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Abstract—Statistical process control methods for monitoring 

processes with individual measurements are considered and 

two new individual control charts for monitoring process 

variability and correlation are proposed. The influence function 

of variance is proposed to monitor process variability. To 

investigate correlation among two quality characteristics 

control charts based on the influence function of correlation 

coefficient are suggested. The advantage of our variance 

influential control chart is its ability to monitor process 

variance based only on the measurements of each inspected 

unit, which is not the case for classical moving range chart 

where differences from one point to the next are displayed in 

the graphic, so limiting its use in the matter of mated parts. The 

proposed techniques are general, and the influence functions 

may be used to build up individual control charts relative to 

either nominal values or estimates. The method is further 

illustrated with real datasets, from a manufacturing system 

producing precisely interfitting and mating parts. 

 
Index Terms—Individual measurement, variance, 

correlation, influence function, control chart 

 

I. INTRODUCTION 

ONTROL charts are powerful tools used to monitor 

quality of manufacturing processes. In many 

applications, it is assumed that the process variable X 

has a normal distribution and the most commonly used 

control charts are Shewhart charts, [1]. The statistics plotted 

on the control charts are usually based on subgroups of size 

n, named rational subgroups. However, there are many 

process control applications, where it is necessary to limit 

sample size to one unit, n=1, [2], [3]. Some of these 

situations involve use of automated inspection of every 

manufactured item, where it is more convenient to monitor 

individual units rather than subgroups. In other cases 

production rate is slow or variation in sample only reflects 

measurement error.  

Standard individual X chart and moving range, MR chart 

have been applied widely to monitor processes with 

individual measurements, [3], [4], [5], [6]. 

In practice, the parameters representing some quality 

characteristic of the process are rarely known. When process  
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parameters are unknown, control charts can be applied in a 

two phase procedure. In Phase l, control limits are calculated 

based on estimated process parameters, but in Phase II the 

in-control values of mean and standard deviation are 

assumed to be known and they are used to build up control  

charts. For example, in many applications, it is assumed that 

the process variable X has a normal distribution with in-

control mean  and in-control standard deviation . 

In the case of individuals control charts, a sample of size 

n=1 at each of m time intervals is taken and  is estimated 

by the overall sample mean, noted ˆ X  . The in-control 

value of the standard deviation  is estimated using an 

average moving range 
2

ˆ /MR R d   or the sample standard 

deviation ˆ
S S  . For discussion on properties, performance 

and effects of parameter estimation on individual charts see 

[7]-[12]. 

Shewhart individual chart is efficient at detecting 

relatively large shifts in the process (> 1.5σ), but it is quite 

insensitive to small shifts (<1.5σ). EWMA, and cumulative 

sum, CUSUM, charts that can use information from an entire 

set of points are very efficient to smaller process shifts, see 

[13], [14], [15]. 

Individual charts to monitor changes in the variability 

were studied in [4], [5], [10]. But more realistic scenarios 

involve measurements of several related variables. In a 

multivariate process, when assignable causes are present, 

they may affect different process parameters: mean, 

variability or the structure of relationships among the 

variables, see [16]-[23].  

In this paper we propose two new individual control 

charts to monitor process dispersion and correlation of 

precisely interfitting and mating parts. To monitor process 

variability influence function of variance is suggested. While 

to monitor correlation of two quality characteristics we 

propose the use of influence function of correlation 

coefficient. The advantage of our variance influential control 

chart is its ability to monitor process variance based only on 

the measurements of each inspected unit, which is not the 

case for MR chart where differences from one point to the 

next are displayed in the graphic, so limiting its use in the 

matter of mated parts. The proposed techniques are general, 

and the influence functions may be used to build up 

individual control charts for any process parameter, [23].  

To make the presentation clear the remainder of the paper 

is organized as follows: in Section II we introduce the 

influence function; control charts based on influence 

functions are presented in Section III; an application is given 

in Section IV; remarks on the use of influence function for 

process monitoring and possible extensions complete the 

paper in Section V. 
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II. INFLUENCE FUNCTION 

A. Formulation 

Consider a manufacturing process where each item is 

characterized by a measurable quality characteristic X. 

Because of variation causes X is considered a random 

variable. We assume that under a stable process the 

distribution of X is F with mean  and variance 
2
. 

Let T=T(F) be a statistical functional. The influence 

function IF(x, T, F) of the statistical functional T at F is 

defined as the limit as →0 of 

 

  (1 ) ( ) /xT F T F                   (1)  

 

where x denotes the distribution giving unit mass to the 

point x. The perturbation of F by x is denoted as 

 

(1 )x xF F       (0 1)                (2) 

 

As such the influence function measures the rate of 

change of T as F is shifted infinitesimally in the direction of 

x, [24]. The influence functions may be calculated for 

almost all process parameters. Therefore, based on 

influential measures derived from them, control charts for 

different process parameters and with different sensitivities 

are be set up. 

