e)

s.t. 𝐿∑
𝑘=1

𝑃𝑘𝑠 ⩽ 𝑃𝑠,max (34f)

s.t. 𝑃𝑘𝑠,𝑛 ⩾ 0, ∀𝑘 ∈ {1, . . . , 𝐿} (34g)

where

�̃�𝑠 = ∑
𝑘∈S2

𝑅𝑘,𝑖𝑛𝑡𝑠,𝑛 + ∑
𝑘∈S1∩S3

𝑅𝑘,𝑆𝐼𝐶𝑠,𝑛 + ∑
𝑘∈S4

𝑅𝑘,𝑆𝐶𝑠,𝑛 (35)

The presented optimization problem is nonconvex, due
to the nonconvexity of constraints (34b) and (34e). We aim
to maximize these constraints using the first Taylor approxi-
mation in order to transform the optimization problem into
a convex problem.

4.2. Optimization Problem with Taylor Approximation. In
this section, the first-order Taylor approximation is used on
(34b) and (34e) in order to obtain convex constraints. The
first-order Taylor approximation allows turning a nonconvex
constraint function into an affine function and consequently
turning the original nonconvex problem into a convex one.
Using it iteratively corresponds to solving the problem
through a series of approximation by convex optimization
problems, called ’sequential convex approximation’. The final
solution of the iterative algorithm is a lower bound on the
optimal data rate. Since the first-order Taylor approximation
is applied on the constraints, it is not theoretically possible
to prove that the algorithm converges, but numerical conver-
gence on the data rate at 𝜎 = 2% is obtained in less than 10
iterations in average. Due to the large complexity of this prob-
lem with several nonconvex constraint functions, we have
decided to use the first-order Taylor approximation for its
simplicity. However, other sequential convex approximation
techniques such as the second-order Taylor approximation
(providing convex functions instead of affine ones) or particle
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methods that fit data with either an affine or a quadratic
convex function could have been used [27, 28].

4.2.1. Applying Taylor Approximation on (34b). The outage
probability on the SIC constraint (34b) is equivalent to

𝑛0 ℎ𝑘𝑠𝑝2𝜆𝑘𝑝𝑝 (𝑛0 + ℎ𝑘𝑠𝑠2 𝑃𝑘𝑠 )
+ log2(1 + 𝜆𝑘𝑝𝑠 ℎ𝑘𝑠𝑝2 𝑃𝑘𝑠𝜆𝑘𝑝𝑝 (𝑛0 + ℎ𝑘𝑠𝑠2 𝑃𝑘𝑠 ))

⩾ log2 ( 1𝜇𝑘)
(36)

The first ratio in (36) is convex in 𝑃𝑘𝑠 . We can write it as
follows:

𝑛0 ℎ𝑘𝑠𝑝2𝜆𝑘𝑝𝑝 (𝑛0 + ℎ𝑘𝑠𝑠2 𝑃𝑘𝑠 ) = ℎ𝑘𝑠𝑝2𝜆𝑘𝑝𝑝 11 + ℎ𝑘𝑠𝑠2 𝑃𝑘𝑠 /𝑛0 (37)

Using Taylor approximation at feasible point 𝑃𝑘𝑠 , we
obtain

11 + ℎ𝑘𝑠𝑠2 𝑃𝑘𝑠 /𝑛0
= 11 + (ℎ𝑘𝑠𝑠2 /𝑛0) 𝑃𝑘𝑠

− ℎ𝑘𝑠𝑠2𝑛0 (1 + (ℎ𝑘𝑠𝑠2 /𝑛0) 𝑃𝑘𝑠 )2 (𝑃
𝑘
𝑠 − 𝑃𝑘𝑠 )

(38)

The SIC outage probability is then formulated as

ℎ𝑘𝑠𝑝2𝜆𝑘𝑝𝑝 ( 11 + (ℎ𝑘𝑠𝑠2 /𝑛0) 𝑃𝑘𝑠
− ℎ𝑘𝑠𝑠2𝑛0 (1 + (ℎ𝑘𝑠𝑠2 /𝑛0) 𝑃𝑘𝑠 )2 (𝑃

𝑘
𝑠,𝑛 − 𝑃𝑘𝑠 ))

+ log2(1 + 𝜆𝑘𝑝𝑠 ℎ𝑘𝑠𝑝2 𝑃𝑘𝑠,𝑛𝜆𝑘𝑝𝑝 (𝑛0 + ℎ𝑘𝑠𝑠2 𝑃𝑘𝑠,𝑛)) ⩾ log2 ( 1𝜇𝑘) ,
∀𝑘 ∈ S3

(39)

which is a convex constraint.

4.2.2. Applying Taylor Approximation on (34e). The outage
probability on the SC constraint in (34e) is equivalent to

𝑛0 ℎ𝑘𝑠𝑝2𝜆𝑘𝑝𝑝 (𝑛0 + ℎ𝑘𝑠𝑠2 𝑃𝑘𝑠 )
+ log2(1 + 𝜆𝑘𝑝𝑠 ℎ𝑘𝑠𝑝2 𝑃𝑘𝑠𝜆𝑘𝑝𝑝 (𝑛0 + ℎ𝑘𝑠𝑠2 𝑃𝑘𝑠 ))

⩽ log2 ( 11 − 𝛾𝑘)
(40)

and it is equal to

𝑛0 ℎ𝑘𝑠𝑝2𝜆𝑘𝑝𝑝 (𝑛0 + ℎ𝑘𝑠𝑠2 𝑃𝑘𝑠 )
+ log2 ((𝜆𝑘𝑝𝑠 ℎ𝑘𝑠𝑝2 + 𝜆𝑘𝑝𝑝 ℎ𝑘𝑠𝑠2)𝑃𝑘𝑠 + 𝜆𝑘𝑝𝑝𝑛0)
− log2 (𝜆𝑘𝑝𝑝 (ℎ𝑘𝑠𝑠2 𝑃𝑘𝑠 + 𝑛0)) ⩽ log2 ( 11 − 𝛾𝑘)

