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Abstract—This letter investigates the compensation of the
power amplifier (PA) nonlinear distortion (NLD) in large-scale
multi-user (MU) multiple-input multiple-output (MIMO) down-
link systems. We introduce a PA-aware precoding approach
that exploits the high-dimensional degrees of freedom (DoFs),
allowed by equipping the base station (BS) by a high number of
antennas, and performs the precoded signals that, when amplified
and passed through the channel, guarantee excellent transmis-
sion quality. Specifically, we formulate the proposed PA-aware
precoding approach as a simple convex optimization problem
which enables efficient, low-complexity and reliable algorithm
implementations. The simulation results demonstrate the strong
potential of the proposed approach in terms of improving the link
quality and reducing the required computational complexity.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) systems,
which simultaneously serve tens of users with base stations
(BS) equipped with hundred of antennas using MU precod-
ing, are the most ultimate enablers of enhanced energy and
spectral efficiency in future generations of wireless commu-
nications [1]. However, signals generated by massive MU-
MIMO precoders suffer from the high peak-to-average power
ratio (PAPR), independently of whether single-carrier or multi-
carrier transmission is adopted [2]. Accordingly, the nonlinear-
ity of the radio frequency (RF) PA, which is the main hardware
impairment and is expected to be low-cost and energy-efficient
component to enable cost- and energy-efficient massive MU-
MIMO BS deployments, yields harmful in-band distortion and
out-of-band radiation (OBR). In [3] and [4], the impact of the
PA nonlinear distortion is investigated in massive MU-MIMO
downlink. The effect of nonlinear PA on the energy-efficient
design of massive MIMO is studied in [5] and the spatial
characteristic of the nonlinear distortion radiated from antenna
arrays is shown in [6]. It has been demonstrated that OBR does
not constitute a significant impairment and that the in-band
distortion effects do not disappear by increasing the number
of antennas, i.e. the received signal-to-interference-plus-noise
ratio (SINR) remains finite, which could be either quite large
or small depending on many parameters, like number of served
users, power allocation and the frequency-selectivity of the
channel. More recently, some approaches have been studied,
in literature, aiming to reduce the above-mentioned nonlinear
distortions [7] [8] [9]. All these studied methods, which are
based on digital predistortion (DPD), aim to compensate for
the PA nonlinear behaviour. However, the implementation of
DPDs in massive MU-MIMO systems is challenging for the
reason that the use of high-precise DPDs is computationally
impractical, when considering large array transmitters. In [9],
authors proposed a DPD based solution that takes advantage
of the high-dimensional spatial DoFs of massive MU-MIMO
to guarantee very good energy efficiency of the low-cost PAs
in massive MIMO with low-complexity DPDs. However, the
associated computational is still unsatisfying and limits its
practical application in massive MU-MIMO. In [8], authors
proposed a DPD based solution that requires only one DPD
component per user to linearize an arbitrary number of PAs
enabling then the reduction of the complexity associated to
the linearization of the different used PAs.

Despite the good enhancements provided by these proposed
methods, an extremely low-complexity solution, that does not
require any DPD, is needed to enable ultra-low latency and
highly energy-efficient massive MU-MIMO communications.
Therefore, this letter introduces a new downlink transmission
approach to address the PA nonlinearity issue in wireless mas-
sive MU-MIMO systems. We introduce a PA-aware precoding
scheme that is formulated as a simple convex optimization
problem that enables efficient and reliable algorithm imple-
mentations. The aim of the proposed approach is to optimize
precoded signals that, when amplified and then passed through
the channel, guarantee ideal transmission quality.

The remainder of this letter is organized as follows. The
system model and basic modeling of PA nonlinear distortion
in massive MU-MIMO are provided in Section II. Then,
existing DPD based solutions are presented. In Section III,
the proposed PA-aware precoding scheme is formulated as a
simple convex optimization problem and the developed algo-
rithm is presented. Section IV is dedicated for computational
complexity analysis. Section V is devoted to the simulation
results. Finally, Section VI gives the conclusion.

Notations : Lowercase boldface letters (e.g. x) denote
column vectors and bold uppercase letters (e.g. X) stand
for matrices. We denote transpose, conjugate transpose and
pseudo-inverse of a matrix by XT , XH and X†, respectively.
IN and 0M×N stand for the N × N identity matrix and the
M ×N all-zeros matrix, respectively. ∥x∥2 is used to denote
l2-norm of vector x and E [.] for the expectation operator.

