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Introduction

Change-point models have originally been developed in connection with applications in quality control, where a change from the in-control to the out-of-control state has to be detected based on the available random observations. Up to now various changepoint models have been suggested for a broad spectrum of applications like quality control, reliability, econometrics, medicine, signal processing, meteorology, etc.

The general change-point problem can be described as follows: A random process indexed by time is observed and we want to investigate whether a change in the distribution of the random elements occurs. Formally, let X 1 , . . . , X n denote a sequence of independent random variables, where 1 Journal of Applied Quantitative Methods. Vol. 11, Issue 1 -March 30, 2016 the elements X 1 , . . . , X k have an identical distribution function f 1 and X k+1 , . . . , X n are distributed according to f 2 and the change-point k is unknown.

The change point problem has been considered and studied by several authors. Changepoint analysis concerns with the detection and estimation of the point at which the distribution changes. One change point problem or multiple change points problem have been studied in the literature, depending on whether one or more change points are observed in a sequence of random variables. Several methods, parametric or nonparametric, have been developed to approach the solution of this problem while the range of applications of change point analysis is broad.

There is an extensive bibliography on the subject and several methods to search for the change-point problem have appeared in the literature. The CUSUM (cumulative sum) approach : Basseville & Nikiforov [START_REF] Basseville | Detection of Abrupt Changes: Theory and Application[END_REF], Lucas & Crosier [START_REF] Lucas | Fast Initial Response for CUSUM Quality-Control Schemes: Give your CUSUM a Head Start[END_REF], Ritov [START_REF] Ritov | Decision Theoretic Optimality of the Cusum Procedure[END_REF] and Yashchin [START_REF] Yashchin | On the analysis and design of CUSUM-Shewhart control schemes[END_REF]. The maximum-logarithm of the likelihood ratio approach : Guralnik & Srivastava [START_REF] Guralnik | Event detection from time series data[END_REF], Gustafsson [START_REF] Gustafsson | The marginalized likelihood ratio test for detecting abrupt changes[END_REF] and Ghorbanzadeh [START_REF] Ghorbanzadeh | Un test de détection de rupture de la moyenne dans un modèle gaussien[END_REF]. The Bayesian approach : Bradley & all [START_REF] Bradley | Hierarchical bayesian analysis of changepoints problems[END_REF], Barry & Hartigan [START_REF] Barry | A bayesian analysis for change point problems[END_REF] and Ghorbanzadeh & Lounes [START_REF] Ghorbanzadeh | Bayesian Analysis for detecting a change in exponential family[END_REF]. The Non-Parametric approach : Pettitt [START_REF] Pettitt | A non-parametric approach to the change-point problem[END_REF], Dehling & all [START_REF] Dehling | Non-parametric change-point tests for long-range dependent data[END_REF] and Ghorbanzadeh & Picard [START_REF] Ghorbanzadeh | Étude Asymptotique et Pratique du comportement de deux tests de détection de Rupture[END_REF].

In this work we consider the change-point model for a simple linear regression with one change point. Consider n pairs of observations (X i , Y i ) and we suppose that the relationship between X and Y can be described by a simple linear regression, where the structure changes after a change point k ∈ {4, . . . , n -4}. This restriction on k is needed to ensure that the parameters in the model are estimable. Thus, the observations (X i , Y i ) follow a linear model for i ≤ k and another linear model for i > k. Therefore, the model is given by

       Y i = B 1 + A 1 h(X i ) + ε 1,i if i = 1, . . . k Y i = B 2 + A 2 h(X i ) + ε 2,i if i = k + 1, . . . n (1) 
where A j and B j (j = 1, 2), are the unknown parameters, ε j,i are independent errors and h is a known function.

The methode proposed in this paper is illustrated through a classical change-point data from Quandt [START_REF] Quandt | The estimation of the parameters of a linear regression system obeying two separate regimes[END_REF]. We use the model (1) to estimate the parameters of a Weibull model represantative a change-point. For the accuracy of the method a simulation study is performed.

k 0 Sample 1 (k 0 ) Sample 2 (k 0 ) 4 X 1 , . . . , X 4 X 5 , . . . , X n 5 X 1 , . . . , X 5 X 6 , . . . , X n . . . . . . . . . n -4 X 1 , . . . , X n-4 X n-3 , . . . , X n
Table 1: Distribution of data into two subsamples.