 

B. Influential Measures for Monodimensional and 

Multivariate Estimators 

 

Let 2( , )   denote the location scale parameter defined 

by 

 

( ) 0X dF                    (3) 

2 2( ) 0X dF                     (4) 

 

In order to calculate the influence function of the location 

scale parameter 2( , )  , we substitute F by  
xF

 in (3) and 

(4) and take the derivative with respect to   at 0  . The 

differentiation of the mean equation gives  

 

( , , )IF x F x                   (5) 

 

and the differentiation of the variance equation gives 

 
2 2 2( , , ) ( )IF x F x                  (6) 

 

    Generally in the applications of the influence function the 

unknown distribution function F has to be estimated 

by F the empirical distribution function based on a random 

sample X X Xn1 2, ,...,  from F.  Replacing F by F and 

taking x xi  in (5) and (6) we have for the empirical 

influence function of mean and variance the following 

expressions 

 

ˆ ˆ( , , )i iIF x F x                  (7) 

2 2 2ˆ ˆ ˆ( , , ) ( )i iIF x F x                 (8) 

 

More realistic scenarios involve measurements of several 

related variables. Let X =(X1,X2,…,Xp) be the vector of the 

measured variables made on a given part. We assume that 

under a stable process the distribution of X is F with mean  

and covariance matrix , ideally multivariate normal. Let 

(,) denote the location scale parameter defined by 

 

( ) 0X dF                    (9) 

[( )( ) ] 0tX X dF                    (10) 

 

The differentiation of the mean equation gives  

 

( , , )IF x F x                     (11) 

 

and the differentiation of the covariance matrix equation 

gives 

 

IF x F x x t( , , ) ( )( )                 (12) 

 

We assume that  has distinct eigenvalues 1>2>…>p 

and we denote by 1,2,…,p the associated eigenvectors. 

Under regularity conditions, (see [25], [26]), we find the 

following expressions for the influence function of the j
th

 

eigenvalue and the associated eigenvector of the covariance 

matrix respectively  

 

( , , ) ( , , )t

j j jIF x F IF x F       ( ,..., )j p 1          (13) 

1

1,

( , , ) ( ) ( , , )
p

t

j j k k k j

k k j

IF x F IF x F     

 

  
            (14) 

 

The influence functions are not scale invariant, therefore 

sometimes it is better to use standardized data rather than to 

raw data. In such cases the covariance matrix is replaced by 

the corresponding correlation matrix R, given by 

 

   
1/2 1/2

( ) ( )R diag V V diag V
 

                 (15) 

 

When influence function of covariance matrix exist at 

point F, then influence function of R is given by  

 

   

   

   

1/2 1/2

1 1/2

1 1/2

( , , ) ( , , )

1
( , , )

2

1
( , , )

2

IF x R F diagV IF x V F diagV

R diagV diagIF x V F

diagV diagIF x V F R

 

 

 







         (16) 

 

For a bivariate distribution, p=2, with finite second 

moments, the analytical expression of influence function of 

correlation coefficient  is given by 
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 2 2

1 2 1 2 1 2

1
( , , , )

2
IF x x F x x x x                   (17) 

 

See [27], [28]. 

 

III. CONTROL CHARTS BASED ON INFLUENCE FUNCTION 

A. Individual Control Charts for Process Variability 

 

Control charts based on influence functions are 

straightforward extensions of conventional control charts. To 

monitor process variability we propose the use of influence 

function of variance given in (8). The importance about the 

influence function lies in its heuristic interpretation: it 

describes the effect of an infinitesimal contamination at point 

x on the estimate. Our idea is that output segments that have 

a large influence on monitored parameter show up the time 

when special causes are present in a manufacturing process. 

Therefore, based on them or influential measures derived 

from them, control charts for different process parameters 

and with different sensitivities are be set up.  

Nominal influential control charts for process variability 

can be created by replacing nominal values or historical 

mean and variance values of stable processes on the right 

hand of (8). We propose the use of the following influential 

measure of variance, noted I1(xi) given by 

 
2 2 2

1( ) ( , , ) ( )i i iI x IF x F x                  (18) 

 

If we assume Normality of data, then the upper control 

limit, UCL and lower control limit, LCL of nominal 

influential chart for monitoring process variability are given 

by 

 

UCL=

 

LCL= - 

                    (19)

 

 

The lowest attainable value of I1(xi) statistic is - 

. The 

upper control limit is set so that out-of-control events in a 

stable process occur only 0.27% of the time. However the 

upper control limit is an approximation. 

