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Abstract

Filter-bank multi-carrier (FBMC) modulations, and more specifically FBMC-offset quadrature amplitude modulation
(OQAM), are seen as an interesting alternative to orthogonal frequency division multiplexing (OFDM) for the 5th
generation radio access technology. In this paper, we investigate the problem of peak-to-average power ratio (PAPR)
reduction for FBMC-OQAM signals. Recently, it has been shown that FBMC-OQAM with trellis-based selected mapping
(TSLM) scheme not only is superior to any scheme based on symbol-by-symbol approach but also outperforms that of
the OFDM with classical SLM scheme. This paper is an extension of that work, where we analyze the TSLM in terms of
computational complexity, required hardware memory, and latency issues. We have proposed an improvement to the
TSLM, which requires very less hardware memory, compared to the originally proposed TSLM, and also have low
latency. Additionally, the impact of the time duration of partial PAPR on the performance of TSLM is studied, and its
lower bound has been identified by proposing a suitable time duration. Also, a thorough and fair comparison of
performance has been done with an existing trellis-based scheme proposed in literature. The simulation results show
that the proposed low-latency TSLM yields better PAPR reduction performance with relatively less hardware memory
requirements.

Keywords: 5G, Dynamic programming, Computational complexity, FBMC-OQAM, PAPR, SLM, Trellis-based

1 Introduction
Filter-bank multi-carrier (FBMC)-based systems, clubbed
with offset quadrature amplitude modulation (OQAM),
is being seriously considered for future communica-
tion systems. FBMC-OQAM has many attractive features
such as excellent frequency localization, a power spec-
tral density (PSD) with very low side lobes, an improved
robustness to time-variant channel characteristics, and
carrier frequency offsets. Armed with these properties,
FBMC-OQAM seems to be a more suitable candidate
as a radio waveform for 5G radio access technology
(RAT) than orthogonal frequency division multiplexing
(OFDM), especially for asynchronous devices [1]. How-
ever, FBMC-OQAM, as a multi-carrier technique, has a
high peak-to-average power ratio (PAPR). There is an
essential need to introduce novel methods relevant to
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PAPR reduction. In this paper, we mainly focus on PAPR
reduction using probabilistic schemes.
Although several classifications of the PAPR reduction

methods for OFDM do exist, there is a notable classifi-
cation with five categories which are as follows: clipping
effect transformations [2], coding [3], frame superposition:
tone reservation (TR) [4], expansible constellation point:
tone injection (TI) [5] and active constellation extension
(ACE) [6] and probabilistic schemes: selected mapping
(SLM) [7] and partial transmit sequence (PTS) [8]. The
classical schemes, proposed for OFDM, cannot be directly
applied to FBMC-OQAM, owing to their overlapping
symbol structure. Off late, some PAPR schemes have been
suggested for FBMC-OQAM systems, namely, ACE [9],
Iterative clipping [10, 11], ACE combined with TR [12]
and TR [13, 14].
Coming to recently proposed probabilistic schemes,

three symbol-by-symbol-based schemes have been pro-
posed in [15–17]. In [18], a trellis-based PTS scheme with
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multi-block joint optimization (MBJO) has been intro-
duced. Inspired by this trellis-based approach, a novel
trellis-based SLM (TSLM) scheme has been presented in
[19]. However, the existing TSLM technique needs very
high hardware memory, which also impacts the latency.
So, in this paper, we have proposed a low-latency TSLM,
which needs very low hardware memory and thereby
avoiding latency issues. A thorough and fair comparison
of performance has been done with existing probabilis-
tic schemes, overlapped SLM (OSLM) [16], dispersive
SLM (DSLM) [17], and MBJO-PTS [18]. The simulation
results show that there is a tradeoff between hardware
memory and PAPR reduction and also that low-latency
TSLM yields better performance with relatively low com-
putational complexity and low latency and requires less
hardware memory.
The rest of the paper is organized as follows: Section 2

gives a brief overview of the FBMC-OQAM signal struc-
ture and the impact of their overlapping nature. Section 3
presents the analysis of PAPR in FBMC-OQAM signals,
along with abridged introduction to the classical SLM
scheme. In Section 3.3, we briefly discuss about the
exhaustive search. Section 4 presents the idea of trellis-
based approach with its capability in achieving an optimal
PAPR reduction performance along with the TSLM algo-
rithm. In the same section, we propose the low-latency
TSLM algorithm. In Section 5, the computational com-
plexity of probabilistic schemes are derived. In Section 6,
the simulation results are presented, and the conclusion of
the paper is given in Section 7.

2 Overview of FBMC-OQAM system
Let us consider that we need to transmit M × N com-
plex symbols in a FBMC-OQAM system over N tones.
Then, we transmit real symbols at interval T

2 , where T is
the symbol period [20]. In OQAM mapping, the M com-
plex input symbol vectors {X0,X1, . . . ,XM−1} are mapped
into 2M real symbols {a0,n, a1,n, . . . , a2M−1,n}. After this
OQAM mapping, the real symbols undergo poly-phase
filtering that involves IFFT transformations along with fil-
tering by a synthesis filter bank. The obtained continuous-
time base-band FBMC-OQAM signal x(t) can be written
as [21]

x(t) = G {X0,X1, . . . ,XM−1}

=
2M−1∑

m′=0

N−1∑

n=0
am′,nh(t − m′T/2)ej

2π
T ntejϕm′ ,n , (1)

where

• x(t) �= 0 from t =[ 0,
(
M − 1

2
)
T + 4T)

• G{.} is the FBMC-OQAMmodulation function
• am′,n are OQAMmapped real symbols from Xm
• h(t) is the prototype filter impulse response

• ϕm′,n is the phase term, equals to π
2 (m′ + n) − πm′n

The prototype filter used in this paper is the one
designed in the European PHYDYAS project, whose
most significant parameter is the duration of its impulse
response also known as overlapping factor, K. For K = 4,
the h(t) is given by [22]. FBMC-OQAM signals have over-
lapping nature. We can see in Fig. 1 that the duration
of the impulse response in the case of rectangular filter
used in OFDM is T, whereas the duration of h(t) spreads
beyond one symbol period, and this impacts the FBMC-
OQAM signal, causing adjacent FBMC-OQAM symbols
to overlap.