(41)

The only concave function in this constraint log2((𝜆𝑘𝑝𝑠|ℎ𝑘𝑠𝑝|2 +𝜆𝑘𝑝𝑝|ℎ𝑘𝑠𝑠|2)𝑃𝑘𝑠 + 𝜆𝑘𝑝𝑝𝑛0) can be approximated using first Taylor
approximation at feasible point 𝑃𝑘𝑠 with

log2 ((𝜆𝑘𝑝𝑠 ℎ𝑘𝑠𝑝2 + 𝜆𝑘𝑝𝑝 ℎ𝑘𝑠𝑠2) 𝑃𝑘𝑠 + 𝜆𝑘𝑝𝑝𝑛0)
= log2 ((𝜆𝑘𝑝𝑠 ℎ𝑘𝑠𝑝2 + 𝜆𝑘𝑝𝑝 ℎ𝑘𝑠𝑠2) 𝑃𝑘𝑠 + 𝜆𝑘𝑝𝑝𝑛0)
+ 1
ln 2

⋅ 𝜆𝑘𝑝𝑠 ℎ𝑘𝑠𝑝2 + 𝜆𝑘𝑝𝑝 ℎ𝑘𝑠𝑠2(𝜆𝑘𝑝𝑠 ℎ𝑘𝑠𝑝2 + 𝜆𝑘𝑝𝑝 ℎ𝑘𝑠𝑠2)𝑃𝑘𝑠 + 𝜆𝑘𝑝𝑝𝑛0 (𝑃𝑘𝑠 − 𝑃𝑘𝑠 )
(42)

Thus, the outage probability on (34e) can be formulated as

𝑛0 ℎ𝑘𝑠𝑝2𝜆𝑘𝑝𝑝 (𝑛0 + ℎ𝑘𝑠𝑠2 𝑃𝑘𝑠 ) − log2 (𝜆𝑘𝑝𝑝 (ℎ𝑘𝑠𝑠2 𝑃𝑘𝑠 + 𝑛0))
+ log2 ((𝜆𝑘𝑝𝑠 ℎ𝑘𝑠𝑝2 + 𝜆𝑘𝑝𝑝 ℎ𝑘𝑠𝑠2) 𝑃𝑘𝑠 + 𝜆𝑘𝑝𝑝𝑛0)
+ 1
ln 2

⋅ 𝜆𝑘𝑝𝑠 ℎ𝑘𝑠𝑝2 + 𝜆𝑘𝑝𝑝 ℎ𝑘𝑠𝑠2(𝜆𝑘𝑝𝑠 ℎ𝑘𝑠𝑝2 + 𝜆𝑘𝑝𝑝 ℎ𝑘𝑠𝑠2)𝑃𝑘𝑠 + 𝜆𝑘𝑝𝑝𝑛0 (𝑃𝑘𝑠 − 𝑃𝑘𝑠 )
⩽ log2 ( 11 − 𝛾𝑘)

(43)

which is a convex constraint.
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4.3. Solving the Optimization Problem by Decomposition. The
investigated optimization problem can be efficiently solved
using the Lagrange dual decomposition method, since it is
separable, by decomposing the original problem into three
subproblems depending on the decoding strategies applied
at the SU. Dual decomposition [29] is optimal for convex
problems and leads to the Karush-Kuhn-Tucker equations.
For nonconvex problems, a duality gap remains between
the solution obtained in the dual space and the solution of
the primary problem. However, it was shown in [30] that
if the problem concerns a large enough number of parallel
subcarriers, the duality gap tends to zero.This very important
result justifies why dual decomposition is often used to solve
multicarrier resource allocation optimization problems, as,
for instance, in papers [31, 32].

In this section, we firstly present the decomposed opti-
mization problem and thenwe calculate the first-order Taylor
approximation of each nonconvex constraint. Finally, we
propose a general solution of the investigated problem using
dual decomposition. As mentioned in the previous section,
our algorithm is iterative and index 𝑛 is reintroduced in this
section to denote the iteration.

First of all, we write the Lagrangian of problem (34a),
(34b), (34c), (34d), (34e), (34f), and (34g) taking into account
constraints (34f) and (34g) as

L (𝑃𝑘𝑠,𝑛, 𝜆) = −𝑅𝑠,𝑛 + 𝜆( 𝐿∑
𝑘=1

𝑃𝑘𝑠,𝑛 − 𝑃𝑠,max) − 𝐿∑
𝑘=1

𝜇𝑘𝑃𝑘𝑠,𝑛 (44)

with 𝜆, 𝜇𝑘 ⩾ 0 being Lagrange multipliers. 𝜇𝑘 can be dropped
since it is a slack variable. Let 𝐷 be the set specified by
the remaining constraints in (34c), (34b), (34d), and (34e).
Consequently, problem (34a), (34b), (34c), (34d), (34e), (34f),
and (34g) can be given by three subproblems 𝐶𝑖𝑛𝑡, 𝐶𝑆𝐼𝐶, and𝐶𝑆𝐶 defined over S2, S3, and S4, respectively, as𝐶𝑖𝑛𝑡 : max