For each k 0 ∈ {4, . . . , n -4}, we consider the following models

       Y i = B 1 (k 0 ) + A 1 (k 0 ) h(X i ) + ε 1,i (k 0 ) if i = 1, . . . k 0 Y i = B 2 (k 0 ) + A 2 (k 0 ) h(X i ) + ε 2,i (k 0 ) if i = k 0 + 1, . . . n (2) 
For each

k 0 ∈ {4, . . . , n-4}, A 1 (k 0 ), B 1 (k 0 ) , A 2 (k 0 ) and B 2 (k 0 ) solve the following minimization problem: min (A1(k0),B1(k0),A2(k0),B2(k0)) D k 0 , A 1 (k 0 ), B 1 (k 0 ), A 2 (k 0 ), B 2 (k 0 )
where

D k 0 , A 1 (k 0 ), B 1 (k 0 ), A 2 (k 0 ), B 2 (k 0 ) = k0 i=1 ε 2 1,i (k 0 ) + n i=k0+1 ε 2 2,i (k 0 ) (3)
By classics calculations, we obtain the estimator of

A 1 (k 0 ), B 1 (k 0 ) , A 2 (k 0 ) and B 2 (k 0 )                              Â1 (k 0 ) = k0 i=1 h(X i ) -h k0 (X) Y i -Y k0 k0 i=1 h(X i ) -h k0 (X) 2 , B1 (k 0 ) = Y k0 -Â1 (k 0 ) h k0 (X) Â2 (k 0 ) = n i=k0+1 h(X i ) -h k0 (X) Y i -Y k0 n i=k0+1 h(X i ) -h k0 (X) 2 , B2 (k 0 ) = Y k0 -Â2 (k 0 ) h k0 (X) (4) 
where

             h k0 (X) = 1 k 0 k0 i=1 h(X i ) , h k0 (X) = 1 n -k 0 n i=k0+1 h(X i ) Y k0 = 1 k 0 k0 i=1 Y i , Y k0 = 1 n -k 0 n i=k0+1 Y i (5) Let D(k 0 ) = D k 0 , Â1 (k 0 ), B1 (k 0 ), Â2 (k 0 ), B2 (k 0 ) and k = argmin k0 D(k 0 ) (6) 
By equation ( 4), we deduce the estimators of

A 1 , B 1 , A 2 and B 2 Â1 = Â1 (k ) , B1 = B1 (k ) , Â2 = Â2 (k ) , B2 = B2 (k ) (7) 
and the change-point time is estimated by

k = length of Sample 1 (k ) (8) 
3 Application to Quandt's data

This data was illustrated by Quandt [START_REF] Quandt | The estimation of the parameters of a linear regression system obeying two separate regimes[END_REF]. He considered a simple linear regression model with one point-change. The data, listed in 

      Y i = 2.2215 + 0.6912 X i if i = 1, . . . 12 
Y i = 5.9141 + 0.4787 X i if i = 13, . . . 20
The following graph shows the estimation results. In this section We assume that a sequence of observations X 1 , . . . , X n represents a change point with :

       X i ∼ W (a 1 , b 1 ) if i = 1, . . . k X i ∼ W (a 2 , b 2 ) if i = k + 1, . . . n (9) 
For k 0 ∈ {4, . . . , n -4}, we build n -7 two subsamples and we order they as the Table 3.

For each subsample, we use the Benard's approximation ( Bernard & Bosi-Levenbach [START_REF] Bernard | The plotting of observations on probability paper[END_REF]) for median ranks, given by:

           M R 1 (i) = i -0.3 k 0 + 0.4 i ∈ {1, . . . , k 0 } M R 2 (i) = i -0.3 n -k 0 + 0.4 i ∈ {k 0 + 1, . . . , n} (10) 
The cumulative distribution function of Weibull distribution will be transformed to a according to the Weibull distribution W (6, 3) and the remains are simulated according to the Weibull distribution W (10, 9 Table 5: The steps of the calculations for the data in the Table 4.

The following figure represents the sum of squared errors defined in equation (3). 

Simulations

In order to study the performance of the method, we simulated 1000-samples of sizes n = 30 and 100 with a change-points k = 13 and 41. We considered three cases: the first relates to the change in the second parameter of the Weibull distribution, the second case, the change in the first parameter and the third case, the change in both parameters. For each sample we calculated the parameter estimators, the following 
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 1 Figure 1: Estimation results for Quandt's data.

Figure 2 :

 2 Figure 2: Sum of squared errors defined in equation (3).

Figure 3 :

 3 Figure 3: The weibull probability plot for the illustrative data. The estimators are the values : â1 = 5.78, b1 = 6.15 , â2 = 10.16 , b2 = 9.83 and k = 13.