3 Probabilistic PAPR reduction schemes for
OFDM and their adaptation for FBMC-OQAM

3.1 PAPR
For a continuous-time base-band FBMC-OQAM signal
x(t) that is transmitted during a symbol period T, the
PAPR is defined by

PAPRx(t) = maxt∈T |x(t)|2
1
T

T∫

0
|x(t)|2.dt

. (2)

The complementary cumulative density function
(CCDF) of PAPR of a signal quantifies how frequent the
PAPR exceeds a given threshold value γ , and it is defined
as Pr{PAPRx[n] ≥ γ }.

3.2 Selected mapping for OFDM signals
SLMwas introduced in [7], where we generateU complex
phase rotation vectors φ(u), for 0 ≤ u ≤ U − 1, of length
N as:
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Fig. 1 Illustration of the ideal mean power profile of FBMC-OQAM
symbols
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φ(u) =
{

(1, . . . , 1)T , u = 0,(
φ

(u)
0 , . . . ,φ(u)

N−1

)T
, 1 ≤ u ≤ U − 1,

(3)

where φ
(u)

k is the kth element of φ(u) defined as

φ
(u)

k = ejψ
(u)

k ∈C, 0≤u≤U−1, 0≤k ≤N−1, ψ(u)

k ∈ [0, 2π).
(4)

The frequency-domain input symbols X with N tones
are phase rotated by U phase rotations vectors of size N
as given below

X(u) = X � φ(u), 0 ≤ u ≤ U − 1, (5)

where � denotes the carrier-wise point-to-point multipli-
cation. By applying IFFT operation, we obtain theU time-
domain signal patterns {x(0)(t), x(1)(t), . . . , x(U−1)(t)}. The
target of the optimization problem is to identify the signal
x(umin)(t) that has the least PAPR so that

umin = arg min
0≤u≤U−1

[
PAPRx(u)(t)

]
. (6)

In the index of the respective phase rotation vector, umin
is sent to a receiver as side information (SI), comprising
log2U bits. If SI is error-protected, then BER of SLM is
the same as the original OFDM.
Recently, some symbol-by-symbol based schemes have

been proposed for FBMC-OQAM such as, OSLM [16]
and DSLM [17]. The sub-optimality of any symbol-by-
symbol approach is effectively dealt in [19], where it has
been shown that whatever improvement that has been
achieved for one symbol can probably be hampered by its
immediate next symbol.

3.3 Exhaustive search
In order to achieve the optimal performance in PAPR
reduction, one need to consider all the possible U phase
rotations for all M symbols and pick out the best one out
of the UM different combinations. In practical sense, it
is meaningless to perform this exhaustive search, since it
adds mammoth complexity to the implementation of any
SLM-based scheme. To deal with the similar problem in
the case of PTS, a trellis-based PTS scheme with multi-
block joint optimization (MBJO) has been introduced in
[18]. Nevertheless, for small values of U and M, simula-
tion results will be presented in order to quantify the gap
between the proposed method, TSLM, and the optimal
exhaustive search.

4 Overview on trellis-based approach and TSLM
algorithm

In order to circumvent the high computational complex-
ity of exhaustive search, we opt for the dynamic pro-
gramming, which can help in reducing substantially the
number of paths one need to pick [23]. At any transition
between two stages, we haveU2 paths to compare, and for

M FBMC-OQAM symbols, we have totally M − 1 transi-
tions. Therefore, the TSLM scheme needs to search only
U2(M − 1) paths. This is due to eliminating certain paths
by evaluating them based on a metric. If we have to trans-
mit M input symbol vectors {X0,X1, . . . ,XM−1}, then we
need to find �, which is the optimal set of M different
phase rotation vectors that give the best PAPR

� =
{
φ

(
u0min

)
,φ

(
u1min

)
, . . . ,φ

(
uM−1
min

)}
, (7)

where
{
u0min,u

1
min, . . . ,u

M−1
min

}
are the indices of the opti-

mal phase rotation vectors for the M input symbol vec-
tors, which are to be sent to the receiver as SI. With M
FBMC-OQAM symbols and U phase rotation vectors, we
need to find the best path in the trellis of Fig. 2 that gives
the lowest PAPR. Choosing an optimal path in the trel-
lis means finding the multiplicative vectors by solving (6),
with the help of a trellis diagram.
For 0 ≤ m ≤ M − 1, every mth FBMC-OQAM symbol

xm(t), obtained from modulation of input symbol vector
Xm, is represented as the mth stage in the trellis at time
instant mT. At each stage, there will be U different states,
representing the rotated FBMC-OQAM symbols. Among
these states, any ith trellis state indicates rotation by phase
vector φ(i). Between every two stages, there exist U2 pos-
sible paths. The joint FBMC-OQAM modulation of the
mth and (m + 1)th rotated input symbol vectors X(u)

m and
X(v)
m+1, respectively, is represented in the trellis by the path

ζ
(u,v)
(m⇒m+1) between the uth state in the mth stage and the
vth state in the (m + 1)th stage, where ⇒ represents a
transition between two successive stages.
The partial PAPR that has been calculated between two

stages with multiple states serves as characteristic of path
metric, which can aid at identifying the U optimal paths
that arrive at successive stages. Unlike a full PAPR, a par-
tial PAPR of a signal x(t) is computed over a particular
time instant T0. For the path ζ