{𝑃𝑘𝑠,𝑛}𝑘∈S2

∑
𝑘∈S2

𝑅𝑘,𝑖𝑛𝑡𝑠,𝑛 − 𝜇𝑠,𝑛 ∑
𝑘∈S2

𝑃𝑘𝑠,𝑛
𝑃𝑘𝑠,𝑛 ⩽ 𝐼𝑘𝑡ℎ𝜆𝑘𝑝𝑠 log (1/𝜃𝑘) , ∀𝑘 ∈ S2

(45a)

𝐶𝑆𝐼𝐶 : max
{𝑃𝑘𝑠,𝑛}𝑘∈S3

∑
𝑘∈S3

𝑅𝑘,𝑆𝐼𝐶𝑠,𝑛 − 𝜇𝑠,𝑛 ∑
𝑘∈S3

𝑃𝑘𝑠,𝑛
𝑃𝑘𝑠,𝑛 ⩽ 𝐼𝑘𝑡ℎ𝜆𝑘𝑝𝑠 log (1/𝜃𝑘) , ∀𝑘 ∈ S3

𝐸𝑘𝑃𝑘𝑠,𝑛 ⩾ 𝐹𝑘, ∀𝑘 ∈ S3

(45b)

𝐶𝑆𝐶 : max
{𝑃𝑘𝑠,𝑛}𝑘∈S4

∑
𝑘∈S4

𝑅𝑘,𝑆𝐶𝑠,𝑛 − 𝜇𝑠,𝑛 ∑
𝑘∈S4

𝑃𝑘𝑠,𝑛
𝑃𝑘𝑠,𝑛 ⩽ 𝐼𝑘𝑡ℎ𝜆𝑘𝑝𝑠 log (1/𝜃𝑘) , ∀𝑘 ∈ S4

𝐺𝑘𝑃𝑘𝑠,𝑛 > 𝐻𝑘, ∀𝑘 ∈ S4

𝐸𝑘𝑃𝑘𝑠,𝑛 ⩽ 𝐽𝑘, ∀𝑘 ∈ S4

(45c)

where the subtracted term in the objective function rep-
resents the total power constraint which is common to all
subproblems. Problem (45a), (45b), and (45c) reformulates
the aforementioned problem introducing the results obtained
in the previous section. In this section, we proceed to the
resolution of three subproblems in order to find a general
solution for problem (45a), (45b), and (45c). Note that the
Lagrange dual function associated with (45a), (45b), and
(45c) can be defined as

𝑔 (𝜆) = max
p𝑠,𝑛

L (𝑃𝑘𝑠,𝑛, 𝜆) − 𝜆( 𝐿∑
𝑘=1

𝑃𝑘𝑠,𝑛 − 𝑃𝑠,max) (46)

where 𝑝𝑠,𝑛 is constant.
The subproblem when interference is treated as noise can

be formulated as 𝐶𝑖𝑛𝑡:
max
{𝑃𝑘𝑠,𝑛}𝑘∈S2

∑
𝑘∈S2

𝑅𝑘,𝑖𝑛𝑡𝑠,𝑛 − 𝜇𝑠,𝑛 ∑
𝑘∈S2

𝑃𝑘𝑠,𝑛
𝑃𝑘𝑠,𝑛 ⩽ 𝐼𝑘𝑡ℎ𝜆𝑘𝑝𝑠 log (1/𝜃𝑘) , ∀𝑘 ∈ S2

𝑃𝑘𝑠,𝑛 ⩾ 0, ∀𝑘 ∈ S2

(47)

To solve subproblem 𝐶𝑖𝑛𝑡, let us define the unconstrained
subproblem

𝐶𝑖𝑛𝑡 : max
{𝑃𝑘𝑠,𝑛}𝑘∈S2

∑
𝑘∈S2

𝑅𝑘,𝑖𝑛𝑡𝑠,𝑛 − 𝜇𝑠,𝑛 ∑
𝑘∈S2

𝑃𝑘𝑠,𝑛 (48)

with Lagrangian

L̂𝑖𝑛𝑡 (𝑃𝑘𝑠,𝑛, 𝜇𝑠,𝑛) = − ∑
𝑘∈S2

𝑅𝑘,𝑖𝑛𝑡𝑠,𝑛 + 𝜇𝑠,𝑛 ∑
𝑘∈S2

𝑃𝑘𝑠,𝑛 (49)

Let 𝑓𝑖𝑛𝑡 be the partial derivative of L̂𝑖𝑛𝑡 with respect to 𝑃𝑘𝑠,𝑛.
𝑓 (𝑃𝑘𝑠,𝑛, 𝜇𝑠,𝑛) = − ℎ𝑘𝑠𝑠2ℎ𝑘𝑠𝑝2 𝑃𝑘𝑝,𝑛−1 + 𝑛0 + 𝜇𝑠,𝑛 = 0 (50)

Thus, the solution of subproblem 𝐶𝑖𝑛𝑡 is given by

�̂�𝑘,𝑖𝑛𝑡𝑠,𝑛 = [[
1𝜇𝑠,𝑛 − ℎ𝑘𝑠𝑝2 𝑃𝑘𝑝,𝑛−1 + 𝑛0ℎ𝑘𝑠𝑠2 ]]

+

(51)

Taking into consideration the constraint of subproblem 𝐶𝑖𝑛𝑡,
its general solution 𝑃𝑘,𝑖𝑛𝑡𝑠,𝑛 has to be