In order to avoid working with negative values for 

variance monitoring we propose to use the lowest attainable 

value of employed statistic as zero. Therefore we suggest a 

standardization of variance influence function such that the 

lower control limit is zero. To achieve this we propose the 

use of the following standardized influential measure, noted 

I2(xi) given by 

 

1
2 2

( )
( ) 1i

i

I x
I x


                     (20) 

 

The lowest attainable value of I2(xi) statistic is 0. The 

control limits computed for I2(xi) are given by 

 

UCL= 

LCL= 0                     (21)
 

 

The upper ccontrol limit is set so that out-of-control 

events in a stable process occur only 0.27% of the time. 

However the upper control limit is an approximation. 

    If the standard values are unknown we replace them with 

estimates calculated from data. From them I1(xi) statistic can 

be calculated using the following generic formula 

 
2 2 2

1
ˆ ˆ ˆ( ) ( , , ) ( )i i iI x IF x F x                (22)

 

 

B. Multivariate Individual Control Charts for Process 

Variability 

 

More realistic scenarios involve measurements of several 

related variables. In multivariate case, assignable causes that 

affect the variability of the output do not increase 

significantly each component of total variace of X. Instead, 

they may have a large influence in the variability of some 

components and small effect in the remaining directions. 

Therefore an approach to design control charts for variability 

consists to detect any significant departure from the stable 

level of the variability of each component. To build up such 

control charts one may use either principal components or 

influence functions of the eigenvalues of dispersion matrix, 

see [23].  

 

C. Individual Control Chart for Correlation Monitoring 

Suppose a multivariate process where there are p = 2 

highly correlated quality characteristics. To detect special 

causes that affect the structure of relationships among 

variables we propose the use of influence function of 

correlation coefficient  

That is, if one wants to monitor the correlation coefficient 

among two quality characteristics, what would be calculate 

and plot on a control chart are the values of  

 

 2 2

1 2 1 2 1 2

1
( , , , )

2
IF x x F x x x x                  (23) 

The control limits are three sigma control limits as in any 

Shewhart control chart. 

 

IV. APPLICATION 

A. Case Study 

The present case study considers a multi-purpose 

manufacturing centre, which produces precisely interfitting 

and mating parts. Briefly stated, we consider the 

manufacturing of piston-cylinder assembly. The body unit 

has an interior cylindrical chamber. The piston which 

precisely mate and interfit cylinder walls, is linearly 

displaceable in a cylinder chamber. Several close tolerances 

must be held, including the diameters of body unit and 

piston. We note X1, the inner cylinder diameter of body unit 

and similarly we note X2, mated piston outer diameter. There 

is a strong positive correlation among diameters. 

The influential charts based on empirical influence 

functions of variance for body and piston diameters are 
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displayed in Fig. 1 and Fig. 2 respectively. The statistic that 

is plotted in these charts is given in (20) and their control 

limits in (21). 

 

 

 
 

Fig. 1.  Control chart based on influence functions of variance for body 

chamber diameter. 

 

 

 
 

Fig. 2.  Control chart based on influence functions of variance for piston 

diameter. 

 

 

The Shewhat control chart based on empirical influence 

function of correlation coefficient of mated diameters X1, X2 

is displayed in Fig. 3. The statistic that is plotted in the chart 

is given in (23). 

 

 

 
 

Fig. 3.  Control chart to monitor correlation among mated diameters. 

 

 

An inspection of these charts shows that there are two 

very highly influential subgroups for diameters X1, X2 

indicating that the process is not under control. But in 

process logbook there are clear explanations for all these 

assignable causes. 
 

V. CONCLUSIONS AND REMARKS 

 

In this paper we propose two new individual control 

charts for monitoring process dispersion and correlation. To 

monitor process variability influence function of variance is 

suggested. While to monitor correlation among two highly 

correlated quality characteristics we propose the use of 

influence function of correlation coefficient. The advantage 

of our variance influential control chart is its ability to 

monitor process variance based only on the measurements of 

each inspected unit, which is not the case for MR chart 

where differences from one point to the next are displayed in 

the graphic, so limiting its use in the matter of mated parts. 

The proposed techniques are general, and the influence 

functions may be used to build individual control charts for 

any process parameter.  

The influence function may be calculated for all real 

situations on the background of robust statistics. Therefore 

based on the influence functions, or on influential measures 

that may be derived from them, control charts for different 

process parameters and with different sensitivities may be 

set up such as: control charts for process mean-variability-

orientation or the structure of relationships between the 

variables. 

It should be noted that the estimator used in the Phase 1 

analysis does not necessarily have to be the same one used 

to construct control limits for use in Phase II. Robust 

estimators will be preferable for situations where outliers are 

present, but their benefit is primarily for Phase 1 

applications.  
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