(u,v)
(m⇒m+1), its path metric

�
(u,v)
(m,m+1) can be written as

�
(u,v)
(m,m+1) = f

(
PPAPR(u,v)

m,m+1

)
, (8)

where f (.) is any convex function and PPAPR(u,v)
m,m+1 is

the partial PAPR of the path ζ
(u,v)
(m⇒m+1), which is to be

computed over duration T0 as

PPAPR(u,v)
m,m+1 = maxt∈T0 |x(u,v)

m,m+1(t)|2
1
T0

∫
T0

|x(u,v)
m,m+1(t)|2.dt

, 0 ≤ u, v ≤ U − 1,

(9)

where T0 ∈[mT + Ta,mT + Tb), which is any arbitrary
interval within the [mT ,mT + 4.5T) interval. It has to be
noted that Ta ≥ 0 and Tb < 4.5T . Similarly, we define a
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Fig. 2 Illustration of the trellis diagram between M stages composed of U states

state metric 	(u,m) at the mth stage as a measure of opti-
mality of cumulative pathmetrics of the optimal paths that
arrived to this state from previous stages through various
transitions. It can be evaluated simply by adding the path
metric �

(w,u)
(m−1⇒m) of the arriving optimal path ζ

(w,u)
(m−1⇒m)

from the wth state of the previous (m − 1)th stage with
the state metric 	(w,m−1) of the wth state from which this
optimal path departs.
The whole optimization problem in this regard can be

viewed as a continuum of overlapping optimization sub-
problems, i.e., finding a FBMC-OQAM signal with least
PAPR is equivalent to obtaining the accumulation of the
least peaks. This is reflected in the state metric of a given
state at any stage.

4.1 TSLM algorithm
In the TSLM, every two symbols are rotated with different
phase rotation vectors that are i.i.d and are FBMC-OQAM
modulated. The two optimal states between the two suc-
cessive stages are chosen among others, based on the least
PAPR criterion that has been computed over a given time
instant T0. The TSLM algorithm involves the following
steps:

Step 1—Initialization: Firstly, we generate M
complex input symbol vectors {X0,X1, . . . ,XM−1}
and U phase rotation vectors

{
φ(0),φ(1), . . . ,φ(U−1)}

of length N as per (3). We initialize the counter m

and the state metrics for all states of the first stage as
below.

m = 0, (10)
	(u,0) = 0, u = 0, . . . ,U − 1. (11)

As long as the condition 0 ≤ m ≤ M − 2 is satisfied,
we perform steps 2, 3, 4, 5, and 6 in a repeated
manner.
Step 2—Phase rotation: Two input symbol vectors
Xm,Xm+1 are phase rotated with U different phase
rotation vectors, as per (5), giving{
X(0)
m ,X(1)

m , . . . ,X(U−1)
m

}
and

{
X(0)
m+1,X

(1)
m+1, . . . ,X

(U−1)
m+1

}
, respectively.

Step 3—FBMC-OQAMmodulation: For
0 ≤ u, v ≤ U − 1, FBMC-OQAMmodulation is done
jointly for all combination of the patterns of themth
and (m + 1)th input symbols, along with the
preceding symbols, such as

x(u,v)
m,m+1(t)=G

{
. . . ,X(λ((λ(u,m−1)),m−2))

m−2 ,X(λ(u,m−1))
m−1 ,X(u)

m ,X(v)
m+1

}
,

(12)

where λ(u,m − 1) is the surviving phase rotation at
the uth state of stage m.
Step 4—Path metric calculation: For each of the U2

patterns of the modulated FBMC-OQAM signal
x(u,v)
m,m+1(t), we compute partial PAPR as per Eq. (9).



Bulusu et al. EURASIP Journal on Advances in Signal Processing  (2016) 2016:132 Page 5 of 11

For the path ζ
(u,v)
(m⇒m+1), we calculate its path metric

�
(u,v)
(m,m+1) according to (8).

Step 5—Survivor path identification: The states of
stagem that are related to the survivor paths leading
to stagem + 1 are stored in a state matrix λ(v,m) of
order U × M, as given below

λ(v,m)= min
u∈[0,U−1]

[
	(u,m)+�

(u,v)
(m,m+1)

]
, v=0, . . . ,U−1.

(13)
Step 6—State metric updation: The state metric
	(v,m+1), for the stagem + 1, can be updated as
follows:

	(v,m+1) =	(λ(v,m),m) + �
(λ(v,m),v)
(m,m+1) , v = 0, . . . ,U − 1.

(14)
Step 7—Incrementation: Increment the value ofm by
1 and if 0 ≤ m ≤ M − 2, then go to step 2, or else, if
0 ≤ m = M − 1, go to step 8.
Step 8—Traceback: Once state metrics for all the the
Mth stages has been computed, then identify the
state that has the least state metric as shown below

�(M − 1) = min
u∈[0,U−1]

[
	(u,M−1)

]
. (15)

Then, start tracing back from last stage to the first
one in order to find the unique survivor path � by
identifying the optimal states at each stage as below

�(k) = λ(�(k + 1), k), (16)

where k = M − 2,M − 3, . . . , 1, 0. This survivor path
� is the set of optimal phase rotation vectors that is
obtained after solving the optimization problem by
dynamic programming and its indices
{u0min,u1min, . . . ,u

M−1
min } are supposed to be

transmitted to the receiver as SI.