II. MASSIVE MU-MIMO UNDER PA NONLINEARITIES

A. Basic Signal and Impairment Model

We consider a single-cell massive MU-MIMO downlink
system where the BS is equipped with Mt transmit antennas
and simultaneously serves Mr single-antenna users. Here, each
antenna is equipped with a power amplifier (PA). Assuming
full downlink channel knowledge, in terms of the Mr × Mt

channel matrix H which can be written through its transpose
as HT = [h1,h2, ...,hMr ] where the Mt×1 vector hmr refers
to the spatial channel coefficients from the BS antenna array
to the user mr. The Mr × 1 signal vector s = [s1, s2, ..., sMr ]
contains the symbols for Mr users, where smr is chosen from
a complex-valued constellation A. Using the knowledge of
CSI, the BS precodes vector s into a Mt-dimensional vector
with a Mt ×Mr precoding matrix W = [w1,w2, ...,wMr ] as

x =
1

√
ςW

Ws (1)

where 1√
ςW

is a normalization factor designed to obtain an
average transmit power equal to Pt.

For the case of the massive MU-MIMO with non-linear PAs,
the precoded symbols in (1) are fed, towards the BS antennas,
through Mt parallel transmit chains with power amplifiers
(PAs). The resulting amplified symbols are

y = [f1(x1), f2(x2), ..., fMt(xMt)]
T
= F (x) (2)
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where fmt
(.) denotes the nonlinear amplification operation of

the mt-th PA. Finally, the input-output relationship of the MU-
MIMO dwnlink system with nonlinear PAs can be denoted as

r = Hy + z (3)

where z ∈ CMr×1 denotes the receiver noise whose entries are
i.i.d circularly-symmetric complex Gaussian distribution with
zero-mean and variance N0/2.

In practice, the PAs are usually nonlinear, especially when
it is operated close to 1-dB compression point to increase
power efficiency. Now, we let xmt(n) = ρ(n)ejϕ(n) be the
n-th sampling point that is to be transmitted and amplified
via antenna mt, where ρ(n) and ϕ(n) denote, respectively,
the magnitude and phase of that symbol. Then, the relation
between the baseband equivalent input and output signals of
the PA in the mt-th antenna branch can be written as

ymt(n) = g (αρ(n)) ej(ϕ+Ψ(αρ(n))) (4)

where g(.) is the amplitude-to-amplitude (AM-AM) conver-
sion and Ψ(.) the amplitude-to-phase (AM-PM) conversion of
the PA. The factor α is a multiplicative coefficient applied at
the input of the PA for an operating point with a given input
back-off (IBO). Here, all IBOs are given in dB relatives to
the back-off from 1-dB compression point, where the output
signal is 1-dB weaker than what it would have been if the am-
plification was perfectly linear. The factor α needed to ensure
a signal xmt(n) with a given IBO value is α =

√
P1dB

10
IBO
10 Pt

.

For now, the conversions g(ρ) and Ψ(ρ) are modelled by the
modified Rapp model [10] proposed by the 3GPP for the New
Radio (NR) evaluation. In modified Rapp, which resembles
closely to realistic PAs, AM/AM and AM/PM conversions can
be given by

g(u) =
Gu(

1 +
∣∣∣ Gu
Vsat

∣∣∣2p) 1
2p

, Ψ(u) =
Auq(

1 +
(
u
B

)2p) (5)

where u is the magnitude of the input signal, G is small signal
gain, Vsat is saturation level, p is the smoothness factor and
A, B and q are fitting parameters. Neglecting the memory can
be justified as we are primarily looking for how the basic PA
nonlinear distortion are processed and tackled towards high
energy efficient massive MU-MIMO downlink.