𝑃𝑘,𝑖𝑛𝑡𝑠,𝑛 = min{�̂�𝑘,𝑖𝑛𝑡𝑠,𝑛 , 𝐼𝑘𝑡ℎ𝜆𝑘𝑝𝑠 log (1/𝜃𝑘)} (52)
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When SIC is applied, the optimization subproblem is
formulated as 𝐶𝑆𝐼𝐶 :

max
{𝑃𝑘𝑠,𝑛}𝑘∈S3

∑
𝑘∈S3

𝑅𝑘,𝑆𝐼𝐶𝑠,𝑛 − 𝜇𝑠,𝑛 ∑
𝑘∈S3

𝑃𝑘𝑠,𝑛
𝑃𝑘𝑠,𝑛 ⩽ 𝐼𝑘𝑡ℎ𝜆𝑘𝑝𝑠 log (1/𝜃𝑘) , ∀𝑘 ∈ S3

𝐸𝑘𝑃𝑘𝑠,𝑛 ⩾ 𝐹𝑘, ∀𝑘 ∈ S3

𝑃𝑘𝑠,𝑛 ⩾ 0
(53)

To solve subproblem𝐶𝑆𝐼𝐶, let us define the unconstrained
subproblem,

𝐶𝑆𝐼𝐶 : max
{𝑃𝑘𝑠,𝑛}𝑘∈S3

∑
𝑘∈S3

𝑅𝑘,𝑆𝐼𝐶𝑠,𝑛 − 𝜇𝑠,𝑛 ∑
𝑘∈S3

𝑃𝑘𝑠,𝑛 (54)

with Lagrangian

L̂𝑆𝐼𝐶 (𝑃𝑘𝑠,𝑛, 𝜇𝑠,𝑛) = − ∑
𝑘∈S3

𝑅𝑘,𝑆𝐼𝐶𝑠,𝑛 + 𝜇𝑠,𝑛 ∑
𝑘∈S3

𝑃𝑘𝑠,𝑛 (55)

Let 𝑓𝑆𝐼𝐶 be the partial derivative of L̂𝑆𝐼𝐶 with respect to 𝑃𝑘𝑠,𝑛.
𝑓𝑆𝐼𝐶 (𝑃𝑘𝑠,𝑛, 𝜇𝑠,𝑛) = − ℎ𝑘𝑠𝑠2ℎ𝑘𝑠𝑠2 𝑃𝑘𝑠,𝑛 + 𝑛0 + 𝜇𝑠,𝑛 = 0 (56)

Thus, the solution of subproblem 𝐶𝑆𝐼𝐶 is given by

�̂�𝑘,𝑆𝐼𝐶𝑠,𝑛 = [ 1𝜇𝑠,𝑛 − 𝑛0ℎ𝑘𝑠𝑠2]
+

(57)

Taking into consideration the constraint of subproblem 𝐶𝑆𝐼𝐶,
its general solution 𝑃𝑘,𝑆𝐼𝐶𝑠,𝑛 has to meet the conditions in
Table 1.

When SC is applied, the optimization subproblem is 𝐶𝑆𝐶:
max
{𝑃𝑘𝑠,𝑛}𝑘∈S4

∑
𝑘∈S4

𝑅𝑘,𝑆𝐶𝑠,𝑛 − 𝜇𝑠,𝑛 ∑
𝑘∈S4

𝑃𝑘𝑠,𝑛
𝑃𝑘𝑠,𝑛 ⩽ 𝐼𝑘𝑡ℎ𝜆𝑘𝑝𝑠 log (1/𝜃𝑘) , ∀𝑘 ∈ S4

𝐺𝑘𝑃𝑘𝑠,𝑛 > 𝐻𝑘, ∀𝑘 ∈ S4

𝐸𝑘𝑃𝑘𝑠,𝑛 ⩽ 𝐽𝑘, ∀𝑘 ∈ S4

𝑃𝑘𝑠,𝑛 ⩾ 0

(58)

To solve subproblem 𝐶𝑆𝐶, let us define the unconstrained
subproblem

𝐶𝑆𝐶 : max
{𝑃𝑘𝑠,𝑛}𝑘∈S4

∑
𝑘∈S4

𝑅𝑘,𝑆𝐶𝑠,𝑛 − 𝜇𝑠,𝑛 ∑
𝑘∈S4

𝑃𝑘𝑠,𝑛 (59)

with Lagrangian

L̂𝑆𝐶 (𝑃𝑘𝑠,𝑛, 𝜇𝑠,𝑛) = − ∑
𝑘∈S4

𝑅𝑘,𝑆𝐶𝑠,𝑛 + 𝜇𝑠,𝑛 ∑
𝑘∈S4

𝑃𝑘𝑠,𝑛 (60)

Table 1: SIC conditions. 𝐸𝑘
Positive Negative

𝐹𝑘 Positive 𝑃𝑘,𝑆𝐼𝐶𝑠,𝑛 > 𝐸𝑘𝐹𝑘 Impossible

Negative No constraint 𝑃𝑘,𝑆𝐼𝐶𝑠,𝑛 < 𝐸𝑘𝐹𝑘
Table 2: Conditions from constraint (34d).

𝐸𝑘
Positive Negative

𝐽𝑘 Positive 𝑃𝑘,𝑆𝐶𝑠,𝑛 ⩽ 𝐽𝑘𝐸𝑘 No constraint

Negative Impossible 𝑃𝑘,𝑆𝐶𝑠,𝑛 ⩾ 𝐽𝑘𝐸𝑘
Table 3: Conditions from constraint (34e).

𝐺𝑘
Positive Negative

𝐻𝑘 Positive 𝑃𝑘,𝑆𝐶𝑠,𝑛 > 𝐻𝑘𝐺𝑘 Impossible

Negative No constraint 𝑃𝑘,𝑆𝐶𝑠,𝑛 < 𝐻𝑘𝐺𝑘
Let 𝑓𝑆𝐶 be the partial derivative of L̂𝑆𝐶 with respect to 𝑃𝑘𝑠,𝑛.