4.2 Proposed low-latency TSLM in terms of hardware
memory and latency

When we consider implementation complexity, we need
to take two things into account, computational complex-
ity and hardware memory. The former shall be dealt in
our analysis in the next section. The originally proposed
TSLM [19] needs a state matrix λ of order U × M, which
means we need to store in total MNU time-domain com-
plex samples inmemory, before we start tracing back. This
adds latency by M stages and requires very huge hard-
ware memory. A latency of M stages means that we have
to traceback until M stages for the identification of sur-
vivor paths. Hardware memory can significantly impact
the implementation cost, and high latency is undesirable
in some critical communication systems.
We have studied the impact of traceback depth parame-

ter ∂ , which heavily impacts not only in the PAPR reduc-
tion performance but also in the latency and hardware

memory requirements. It has to be noted that the choice
of ∂ depends upon the prototype filter overlapping fac-
tor K. So, in this paper, we propose a low latency TSLM
that requires less hardware memory and also have lower
latency when compared to the originally proposed TSLM.
In the new proposal, the indices of the survivor paths
can be stored, reducing the memory requirements toMU.
However, we store the indices of the optimal states. When
a new FBMC symbol pair (m,m + 1) is processed (step 2
to step 6), we freeze definitely the rotation vector at stage
m− ∂ . It is then possible to compute the modulated signal
from (m−∂)T to (m−∂ +1)T . Thus, we can slowly accu-
mulate themodulated signal related to individual symbols,
in order to obtain the total signal.
Later, in the simulation results, we shall show that for

any value of ∂ > K , the PAPR reduction performance of
the low-latency TSLM is the same as that of the originally
proposed TSLM. In our analysis, we have realized that
there is a tradeoff between latency and PAPR reduction
performance. The PAPR reduction performance of low-
latency TSLM varies from being sub-optimal to quasi-
optimal, depending upon the choice of ∂ . However, it has
to be noted that both the original TSLM and low-latency
TSLM have same computational complexity.

5 Computational complexity analysis of
trellis-based probabilistic schemes

This section aims at fair comparison of PAPR reduction
performances of TSLM and MBJO-PTS [18] schemes in
terms of computational complexity. A fair comparison of
any PTS and SLM scheme cannot be possible, if both
schemes do not exhibit the same computational complex-
ity [24]. The complexity analysis in this paper includes
both complex multiplications and additions. The follow-
ing consideration holds generally for any SLM and PTS
schemes that are applied in FBMC-OQAM systems. How-
ever, in the performance comparison between the two
schemes, only the complexmultiplications are considered,
since they dominate the overall complexity in common
hardware implementations [25]. We have given general
expressions for computational complexity, so that for any
given probabilistic scheme, they can be readily derived
accordingly.

5.1 Derivation of computational complexity in TSLM for
multiplications

In any SLM-based scheme, the complexity in implementa-
tion will be due to phase rotation, FBMC-OQAMmodula-
tion, and metric calculation. Let us denote the complexity
related to these three operations in the TSLM scheme
as crot, cmod, and cmet, respectively. The phase rotation
of the mth input symbol vector Xm needs complex mul-
tiplications equal to the number of its tones N. So, the
complexity crot is given as
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crot = N . (17)

In poly-phase filtering operation, we perform IFFT and
filtering with h(t). OQAM mapping involves complex-to-
real symbol mapping. It may seem that one has to perform
two real IFFT operations. Nevertheless, it is possible to
compute two real IFFTs simultaneously like a single com-
plex IFFT operation without increasing the number of
complex multiplications [26]. The same can be applied
in filtering with h(t). Thus, the computational complexity
involved in FBMC-OQAMmodulation cmod is given as

cmod = N
2
log2N

︸ ︷︷ ︸
IFFT

+ 4N︸︷︷︸
filtering

. (18)

In the metric calculation operation, we need N complex
multiplications to find the peak. The cmet depends on T0
and is given as

cmet = dN , (19)

where T0 is the duration of time in terms of N and d is a
constant that represents the number of successive symbol
intervals, considered for metric calculation.
The computational complexity in the case of TSLM is

summarized in Table 1, and its general expression is given
below

cTSLM = M
[
U .crot + U .cmod +

(
1 − 1

M

)
U2.cmet

]

(20)

= MN
[(

1
2
log2N + 5

)
U + d

(
1 − 1

M

)
U2

]
.

(21)

5.2 Derivation of computational complexity in MBJO-PTS
for multiplications

In PTS scheme, we individually perform phase rotation in
time domain to theV sub-blocks and then add them, lead-
ing to WV different signal patterns, where W is the total
number of candidate phases that is to be chosen for a sub-
block. MBJO-PTS scheme is a trellis-based adaption of
classical PTS scheme to FBMC-OQAM system by multi-
block joint optimization and is presented in [18]. Unlike
SLM, in any PTS-based scheme, we can perform phase
rotation in time domain. This avoids the need for multiple
FBMC-OQAM modulation operations. Thus, the com-

Table 1 Multiplication computational complexity in TSLM

Operation Complexity Weight

Rotation N MU

Modulation N
2 log2 N + 4N MU

Metric dN (M − 1)U2

plexity due to FBMC-OQAMmodulation in a PTS-based
scheme ĉmod can be reduced as N

V -point IFFT.

ĉmod = N
2V

log2
N
V

+ 4N . (22)

Since we consider a certain time duration T0 for partial
PAPR calculation, we need dN complex multiplications
within that time duration. The computational complex-
ity involved in phase rotation operation for MBJO-PTS
scheme ĉmet is given by

ĉrot = dNV . (23)

The computational complexity involved inmetric calcu-
lation for MBJO-PTS scheme ĉmet is given by

ĉmet = dN . (24)

General expression for MBJO-PTS computation com-
plexity for M FBMC-OQAM symbols has been derived
similarly based on the information in Table 2

cMBJO = M
[
W .ĉrot + V .ĉmod +

(
1 − 1

M

)
W 2V .ĉmet

]

(25)

= MN
[(

1
2
log2

N
V

+4V+dVW
)

+d
(
1− 1

M

)
W 2V

]
.