B. PA linearization techniques: DPD Concept and Solutions

The DPD targets at cascading the PA and its inverse
response toward a linear response for the combined DPD-
PA block. Thus, an extra nonlinear function is needed to pre-
process the PA input signal and thus linearize the amplified
signal. In this work, two indirect learning architectures (ILAs)
based on DPD, that were studied in [9], are considered for
the used massive MU-MIMO system (see Fig. 1). The first
ILA, referred to as ILA1, the DPD-PA structure is duplicated
for each RF chain in the massive MU-MIMO transmitters
and associated algorithm is deployed to update independently
each DPD. Here, the conventional zero-forcing (ZF) precoding
scheme is considered, where the corresponding precoder is
W = HH

(
HHH

)−1
. Using this classical ILA1, a high-

precise, i.e. high complexity, DPD structure is required to
extend the operation of the PA into weakly nonlinear region,
but its practical application for massive MIMO is limited due

Fig. 1. (a) Conventional DPD for massive MU-MIMO downlink ILA 1. (b)
Precoding-aware DPD solution ILA2 [9]. (c) The proposed MU-PNL-GDm,
combines MU precoding and PA nonlinearities compensation.

to the associated computational complexity. In order to enable
the use of low-complexity DPD, an improved ILA is proposed
[9], which referred to as ILA2. It takes advantage of the high-
dimensional spatial DoFs of massive MIMO to guarantee very
good energy efficiency of the low-cost PAs in massive MIMO
even with low-precise DPD. The key idea consists in finding
the appropriate MU precoder for the adopted DPD. Therefore,
we modify the classical ILA1 by incorporating the channel
matrix and adaptive ZF precoder (P) in the feedback path as
shown in Fig. 1 and we update the precoder parameter (i.e.,
W coefficients) by copying the new estimate parameter of P.
Here, the model parameter P is estimated using an iterative
algorithm, where the search direction of the steepest descent
method at the iterate Pk is determined by the negative gradient
of the cost function ∥Pr− x∥2. Then, the precoder matrix is
adjusted as

Pk+1 = Pk − λ× 2 (Pkrk − xk) r
H
k (6)

where λ is the updating rate.

III. PROPOSED JOINT MU PRECODING AND NONLINEAR
DISTORTION COMPENSATION ALGORITHM

The key idea of the proposed PA-aware precoding approach
is to exploit the excess DoFs in massive MU-MIMO system
and to jointly perform MU precoding and PA nonlinearity
mitigation. Therefore, it works toward at computing the pre-
coded symbols x that satisfy Hy = s (where y is the
amplified version of x). Here, we formulate a simple convex
optimization problem that enables efficient, low-complexity
and reliable algorithm implementations.

A. Problem Formulation

For the nonlinear massive MU-MIMO sytem as introduced
in (3), one can formulate the MU precoding problem by
minimizing the mean square error (MSE) between the intended
signal s and the amplified precoded signal y through the
channel H as follows

minimize
ẋ

E
[
∥s−HF (x)∥2

]
subject to E

[
∥x∥2

]
≤ Pt (7)
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It is difficult to address the problem in (7) directly because
of the nonlinear operation induced by PAs. Since we are
dealing with precoded signals, PA input signals are complex
Gaussian. Then, by using the well-known Bussgang theorem
[11], one can decompose the nonlinear signal at the PA output
into a linear function of the PA input and an uncorrelated
distortion term. Then, we can write the amplified signal at
each branch as ymt = qmtxmt + dmt , where qmt is the
mt-th PA complex gain and dmt stands for the added zero-
mean distortion noise with variance σ2

d. It is worth to mention
that all PAs are operated with the same IBO to balance the
power consumptions between different branches in massive
MIMO BS. Specifically, by means of mathematical derivation
[11], these NLD parameters (qmt and σ2

d) can be analytically
computed for any measured or modelled PA. Then, we can
write the amplified signal in (2) as

y = Qx+ d (8)

where Q = diag ([q1, q2, ..., qMt ]) is the Mt × Mt square
diagonal matrix with elements of {qmt} on the diagonal.

Substituting (8) in (3), we have

r = HQx+Hd+ z (9)

B. Enhanced zero-forcing (EZF)

Note that one can solve the precoding problem with en-
hanced ZF (EZF) that takes into consideration the average
amplitude and phase distortions. Then, the precoder-weights
of EZF need to satisfy the constraint QHW = IMr leading
to a precoding matrix

W = QHHH
(
HQQHHH

)−1
(10)

This EZF can not remove the distortion noise, despite it has
high computational complexity.