𝑓𝑆𝐶 (𝑃𝑘𝑠,𝑛, 𝜇𝑠,𝑛) = − 𝜆𝑘𝑝𝑠𝜆𝑘𝑝𝑠𝑃𝑘𝑠,𝑛 + 𝑛0 + 𝐵𝑘𝑛 (𝑃𝑘𝑠,𝑛) + 𝜇𝑠,𝑛 = 0 (61)

Thus, the solution of subproblem 𝐶𝑆𝐶 is given by

�̂�𝑘,𝑆𝐶𝑠,𝑛 = 1𝜇𝑠,𝑛 + 𝐵𝑘𝑛 (𝑃𝑘𝑠,𝑛) − 𝑛0𝜆𝑘𝑝𝑠 (62)

which can be written as

�̂�𝑘,𝑆𝐶𝑠,𝑛 = 1̂𝜇𝑠,𝑛 − 𝑛0𝜆𝑘𝑝𝑠 (63)

with

𝜇𝑠,𝑛 = 𝜇𝑠,𝑛 + 𝐵𝑘𝑛 (𝑃𝑘𝑠,𝑛) (64)

Taking into consideration the constraint of subproblem 𝐶𝑆𝐶,
its general solution 𝑃𝑘,𝑆𝐶𝑠,𝑛 has to meet the conditions in Tables
2 and 3.

Finally, the general solution of problem (34a), (34b),
(34c), (34d), (34e), (34f), and (34g) is summarized in Table 4,
where the values of 𝑏𝑘𝑠,(𝑛−1) are given in Table 5.

Consequently, we obtained 𝑔(𝜆) for a given 𝜆. Then, we
can solve the dual problem which aims to minimize 𝑔(𝜆)

min
𝜆

𝑔 (𝜆)
s.t. 𝜆 ⩾ 0 (65)
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Table 4: Optimized values of 𝑃𝑘𝑠,𝑛.
Conditions Decoding strategies 𝑃𝑘𝑠,𝑛𝑃𝑘𝑝,(𝑛−1) = 0 Interweave [ 1𝜇𝑠,𝑛 − 1𝑏𝑘𝑠,(𝑛−1) ]

+

𝑃𝑘𝑝,(𝑛−1) ̸= 0 Int = Noise min{[ 1𝜇𝑠,𝑛 − 1𝑏𝑘
𝑠,(𝑛−1)

]+ ; 𝐼𝑘𝑡ℎ𝜆𝑘𝑝𝑠 log (1/𝜃𝑘)}𝑃𝑘𝑝,(𝑛−1) ̸= 0{𝐸𝑘 < 0; 𝐹𝑘 > 0} SIC 0
𝑃𝑘𝑝,(𝑛−1) ̸= 0{𝐸𝑘 > 0; 𝐹𝑘 < 0} SIC min{[ 1𝜇𝑠,𝑛 − 1𝑏𝑘𝑠,(𝑛−1) ]

+ ; 𝐼𝑘𝑡ℎ𝜆𝑘𝑝𝑠 log(1/𝜃𝑘)}𝑃𝑘𝑝,(𝑛−1) ̸= 0{𝐸𝑘 < 0; 𝐹𝑘 < 0} SIC min{[ 1𝜇𝑠,𝑛 − 1𝑏𝑘𝑠,(𝑛−1)]
+ ; 𝐼𝑘𝑡ℎ𝜆𝑘𝑝𝑠 log(1/𝜃𝑘) ; 𝐹

𝑘𝐸𝑘}
𝑃𝑘𝑝,(𝑛−1) ̸= 0{𝐸𝑘 > 0; 𝐹𝑘 > 0}

SIC

if 𝐹𝑘𝐸𝑘 ⩽ 𝐼𝑘𝑡ℎ𝜆𝑘𝑝𝑠 log(1/𝜃𝑘)
otherwise

max{min{[ 1𝜇𝑠,𝑛 − 1𝑏𝑘𝑠,(𝑛−1) ]
+ ; 𝐼𝑘𝑡ℎ𝜆𝑘𝑝𝑠 log(1/𝜃𝑘)} ; 𝐸𝑘𝐹𝑘}

0𝑃𝑘𝑝,(𝑛−1) ̸= 0{𝐺𝑘 < 0;𝐻𝑘 > 0}
or {𝐸𝑘 > 0; 𝐽𝑘 < 0} SC 0

𝑃𝑘𝑝,(𝑛−1) ̸= 0{𝐺𝑘 > 0;𝐻𝑘 > 0}
and {𝐸𝑘 > 0; 𝐽𝑘 > 0} SC max{min{[ 1̂𝜇𝑠,𝑛 − 1𝑏𝑘𝑠,(𝑛−1) ]

+ ; 𝐼𝑘𝑡ℎ𝜆𝑘𝑝𝑠 log(1/𝜃𝑘) ; 𝐽
𝑘𝐸𝑘} ; 𝐻𝑘𝐺𝑘 }

𝑃𝑘𝑝,(𝑛−1) ̸= 0{𝐺𝑘 > 0;𝐻𝑘 > 0}
and {𝐸𝑘 < 0; 𝐽𝑘 > 0} SC max{min{[ 1̂𝜇𝑠,𝑛 − 1𝑏𝑘𝑠,(𝑛−1)]

+ ; 𝐼𝑘𝑡ℎ𝜆𝑘𝑝𝑠 log(1/𝜃𝑘)} ; 𝐻𝑘𝐺𝑘 }
𝑃𝑘𝑝,(𝑛−1) ̸= 0{𝐺𝑘 > 0;𝐻𝑘 > 0}
and {𝐸𝑘 < 0; 𝐽𝑘 < 0} SC max{min{[ 1̂𝜇𝑠,𝑛 − 1𝑏𝑘𝑠,(𝑛−1) ]