(26)

From (20) and (25), it is clear that, in FBMC-OQAM
with TSLM and MBJO-PTS, the complexities involved in
rotation and metric calculation are linear w.r.t N, whereas
the modulation complexity with TSLM and MBJO-PTS
are of order O(N2 log2(N)) and O( N

2V log2(
N
V )), respec-

tively. It implies that the modulation operation has much
significant complexity than the remaining ones. From the
size of the phase rotation point of view, the complexity
is solely dominated by U in TSLM. On the contrary, it is
distributed between V andW in MBJO-PTS.

5.3 Condition for identical computational complexity
In order to avail a fair comparison, the condition for iden-
tical computation complexity in both TSLM and MBJO-
PTS schemes is given by

cTSLM = cMBJO. (27)

Table 2 Multiplication computational complexity in MBJO-PTS

Operation Complexity Weight

Rotation dNV MW

Modulation N
2V log2

N
V + 4N MV

Metric dN (M − 1)W2V
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By substituting (20) and (25) in (27), we obtain

MN
[(

1
2
log2N + 5

)
U + d

(
1 − 1

M

)
U2

]

= MN
[(

1
2
log2

N
V

+4V+dVW
)

+d
(
1 − 1

M

)
W 2V

]
.

(28)

For a large value of M, the term 1 − 1
M → 1, and

therefore, it can be neglected. Eq. 28 is simplified

dU2+
(
1
2
log2N+5

)
U− 1

2
log2

N
V

−4V−dVW−dW 2V =0.

(29)

The possible root U in ideal case for the quadratic
function (29), denoted by Uroot is given by

Uroot =
⌊

− 1
2 log2N − 5 + √

�

2d

⌋
, (30)

where � is the discriminant, which is given by

�=
(
1
2
log2N+5

)2
+4d

(
1
2
log2

N
V

+4V+dVW+dW 2V
)
.

5.4 Derivation of addition computational complexity in
TSLM andMBJO-PTS

The computational complexity due to complex addi-
tions for M FBMC-OQAM symbol, in the TSLM and
MBJO-PTS schemes, is summarized in the Table 3. The
expressions for computational complexity due to com-
plex additions for TSLM and MBJO-PTS can be derived
accordingly in a similar fashion to that of complex mul-
tiplications. However, in the case of MBJO-PTS, we need
to take into account the extra V additions needed per
symbol, due to sub-block re-addition.

6 Simulation results
The objective of the simulations is to analyze the per-
formance of low latency TSLM scheme in comparison
with OFDM when classical SLM scheme is used. Simula-
tions are done for a FBMC-OQAM signal that has been
generated from 105 4QAM symbols with 64 tones. The
PHYDYAS prototype filter [22], which spans over 4T was
used by default unless specified otherwise. The range of
the complex phase rotation vector was chosen such as

Table 3 Addition comparison of computational complexities of
the TSLM and MBJO-PTS

TSLM MBJO-PTS

Complexity Weight Complexity Weight

Rotation 0 MU 0 MW

Modulation N log2 N + 3N MU N
V log2

N
V + 3N MV

Metric dN (M − 1)U2 2(V − 1)dN (M − 1)W2V

φ(u) ∈ {1,−1}. In general, most of the PAPR reduction
schemes are implemented over discrete-time signals. So,
we need to sample the continuous-time FBMC-OQAM
signal x(t), thereby obtaining its discrete-time signal s[ n].
In order to well approximate the PAPR, we have over-
sampled the modulated signal by a factor of 4 [27] and
then implemented the TSLM scheme on the discrete-
time signal s[n]. Exponential function has been used as
the function f in (8), when calculating the path metrics.
We have tried to see the impact of higher constellation
on PAPR reduction with TSLM but found 16QAM to be
more or less the same as 4QAM.

6.1 Impact of variation of T0 duration
When step 3 of the TSLM algorithm is proposed, we are
interested with the PAPR related to themth and (m + 1)th
input symbols over the durationT0 ∈ [mT+Ta,mT+Tb).
Looking at Fig. 1, we can notice that these two symbols
have an impact on the overall signal mainly in the interval
[mT + T ,mT + 4T] (i.e., Tamin = T and Tbmax = 4T . As
shown in Fig. 3, choosing Ta = 2T and Tb = 4T seems
to be the lower bound as it yields better performance than
the remaining intervals. If we choose intervals Ta > 2T
or Tb < 3T , then there is a significant degradation on the
performance. In conclusion, it was found that the inter-
vals Ta = 2T and Tb = 4T are a quasi-optimal choice,
meanwhile having a lower complexity.

6.2 Comparison of TSLM and exhaustive search approach
In an exhaustive search over M symbols, all UM possible
phase rotations are tested and the best one is chosen.With
the trellis-based approach, only U2 possible phase rota-
tions are tested in step 3 of the TSLM algorithm and U of
them are kept as surviving paths. By avoiding exhaustive
search, we hamper optimality in trellis-based approaches.

5 6 7 8 9 10 11
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10
−2

10
−1

10
0

(P
r[

PA
PR

>γ
])

γ (dB)

[0,2T)
[2T,3T)
[2T,4T)
[0,5.5T)

Fig. 3 CCDF of PAPR for FBMC-OQAM symbols with partial PAPR
calculated over different T0, U = 2, and PHYDYAS filter
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Thus, any trellis-based approach lags behind exhaustive
search approach.
So, we tried to analyze how much better the TSLM

fares in terms of PAPR reduction, w.r.t. exhaustive search
approach. Since, it is not possible to simulate an exhaus-
tive search over 105 symbols, we have considered 10 sym-
bols with U = 2 and performed Monte Carlo simulation
for 10000 number of times to be sufficient. It means we
have to perform a search over 1024 different patterns and
pick the one with the least PAPR. In Fig. 4, we have plotted
the CCDF of PAPR for TSLM and exhaustive search. We
can notice from this figure that TSLM is indeed a quasi-
optimal approach. Because, we loose a mere 0.65 dB at
10−3 of CCDF of PAPR, while reducing the computational
complexity fromO(UM) toO

(
(M − 1)U2).