C. PA-aware precoding scheme

Alternatively, iterative precoding algorithm could achieve
higher performance gain with lower computational complexity.
By minimizing the mean square error (MSE) of intended
symbols s and PA outputs y through the channel H, the PA-
aware precoding problem can be formulated as

minimize
ẋ

J(x) = ∥HQx+Hd− s∥22
subject to ∥x∥22 ≤ Pt (11)

Note that the proposed formulation will enable an efficient it-
erative NLD mitigation algorithm that aims to search for sym-
bols {xmt} which, when amplified and then passed through
the channel, can guarantee excellent transmission quality. To
do that, we generate a local replica of the intended users
received distortion vector at the transmitter side, such that it
can be used to adapt the precoded vector x and would be
cancelled when this latter is amplified and passed through the
channel. In order to compute the feedback distortion vector,
we use an initial estimate of precoded vector x0 using the PA
direct approximated models which introduce the NLD onto
the feedback signal in a similar manner as the true PAs in
the actual transmission, that is expressed as d = F (x)−Qx.
Then, the channel estimates H reproduce the distortion vector
d̃ = Hd at the receivers emulating the true propagation. This
estimated distortion vector is taken into account, and a new

estimation of the precoded vector x can be obtained. This
second estimate x1 can be used to re-estimate the distortion
vector. This process can be iteratively performed until some
specific bound is reached. Therefore, an alternating estimation
to solve (11), in which we estimate x by minimizing the cost
function J(x) with respect to x and estimate the distortion
vector through the feedback path. Thus, the alternating proce-
dure, in the (l + 1)-th iteration, can be expressed as

x(l+1) = argmin
{x}

J(x(l),d(l)), (12)

and d(l+1) = F
(
x(l+1)

)
−Qx(l+1) (13)

By doing so, the considered optimization problem lends itself
to efficient, yet flexible implementation for massive MU-
MIMO based systems by avoiding the use of DPDs and en-
abling low-complexity first order algorithm that only requires
matrix-vector multiplications. The search directions of the
steepest gradient descent (GD) method at the iterate x(l+1)

is determined by the negative gradient of the cost function J
at x(l), which is given by

∇xJ(x
(l),d(l)) = 2QHHH

(
HQx(l) +Hd(l) − s

)
(14)

In order to enhance the convergence rate of our algorithm, we
consider the gradient descent with momentum (GDm). We do
this by adding a fraction µ of the update vector of the past time
step to the current update vector. Then, the precoded vector is
adjusted as

x(l+1) = x(l) −∆x(l) (15)

where ∆x(l) = λ∇xJ(x
(l),d(l)) + µ∆x(l−1). The proposed

algorithm, referred to as MU-PNL-GDm, is summarized as
follows

Algorithm: The MU-PNL-GDm algorithm
Given a set of Mr modulated complex symbols s.
1: Initialize x(1) = 0Mt×1, d(1)

n = 0(Mr)×1, ∆x(0) = 0Mt×1,
and set the maximal number of iterations maxIter,
the learning rate λ and the momentum coefficient µ

2: for l=1,...,maxIter do
3: ∆x(l) = 2λQHHH

(
HQx(l) +Hd(l) − s

)
+ µ∆x(l−1)

4: x(l+1) = x(l) −∆x(l)

5: Adjustment of the power of x(l+1) to the desired IBO.
6: d(l+1) = F (x(l+1))−Qx(l+1)

7: end for
8: return x(maxIter+1)

IV. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we present an analysis of the computational
complexity of the MU-PNL-GDm algorithm and its compari-
son against the other studied solutions (ILA1 et ILA2) where
a dedicated DPD block per antenna branch is used. Here, the
DPD is based on the well-known multi-layer perceptron (MLP)
neural network (NN) model associated with the Levenberg-
Marquardt (LM) algorithm (for more details, interested readers
are referred to [12]). The NN predistorter has two layers, one
hidden layer with Nh neurons, two neurons in the output layer
and two input/output signals (Ni = 2 and No = 2), namely
the I and Q components of the input/output signal complex
envelopes. It is interesting to mention that RF PA modeling
is needed for all studied schemes. This is one of the most
critical challenges requiring high computational complexity.
To guarantee a fair complexity comparison, we consider only
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TABLE I Complexity Analysis