+ ; 𝐼𝑘𝑡ℎ𝜆𝑘𝑝𝑠 log(1/𝜃𝑘)} ; 𝐻𝑘𝐺𝑘 ; 𝐽𝑘𝐸𝑘}
𝑃𝑘𝑝,(𝑛−1) ̸= 0{𝐺𝑘 > 0;𝐻𝑘 < 0}
and {𝐸𝑘 > 0; 𝐽𝑘 > 0} SC min{[ 1̂𝜇𝑠,𝑛 − 1𝑏𝑘

𝑠,(𝑛−1)

]+ ; 𝐼𝑘𝑡ℎ𝜆𝑘𝑝𝑠 log(1/𝜃𝑘) ; 𝐽
𝑘𝐸𝑘}

𝑃𝑘𝑝,(𝑛−1) ̸= 0{𝐺𝑘 > 0;𝐻𝑘 < 0}
and {𝐸𝑘 < 0; 𝐽𝑘 > 0} SC min{[ 1̂𝜇𝑠,𝑛 − 1𝑏𝑘

𝑠,(𝑛−1)

]+ ; 𝐼𝑘𝑡ℎ𝜆𝑘𝑝𝑠 log(1/𝜃𝑘)}𝑃𝑘𝑝,(𝑛−1) ̸= 0{𝐺𝑘 > 0;𝐻𝑘 < 0}
and {𝐸𝑘 < 0; 𝐽𝑘 < 0} SC max{min{[ 1̂𝜇𝑠,𝑛 − 1𝑏𝑘𝑠,(𝑛−1) ]

+ ; 𝐼𝑘𝑡ℎ𝜆𝑘𝑝𝑠 log(1/𝜃𝑘)} ; 𝐽𝑘𝐸𝑘}
𝑃𝑘𝑝,(𝑛−1) ̸= 0{𝐺𝑘 < 0;𝐻𝑘 < 0}
and {𝐸𝑘 > 0; 𝐽𝑘 > 0} SC min{[ 1̂𝜇𝑠,𝑛 − 1𝑏𝑘𝑠,(𝑛−1)]

+ ; 𝐼𝑘𝑡ℎ𝜆𝑘𝑝𝑠 log (1/𝜃𝑘) ; 𝐽
𝑘𝐸𝑘 ; 𝐻𝑘𝐺𝑘 }

𝑃𝑘𝑝,(𝑛−1) ̸= 0{𝐺𝑘 < 0;𝐻𝑘 < 0}
and {𝐸𝑘 < 0; 𝐽𝑘 > 0} SC min{[ 1̂𝜇𝑠,𝑛 − 1𝑏𝑘𝑠,(𝑛−1) ]

+ ; 𝐼𝑘𝑡ℎ𝜆𝑘𝑝𝑠 log(1/𝜃𝑘) ; 𝐻
𝑘𝐺𝑘 }

𝑃𝑘𝑝,(𝑛−1) ̸= 0{𝐺𝑘 < 0;𝐻𝑘 < 0}
and {𝐸𝑘 < 0; 𝐽𝑘 < 0} SC max{min{[ 1̂𝜇𝑠,𝑛 − 1𝑏𝑘𝑠,(𝑛−1) ]

+ ; 𝐼𝑘𝑡ℎ𝜆𝑘𝑝𝑠 log(1/𝜃𝑘) ; 𝐻
𝑘𝐺𝑘 } ; 𝐽𝑘𝐸𝑘}

4.4. Sequential Convex Approximation Algorithm. Previously,
we proposed an approximationmethod to transform the opti-
mization problem in (34a), (34b), (34c), (34d), (34e), (34f),
and (34g) into a convex problem. To improve the restrictive
approximation, we propose a sequential algorithm where

the optimization problem (34a), (34b), (34c), (34d), (34e),
(34f), and (34g) is approximated using the optimal solution
obtained at the previous iteration using dual decomposition.
Theproposed algorithm is summarized inAlgorithm 1, where
at the 𝑚𝑡ℎ iteration, ps,𝑚 = (𝑃1𝑠,𝑚, . . . , 𝑃𝐿𝑠,𝑚)𝑇.
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(1) Input 𝜃𝑘, 𝜇𝑘, 𝛿𝑘, 𝛾𝑘 >0,𝑚 = 0, and a feasible point p𝑠,0 for problem (34a), (34b), (34c), (34d), (34e), (34f), and (34g);
(2) Repeat
(3)𝑚 = 𝑚 + 1
(4) Solve (34a), (34b), (34c), (34d), (34e), (34f), and (34g) using dual decomposition to obtain p𝑠,𝑚;
(5) Set p𝑠,𝑚 = p𝑠,𝑚;
(6)Until (| ∑𝑘 𝑅𝑘𝑠,𝑚| − | ∑𝑘 𝑅𝑘𝑠,𝑚−1|)/| ∑𝑘 𝑅𝑘𝑠,𝑚−1| < 𝜎;
(7)Output p𝑠,𝑚.

Algorithm 1: Sequential convex approximation algorithm.

Table 5: Values of coefficient 𝑏𝑘𝑠,(𝑛−1) in Table 4.