6.3 Impact of the size of U
Like any SLM scheme, the size of phase rotation vector
impacts the performance of the PAPR reduction. With
OFDM, we have only U possible phase rotations for
PAPR reduction in the time interval T because we have
a symbol-by-symbol approach. Whereas with FBMC-
OQAM, we have UM possible phase rotations for reduc-
ing the PAPR in the time interval (M + 3.5)T . The
ratio of number of possible phase rotation divided by the
impacted time interval is always better for FBMC-OQAM
explaining the fact that trellis-based approach can outper-
form the performance of OFDM for the same number of
phase rotation vectors U.
For an illustration of impact of U, we have considered

T0 =[mT + 2T ,mT + 4T). The different sizes consid-
ered are U = {2, 4, 8}. The values at 10−3 of CCDF of
PAPR in Fig. 5 has been summarized in Table 4. We can
see from this table that the FBMC-OQAM with TSLM
has outperformed the OFDM with classical SLM by 0.35,

5 5.5 6 6.5 7 7.5 8 8.5 9
10

−3

10
−2

10
−1

10
0

(P
r[

PA
PR

>γ
])

γ (dB)

TSLM
SLM (Optimal)

Fig. 4 CCDF of PAPR for FBMC-OQAM symbols with TSLM and with
an exhaustive search, T0 = [2T , 4T) with U = 2 and PHYDYAS filter
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Fig. 5 CCDF of PAPR for FBMC-OQAM symbols, T0 =[ 2T , 4T) with
U = 2, 4, 8 and PHYDYAS filter

0.24, and 0.02 dB at 10−3 value of CCDF of PAPR when
U = 2, U = 4, and U = 8, respectively. It is worth not-
ing that at 10−3 value of CCDF of PAPR when U = 2,
we are able to achieve 1.73-dB PAPR reduction from the
original signal with an SI of 1 bit. Such proper exploitation
can be possible with the trellis-based approach instead of
symbol-by-symbol optimization. Another observation is
that the lead gap between CCDF curves of OFDM and
FBMC-OQAM gets narrowed as U increases.

6.4 Impact of traceback depth ∂ on latency and hardware
memory

Even though TSLM is quasi-optimal, as mentioned earlier,
it is important to take into account the hardware memory
and latency induced by this algorithm. We can observe in
Fig. 1 that most of the energy of a FBMC-OQAM sym-
bol lies in its succeeding two symbols rather than its own
period interval. This is due to the fact that the prototype
filter overlapping factor K = 4. So, it is of considerable
interest to consider the cases of ∂ = {1, 2, 3}. The reason
behind choosing ∂ = {1, 2, 3} is that the prototype filter
overlapping factor K = 4, e.g., ∂ = {2}, means, at any
mth stage, we have to traceback until the (m − 2)th stage,
in order to identify survivor paths. If we do not alter the
∂ , then we have to wait for the processing of all M sym-
bols (105 in our simulation). For these values along with
∂ = {105}, we have plotted the CCDF of PAPR in Fig. 6. In
the legend of that figure, “∂ = 105” indicates the original

Table 4 CCDF of PAPR at 10−3 value (in dB) for N = 64

Modulation type Reduction scheme U = 2 U = 4 U = 8

OFDM Classical SLM 9.21 8.19 7.48

FBMC-OQAM Trellis-based SLM 8.86 7.95 7.46
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Fig. 6 CCDF of PAPR for FBMC-OQAM symbols with ∂ = {105, 3, 2, 1},
T0 = [2T , 4T), U = 2, and PHYDYAS filter

TSLM and “∂ = {1, 2, 3}” indicate low-latency TSLM with
different traceback depths.
The case of ∂ = 1 may seem like that of DSLM

[17], but it is different. In the case of DSLM, the choice
of optimal rotation of a given mth input symbol vec-
tor Xm depends only on the past input symbol vectors
Xm−1, . . . ,X0, whose optimal rotations have already been
fixed, whereas for low-latency TSLM with ∂ = 1, at the
mth stage, it shall depend not only on past input symbol
vectors but also on one succeeding future input symbol
vector Xm+1, as we perform joint modulation in step 3
of the TSLM algorithm. So, when we move to the next
(m + 1)th stage in the trellis, the optimal choice (i.e., the
survivor path) may vary and this may have impacted the
decision in the previous stage. Then, the choice of themth
stage should bear with the incorrect decision, and this in
turn will impact the PAPR reduction. Also, the possibility
of incorrect decision will increase along with U leading to
much sub-optimal performance for higher value of U. As
seen in Fig. 6, the PAPR reduction performance of low-
latency TSLM with ∂ = 1 lags the TSLM with ∂ = 105 by
around 0.8 dB at 10−3 value of CCDF of PAPR.
However, for ∂ = 2, we are rectifying the above gap by a

large extent. Even though it has sub-optimal performance,
it is worth noting that low-latency TSLM with ∂ = 2 lags
the TSLMwith ∂ = 105 by around 0.37 dB at 10−3 value of
CCDF of PAPR. Finally, we have observed that low-latency
TSLM with ∂ = 3 reaches the quasi-optimal performance
of TSLM. But, in this case, the latency is substantially
reduced from 105 stages to 3 stages and we need very
less hardware memory, since we store just 2NU complex
time samples instead of 105NU . The latency and the num-
ber of complex time samples needed to store for different
values of ∂ have been summarized in Table 5, where we
can see the tradeoff between latency and PAPR reduction

Table 5 Impact of ∂ on latency and hardware memory for
N = 64 and U = 2

Traceback depth ∂ Latency Complex time 10−3value of CCDF
samples to be stored of PAPR (dB)

100,000 100, 000T 12.8 × 106T 8.86

3 3 384T 8.86

2 2 256T 9.23

1 1 128T 9.64

performance. If there is a constraint on latency or hard-
ware memory, then a low-latency TSLM with ∂ = {2, 3}
can be considered, which have tolerable sub-optimal and
quasi-optimal performances respectively.