Algo. MU-PNL-GDm ILA2 ILA1 EZF
ZF prec. - 6×

(
2MtM2

r +M3
r

)
6×

(
2MtM2

r +M3
r

)
6×

(
2MtM2

r +M3
r + 3Mt

)
DPD main proc. - Niter ×Mt (Nh(Ni +N0 + 1) +N0) Mt (Nh(Ni +N0 + 1) +N0) -

Prec. update - Niter × 6 (3MtMr) - -
Prec. vector update Niter × 6 (3MtMr + 3Mt) Niter × 6MtMr 6MtMr 6MtMr

TABLE II MUI [dB] performance comparison
IBO=0dB IBO=3dB

Scheme Niter MUI Complexity Niter MUI Complexity
EZF - -25.41 127800 - -29.87 127800
ILA1 - -23.39 137200 - -35.03 137200
ILA2 3 -43.11 206100 2 -44.65 179400

MU-PNL-GDm 6 -40.11 118800 5 -42.15 99000

the operations performed by each scheme only during the on-
line transmission. Here, we consider that PA estimation and
DPD learning are done off-line and their complexity is not
taken into account. Interested reader is referred to [9]. The
complexities resulting from applying the different schemes are
summarized in Table I. Here, the transmitter performs one
or many of the different processing mentioned in Table I.
We adopt the number of floating point operations (FLOPs)
as a complexity measure, where one complex multiplication
requires 6 FLOPs and a complex addition requires 2 FLOPs
[8].

V. SIMULATION RESULTS AND ANALYSIS

In order to give a demonstration of the proposed algorithm
efficiency in enhancing massive MU-MIMO precoding toward
highly power-efficient PAs, some simulations have been con-
ducted. The considered massive MU-MIMO has Mt = 100
antennas at the BS that serves Mr = 10 single-antenna users.
We consider 16-quadrature amplitude modulation (16-QAM)
with Gray mapping. The PA input and output are assumed
to obey the memoryless modified Rapp model (equations 5)
with parameters G = 16, Vsat = 1.9, p = 1.1, A = −345,
B = 0.17 and q = 4 [10]. It is worth to mention that the
proposed algorithm can still work when the PA memory effect
is not neglected. This can be done by modeling the memory
PA by a Hammerstein model [12] that leads to an optimal
solution by incorporating the finite impulse response (FIR)-
filter of the PA into the channel filter. For ILA1, the DPD
is a MLP with Nh = 10 while the NN-DPD in ILA2 has
only Nh = 5. All the simulation results are averaged over
1000 channel realizations. The multi-user interference (MUI)
experienced by the Mr receivers is measured as the difference
between the actual noise-free received signal and the intended
symbols and is expressed as MUI =

∥r−s∥2
2

∥s∥2
2

. We compare the
performance of the proposed algorithm and the other involved
architectures in terms of MUI. The enhanced ZF precoder in
(10), denoted as EZF, is regarded as the benchmark. Table II
shows the MUI and complexity comparison for three different
values of IBO (0dB and 3dB). Regarding results in Table II,
one can note that ILA1 can only outperform the EZF in the
case when we operate the PA quite far from its saturation
region (i.e, IBO=3dB). Otherwise, for low values of IBO, it has
the worst MUI performance. Thus, using DPD in the classical
way does not have a great interest when the IBO is low. Note
that ILA2 and the proposed MU-PNL-GDm, which exploits
the excessive DoFs in massive MU-MIMO, provide very good
and satisfying performance achieving gains of about 15 and
10dB over the classical ILA1 and EZF, for IBO=0 and 3dB. It

is worth to mention that the achieved gain is more pronounced
when IBO goes lower. Most importantly, we note that the
proposed MU-PNL-GDm scheme requires about 55% of the
computational complexity needed by ILA2, when achieving
the same MUI performance.

VI. CONCLUSION

We investigated a PA-aware precoding scheme in massive
MU-MIMO downlink systems. We developed an efficient
algorithm, referred to as MU-PNL-GDm, to perform the MUI
interference and PA nonlinearities cancellation. The motivation
of our approach is the high-dimensional DoFs offered by
the massive MIMO downlink. This enables us to device
precoded signals that, when amplified and passed through
the channel, guarantee excellent transmission quality. The
simulation results showed that the proposed algorithm can
allow very good and satisfying performance while it requires
lower computational complexities compared with the existing
DPD based solutions.
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