Cases 𝑏𝑘𝑠,(𝑛−1)𝑃𝑘𝑝,(𝑛−1) = 0 ℎ𝑘𝑠𝑠2𝑛0𝑃𝑘𝑝,(𝑛−1) ̸= 0
and |ℎ𝑘𝑠𝑝|2 ⩽ |ℎ𝑘𝑠𝑠|2

ℎ𝑘𝑠𝑠2ℎ𝑘𝑠𝑝2 𝑃𝑘𝑝,(𝑛−1) + 𝑛0𝑃𝑘𝑝,(𝑛−1) ̸= 0
and |ℎ𝑘𝑠𝑝|2 > |ℎ𝑘𝑠𝑠|2
(SIC)

ℎ𝑘𝑠𝑠2𝑛0𝑃𝑘𝑝,(𝑛−1) ̸= 0
and |ℎ𝑘𝑠𝑝|2 > |ℎ𝑘𝑠𝑠|2
(SC)

𝜆𝑘𝑝𝑠𝑛0
Once p𝑠 is computed for a given p𝑝 using dual decom-

position, an iterative process is applied to switch between
the primary and secondary users in order to optimally
allocate both of them taking into account the total power
constraint of each user and the interference limit allowed
on the primary receiver. The convergence of the proposed
algorithm is in O(𝑁𝑀𝐿 log2(𝐿)), where 𝑁 is the required
number of iterations needed by the sequential algorithm to
converge, 𝑀 is the number of iterations required to obtain
the optimal value of Lagrange multiplier 𝜆 in problem (65),
and O(𝐿 log2(𝐿)) is the power allocation complexity.

5. Simulation Results

Theperformance of the proposed algorithm is assessed using
Monte Carlo simulations, where the location of both primary
and secondary transmitters follows a uniform distribution.
The performance is evaluated with statistical CSI and com-
pared to several schemes with full and statistical CSI. The
power constraint per transmitter is 21 dBm and the thermal
noise has a spectral density𝑁0 = −174 dBm/Hz.The number
of subcarriers is 𝐿 = 64 and 𝐵 = 0.5 MHz and 𝑛0 =𝑁0𝐵/𝐿. The allowed degradation on the primary rate due to
interference from the secondary transmitter is 𝜆 =0.1, which
means that 90% of the interference-free rate is guaranteed.
The influence of the distance between the primary and
secondary BSs, 𝑑𝑠𝑒𝑐, will be evaluated in the simulations. In all
of our simulation results, all rates are normalized with respect
to the bandwidth 𝐵. All outage limits 𝜃𝑘, 𝜇𝑘, 𝜌𝑘, and 𝛾𝑘 are
equal to 0.01.
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Figure 2: Secondary rates with statistical CSI.

In Figure 2, we also compare the secondary achievable
rate using statistical CSI with the achievable rate when
full CSI is available at the secondary transmitter. While, in
Figure 3, sum rates are compared in both full and statistical
CSI scenarios. With full CSI, the complex channel gainsℎ𝑘𝑖𝑗 take into account path loss, log-normal shadowing, and
Rayleigh fading. We suppose here that all subcarriers are
subject to independent Rayleigh fading. The path loss model
is COST 231 extension to Hata model at 800 MHz in dense
urban environment, 𝐿𝑑𝐵(𝑑) = 125.08 + 35.22 × log10(𝑑),
and the shadowing standard deviation is equal to 6 dB. Both
primary and secondary cells have omnidirectional antennas
with the same radius 𝑑𝑝 = 𝑑𝑠 = 1 km. Due to the lack of
perfect CSI of the primary channels, rigorous outage limits
are imposed on the outage probabilities which lead to strict
constraints and thus result in a degradation of the secondary
rate and thus in the sum rate. We can notice that increasing
the number of subcarriers 𝐿 would lead to larger frequency
diversity and consequently increase performances. We used
Rayleigh independent and identically distributed fading over
the subcarriers. If we had correlated fading, then frequency
diversity would decrease and the data rates would also
decrease. If we used Rice fading instead of Rayleigh fading,
the larger correlation of channel gains across subcarriers
would also lead to lower average data rates, even though, in
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Figure 3: Sum rates with statistical CSI.

some configurations with large Line Of Sight conditions, data
rates could be increased.

The proposed algorithm is also compared to the classical
power allocation scheme where the secondary system can
transmit on the whole bandwidth of a cognitive under-
lay/interweave system by considering the primary system’s
interference as noise in all subcarriers. This algorithm is
denoted by “FB” for “Full Band” and its complexity is 2 ⋅ 𝑁 ⋅𝑂(𝐿log2𝐿), with𝑁 being the number of iterations. Simulation
results in Figures 2 and 3 demonstrate that our algorithm
outperforms ’FB’ for small distances between the BSs. The
secondary data rate strongly decreases when only statistical
CSI is available, compared to the full CSI case. It decreases21 to 39%, with lower loss when the distance between BS𝑑𝑠𝑒𝑐 is medium and larger loss when it is low. This indicates
that the secondary receiver is less often able to use SIC or
SC with statistical CSI. Regarding the sum data rate, the rate
decrease is less important since the primary rate is still large.
The relative sum rate decrease is between 3.6 and 4.8% and
slightly increases when 𝑑𝑠𝑒𝑐 increases.

To study the influence of outage limits on the secondary
achievable rate, we present in Figure 4 the performance in
terms of achievable rate versus 𝜇𝑘, 𝜃𝑘, 𝜌𝑘, and 𝛾𝑘 for a
fixed 𝑑𝑠𝑒𝑐= 0.4 km. The dashed line represents the secondary
achievable rate at this distance with full CSI. The first curve
labeled as 𝜇𝑘 is obtained for fixed 𝜃𝑘, 𝜌𝑘, and 𝛾𝑘=1% while
varying 𝜇𝑘. The same procedure is applied for the other
curves, by fixing one of the outage limits and varying the
others. Figure 4 establishes that the secondary achievable rate
with statistical CSI approaches from the secondary achievable
rate with full CSI when 𝜇𝑘, 𝜃𝑘, 𝜌𝑘, and 𝛾𝑘 increase. We can
also observe that the SIC outage limit has a greater effect on
the secondary rate degradation than the interference and SC
outage limits.