6.5 Impact of choice of the metric function
The choice of metric function f (.) in Eq. (8) seems to
have some impact on the performance in terms of PAPR
mitigation. Two different functions, namely, linear and
exponential functions, have been chosen to understand
the impact of choice of the metric function f (.) on the per-
formance of the TSLM scheme. As shown in Fig. 7, for
low values of the PAPR, the PAPR reduction performance
with exponential function is almost as same as that with
the linear one, albeit, lagging minutely. Very small perfor-
mance gain can be seen at high values of the PAPR. This
can be explained by the fact that the exponential function
puts more weightage to higher peaks than the linear one
in identifying the set of optimal phase rotation vectors.
Although we do consider exponential function in all our
simulation, we suggest that it can be sufficient to choose a
linear metric function.
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Fig. 7 CCDF of PAPR for FBMC-OQAM symbols, T0 = [2T , 4T), U = 2,
and different metric functions
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6.6 Comparison of TSLMwith existing probabilistic
schemes

Among the SLM-based schemes, the TSLM has been
already been compared with DSLM in [19], where it have
been shown that it is superior to any scheme based on
symbol-by-symbol approach. DSLM has superior perfor-
mance than OSLM, as shown in [28]. MBJO-PTS is a
trellis-based scheme, which yields quasi-optimal perfor-
mance among the PTS schemes. In fact, fair comparison
of any PTS and SLM scheme cannot be possible, if both
schemes do not exhibit the same computational com-
plexity [24]. So, we try to compare the multiplications
computational complexity of MBJO-PTS with TSLM by
keeping the number of tones, type of modulation, the pro-
totype filter, and T0 duration identical. The value of W
is 2 as per the proposed MBJO-PTS scheme [18]. The
value of Uroot calculated for V = {2, 4} according to
(30) is found to be 3 and 14, respectively. The compar-
ison of the performance of MBJO-PTS for V = {2, 4}
and W = 2 w.r.t. TSLM scheme for corresponding val-
ues of U = {3, 14} can be seen in Fig. 8. The number of
complex multiplications and additions needed for imple-
mentation of TSLM and MBJO-PTS algorithms over 105
FBMC-OQAM symbols has been summarized in Table 6.

Table 6 Computational complexities of the TSLM and MBJO-PTS
for N = 64

Complex

PAPR reduction scheme Multiplications Additions

TSLM (U = 3) 269 × 106 211 × 106

MBJO-PTS (V = 2,W = 2) 323 × 106 298 × 106

TSLM (U = 14) 3226 × 106 986 × 106

MBJO-PTS (V = 4,W = 2) 3494 × 106 3443 × 106

At CCDF of PAPR equal to 10−3 in Fig. 8, we can infer
that the FBMC-OQAM with TSLM leads the MBJO-PTS
scheme in PAPR reduction by roughly 0.7 and 0.2 dB for
U = 3 and U = 14, respectively.
To do a complex multiplication, we need to per-

form three complex additions. So, we can compute
from Table 6 the relative reduction in computational
complexity of TSLM w.r.t MBJO-PTS. Thus, we have
found that the proposed TSLM method with U =
{3, 14} reduces the overall complexity in terms of com-
plex additions, by 19.65 and 23.42% compared with the
MBJO-PTS method with V = {2, 4} and W = 2,
respectively.

7 Conclusions
Since FBMC-OQAM signals have high PAPR, there is a
dire need to probe for suitable PAPR reduction schemes.
This paper is an extension of the recently proposed TSLM.
In this paper, the computational complexity of the TSLM
scheme has been derived and low-latency TSLM has
been proposed, which not only can yield tolerable sub-
optimal or same performance to that of TSLM but also
has very low latency and needs less hardware memory.
Then, the impact of time duration of partial PAPR on
the performance of TSLM is studied and its lower bound
has been identified by proposing suitable time duration.
A thorough and fair comparison of performance has
been done with an existing trellis-based scheme proposed
in literature, and the simulation results show that low-
latency TSLM yields better performance with relatively
low latency.

Acknowledgements
The work done in this paper is financially supported by the French National
Research Agency (ANR) project ACCENT5 with grant agreement code:
ANR-14-CE28-0026-02.

Competing interests
The authors declare that they have no competing interests.

Received: 7 November 2015 Accepted: 25 November 2016

References
1. BF Boroujeny, OFDM Versus Filter Bank Multi-carrier. IEEE Signal Proc.Mag.

8(3), 92–112 (2006)
2. X Li, LJ Cimini, Effects of clipping and filtering on the performance of

OFDM. IEEE Commun.Lett. 2(5), 131–133 (1998)
3. TA Wilkinson, AE Jones, in 45th IEEE Veh.Technol. Conf. Minimisation of the

peak-to-mean envelope power ratio of multi-carrier transmission
schemes by block coding, vol. 2, (Chicago, 1995), pp. 925–829

4. J Tellado, J Cioffi, in IEEE CTMC, GLOBECOM. Peak power reduction for
multicarrier transmission (IEEE Publication, Sydney, 1998)

5. H Ochiai, A novel trellis shaping design with both peak and average
power reduction for OFDM systems. IEEE Trans.Commun. 52(11),
1916–1926 (2004)

6. BS Krongold, DL Jones, PAR reduction in OFDM via active constellation
extension. IEEE Trans. Broadcast. 49, 258–268 (2003)

7. RW Bauml, RFH Fischer, JB Huber, Reducing the peak-to-average power
ratio of multi-carrier modulation by selected mapping. IEE Electron. Lett.
32(22), 2056–2057 (1996)



Bulusu et al. EURASIP Journal on Advances in Signal Processing  (2016) 2016:132 Page 11 of 11

8. SH Muller, JB Huber, OFDM with reduction peak to average power ratio
by optimum combination of partial transmit sequences. IEEE Electron.
lett. 33, 368–369 (1997)

9. N van der Neut, B Maharaj, F de Lange, G Gonzalez, F Gregorio, J
Cousseau, in EURASIP Journal on Advances in Signal Processing. PAPR
reduction in FBMC using an ACE-based linear programming optimization,
vol. 2014, no. 172 (Springer Publications, 2014)

10. Z Kollar, P Horvath, in Hindawi Journal of Computer Networks and
Communications. PAPR Reduction of FBMC by Clipping and its Iterative
Compensation, vol. 2012, no. 382736 (Hindawi Publications, 2012)

11. Z Kollar, L Varga, B Horvath, P Bakki, J Bito, in Hindawi Scientific World
Journal. Evaluation of Clipping Based Iterative PAPR Reduction Techniques
for FBMC Systems, vol. 2014, no. 841680 (Hindawi Publications, 2014)

12. B Horvath, P Horvath, in IEEE EuropeanWireless Conference. Establishing
Lower Bounds on the Peak-to-Average-Power Ratio in Filter Bank
Multicarrier Systems, (Budapest, 2015), pp. 1–6

13. S Lu, D Qu, Y He, Sliding Window Tone Reservation Technique for the
Peak-to-Average Power Ratio Reduction of FBMC-OQAM Signals. IEEE
Wireless Commun. Lett. 1(4), 268–271 (2012)

14. KC Bulusu, H Shaiek, D Roviras, in IEEE International Symposium onWireless
Communication Systems. Reduction of PAPR of FBMC-OQAM Signals by
Dispersive Tone Reservation Technique, (Brussels, 2015), pp. 561–565

15. G Cheng, H Li, B Dong, S Li, An improved selective mapping method for
PAPR reduction in OFDM/OQAM system. Scientific Research
Communications and Network Journal. 5(3C), 53–56 (2013)

16. A Skrzypczak, P Siohan, JP Javaudin, in 63rd IEEE Veh.Technol. Conf.
Reduction of the peak-to-average power ratio for OFDM-OQAM
modulation, vol. 4, (Melbourne, 2006), pp. 2018–2022

17. KC Bulusu, H Shaiek, D Roviras, R Zayani, in 11th IEEE International
Symposium onWireless Communication Systems. PAPR Reduction for
FBMC-OQAM Systems Using Dispersive SLM Technique, (Barcelona,
2014), pp. 568–572

18. D Qu, S Lu, T Jiang, Multi-Block Joint Optimization for the
Peak-to-Average Power Ratio Reduction of FBMC-OQAM Signal. IEEE
Trans.Signal Process. 61(7), 1605–1613 (2013)

19. KC Bulusu, H Shaiek, D Roviras, in IEEE International Conference on
Communications. Potency of Trellis-Based SLM over the
Symbol-by-Symbol Approach in Reducing PAPR for FBMC-OQAM Signals,
(London, 2015), pp. 4757–4762

20. P Siohan, C Siclet, N Lacaille, Analysis and design of OFDM/OQAM
systems based on filter bank theory. IEEE Trans.Signal Process. 50,
1170–1183 (2002)

21. BL Floch, M Alard, C Berrou, Coded orthogonal frequency division
multiplex. IEEE Proc. 83(6), 982–996 (1995)

22. M Bellanger, in IEEE International Conference on Acoustic, Speech and Signal
Processing. Specification and design of prototype filter for filter bank
based multi-carrier transmission, (Salt Lake City, 2001), pp. 2417–2420

23. R Bellamen, Applied Dynamic Programming. (Princeton University Press,
New Jersey, 1962)

24. C Siegl, RFH Fischer, in IEEE International ITGWorkshop on Smart Antennas.
Comparison of partial transmit sequences and selected mapping for
peak-to-average power ratio reduction in MIMO OFDM, (Darmstadt,
2008), pp. 324–331

25. A Burg, VLSI Circuits for MIMO Communication Systems, Ph.D. Thesis, ETH
Zurich (2006)

26. E Chu, A George, Inside the FFT Black Box: Serial and Parallel Fast Fourier
Transform Algorithms, Computational Mathematics Series. (CRC Press, Boca
raton, 1999)

27. Tellado J, Peak to Average Ratio Reduction for Multi-carrier Modulation,
Ph.D. Thesis, Stanford University, Stanford, CA, USA (1999)

28. KC Bulusu, Performance Analysis and PAPR Reduction Techniques for
Filter-Bank based Multi-Carrier Systems with Non-Linear Power Amplifiers,
Ph.D. Thesis, Conservatoire National des Arts et Métiers, Paris, France
(2016)

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com


	Abstract
	Keywords

	Introduction
	Overview of FBMC-OQAM system
	Probabilistic PAPR reduction schemes for OFDM and their adaptation for FBMC-OQAM
	PAPR
	Selected mapping for OFDM signals
	Exhaustive search

	Overview on trellis-based approach and TSLM algorithm
	TSLM algorithm
	Proposed low-latency TSLM in terms of hardware memory and latency

	Computational complexity analysis of trellis-based probabilistic schemes
	Derivation of computational complexity in TSLM for multiplications
	Derivation of computational complexity in MBJO-PTS for multiplications
	Condition for identical computational complexity
	Derivation of addition computational complexity in TSLM and MBJO-PTS

	Simulation results
	Impact of variation of T0 duration
	Comparison of TSLM and exhaustive search approach
	Impact of the size of U
	Impact of traceback depth bold0mu mumu =============== on latency and hardware memory
	Impact of choice of the metric function
	Comparison of TSLM with existing probabilistic schemes

	Conclusions
	Acknowledgements
	Competing interests
	References