The influence of the predefined interference level at the
primary user is studied on Figures 5 and 6. For that, we plot
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Figure 4: Achievable secondary rate depending on the outage limits
at 𝑑𝑠𝑒𝑐 = 0.4 km.

the variations of both secondary and sum rates for different
tolerable interference percentage, in Figures 5 and 6. More
specifically, we figure out the achievable rates when 95%
and 85% of interference-free is guaranteed at the PU, which
corresponds to 𝜆 = 0.05 and 𝜆 = 0.15, respectively.

6. Conclusion

In this paper, we proposed a resource allocation algorithm for
amulticarrier cognitive radio system subject to statistical CSI.
An adaptive decoding algorithm based on both successive
interference cancellation and superposition coding has been
proposed in order to maximize the achievable system rate,
while optimizing power allocation. Both theoretical analysis
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Figure 5: Secondary rates of proposed algorithmwith statistical CSI
for different 𝐼𝑘𝑡ℎ.
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Figure 6: Sum rates of proposed algorithm with statistical CSI for
different 𝐼𝑘𝑡ℎ.
and simulation results have shown that the proposed algo-
rithm achieves higher sum rate than classical algorithms,
providing high-enough data rates for the secondary sys-
tem. Simulations showed that the proposed algorithm is
efficient and robust with statistical CSI. For further work,
the proposed cooperative underlay cognitive system could be
extended to a Multiple-Input Multiple-Output model or to a
CR relay network.

Appendix

Proof of (28). To begin with the proof, we rewrite the outage
probability related to 𝛼𝑘

Pr
{{{

ℎ𝑘𝑝𝑝2ℎ𝑘𝑠𝑝2 = ℎ𝑘𝑝𝑠2 𝑃𝑘𝑠 + 𝑛0𝛼𝑘 ℎ𝑘𝑠𝑠2 𝑃𝑘𝑠 + 𝑛0
}}} = 1 (A.1)

which is equivalent to Pr{𝑋 = 𝑌} = 1, where
𝑋 ≜ ℎ𝑘𝑝𝑝2ℎ𝑘𝑠𝑝2
𝑌 ≜ ℎ𝑘𝑝𝑠2 𝑃𝑘𝑠 + 𝑛0𝛼𝑘 ℎ𝑘𝑠𝑠2 𝑃𝑘𝑠 + 𝑛0

(A.2)

Basically for two discrete random variables

Pr {𝑋 = 𝑌} = ∑
𝑡∈S

Pr {𝑋 = 𝑡, 𝑌 = 𝑡} (A.3)

whereS is the set of all possible value of 𝑡. By extending (A.3)
in the continuous time, we have

Pr {𝑋 = 𝑌} = ∫
𝑡∈S

𝑓𝑋,𝑌 (𝑋 = 𝑡, 𝑌 = 𝑡) 𝑑𝑡 (A.4)

where 𝑓𝑋,𝑌(𝑋 = 𝑡, 𝑌 = 𝑡) is the joint probability distribution
function of𝑋 and𝑌. By independence, it follows that the joint
probability density function of𝑋 and 𝑌 is

𝑓𝑋,𝑌 (𝑋 = 𝑡, 𝑌 = 𝑡) = 1𝜆𝑋𝜆𝑌 𝑒−(1/𝜆𝑋+1/𝜆𝑋)𝑡; (A.5)

hence

Pr {𝑋 = 𝑌} = ∫∞
0

1𝜆𝑋𝜆𝑌 𝑒−(1/𝜆𝑋+1/𝜆𝑋)𝑡𝑑𝑡 = 1𝜆𝑋 + 𝜆𝑌 (A.6)

with

𝜆𝑋 = E
{{{

ℎ𝑘𝑝𝑝2ℎ𝑘𝑠𝑝2
}}} = 𝜆𝑘𝑝𝑝ℎ𝑘𝑠𝑝2 (A.7)

and

𝜆𝑌 = E
{{{

ℎ𝑘𝑝𝑠2 𝑃𝑘𝑠 + 𝑛0𝛼𝑘 ℎ𝑘𝑠𝑠2 𝑃𝑘𝑠 + 𝑛0
}}} = 𝜆𝑘𝑝𝑠𝑃𝑘𝑠 + 𝑛0𝛼𝑘 ℎ𝑘𝑠𝑠2 𝑃𝑘𝑠 + 𝑛0 (A.8)

Consequently, this constraint can be written as

𝜆𝑘𝑝𝑝ℎ𝑘𝑠𝑝2 +
𝜆𝑘𝑝𝑠𝑃𝑘𝑠 + 𝑛0𝛼𝑘 ℎ𝑘𝑠𝑠2 𝑃𝑘𝑠 + 𝑛0 = 1 (A.9)

which is equivalent to

𝛼𝑘 = ℎ𝑘𝑠𝑝2 𝜆𝑘𝑝𝑠𝑃𝑘𝑠 + 𝜆𝑘𝑝𝑝𝑛0ℎ𝑘𝑠𝑠2 𝑃𝑘𝑠 (ℎ𝑘𝑠𝑝2 − 𝜆𝑘𝑝𝑝) (A.10)

This concludes the proof.

Data Availability
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14 Mathematical Problems in Engineering

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was partially funded through French National
Research Agency (ANR) project ACCENT5with grant agree-
ment code ANR-14-CE28-0026-02.

References
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