, a 2 9326 a 1 = 6 , a 2 = 10 , b 1 = 3 , b 2 = 9 mean of â1 6 . 7604 Table 7 :

 2932616210139676047 , b 1 , b 2 for size n = 30 and change-point k = 13. a 1 = a 2 = 6, b 1 = 2, b 2 = 5 mean of â1 6.1116 mean of â2 6.0298 mean of b1 1.9759 mean of b2 4.8201 std of â1 0.6597 std of â2 0.2304 std of b1 0.5492 std of b2 1.4703 a 1 = 6, a 2 = 10, b 1 = b 2 = 4 mean of â1 6.2783 mean of â2 9.3905 mean of b1 4.2397 mean of b2 3.4163 std of â1 0.8557 std of â2 0.7253 std of b1 1.5346 std of b2 0.8058 mean of â2 9.9860 mean of b1 2.7517 mean of b2 8.7966 std of â1 0.8215 std of â2 0.2530 std of b1 0.4662 std of b2 1.Statistics of estimators of a 1 , a 2 , b 1 , b 2 for size n = 100 and change-point k = 41.
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	i	1	2	3	4	5	6	7	8	9	10
	X i	4	13	5	2	6	8	1	12	17	20
	Y i	3.473	11.555	5.714	5.710	6.046	7.650	3.140	10.312	13.353	17.197
	i	11	12	13	14	15	16	17	18	19	20
	X i	15	11	3	14	16	10	7	19	18	9
	Y i 13.036 8.264 7.612 11.802 12.551 10.296 10.014 15.472 15.650 9.871

Table 2 :

 2 Quandt's data. The results obtained by the model (1) show a change after the first k = 12 observations, giving 

Table 4 :

 4 ). Illustrative data.The steps of the study method are illustrated in the Table5.

		i	1	2	3	4	5	6	7	8	9	10
		X i 5.66 4.78 5.49 6.30	4.69	7.29	4.02	5.01	5.59	3.79
		i	11	12	13	14	15	16	17	18	19	20
		X i 5.48 5.48 6.37 8.94	8.81	11.09	8.17	9.86	10.31	9.72
		i	21	22	23	24	25	26	27	28	29	30
		X i 10.12 9.66 9.89 10.40 10.01 8.47 7.14 10.30 11.20 10.44
	k0	Sample1(k0) ordered		Y			Sample2(k0) ordered	Y	D
								3.79, 4.02, 4.69, 5.01, 5.48,	-3.62, -2.71, -2.23, -1.89, -
								5.48, 5.59, 6.37, 7.14, 7.29,	1.63, -1.41, -1.23, -1.06, -
								8.17, 8.47, 8.81, 8.94, 9.66,	0.92, -0.78, -0.65, -0.54, -
	4	4.78, 5.49, 5.66, 6.3		-1.75, -0.72, -0.05, 0.61					2.1898
								9.72, 9.86, 9.89, 10.01, 10.12,	0.42, -0.31, -0.21, -0.1, 0.0,
								10.3, 10.31, 10.4, 10.44,	0.1, 0.21, 0.32, 0.43, 0.55,
								11.09, 11.2		0.68, 0.82, 1.01, 1.29
								3.79, 4.02, 5.01, 5.48, 5.48,	-3.58, -2.67, -2.19, -1.85, -
								5.59, 6.37, 7.14, 7.29, 8.17,	1.59, -1.37, -1.18, -1.02, -
								8.47, 8.81, 8.94, 9.66, 9.72,	0.87, -0.73, -0.6, -0.48, -0.37,
	5	4.69, 4.78, 5.49, 5.66, 6.3	-1.97, -0.97, -0.37, 0.14, 0.71					2.3498
								9.86, 9.89, 10.01, 10.12, 10.3,	-0.25, -0.15, -0.04, 0.07, 0.18,
								10.31, 10.4, 10.44, 11.09,	0.29, 0.4, 0.52, 0.66, 0.81,
								11.2			0.99, 1.28
								. . .			
								7.14, 8.17, 8.47, 8.81, 8.94,	-3.19, -2.27, -1.78, -1.43, -
		3.79, 4.02, 4.69, 4.78, 5.01,	-2.93, -2.0, -1.49, -1.13, -				
								9.66, 9.72, 9.86, 9.89, 10.01,	1.16, -0.92, -0.72, -0.54, -
	13	5.48, 5.48, 5.49, 5.59, 5.66,	0.84, -0.59, -0.37, -0.16, 0.05,					1.3247
								10.12, 10.3, 10.31, 10.4,	0.37, -0.2, -0.05, 0.11, 0.27,
		6.3, 6.37, 7.29		0.25, 0.47, 0.72, 1.08				
								10.44, 11.09, 11.2		0.44, 0.62, 0.84, 1.17
								. . .			

Table 6 :

 6 = 6, a 2 = 10, b 1 = 3, b 2 = 9 mean of â1 7.0964. mean of â2 9.9036 mean of b1 2.7622 mean of b2 9.0453 Statistics of estimators of a 1

			a 1 = a 2 = 6, b 1 = 2, b 2 = 5		
	mean of â1 6.1633	mean of â2 6.0181 mean of b1 2.0747 mean of b2 4.8576
	std of â1	1.0793	std of â2	0.4221 std of b1	0.7989 std of b2	2.2538
			a 1 = 6, a 2 = 10, b 1 = b 2 = 4		
	mean of â1 6.5194	mean of â2 9.3962 mean of b1 4.1095 mean of b2 3.4012
	std of â1	0.9955	std of â2	0.8481 std of b1	2.1639 std of b2	1.2270
	a 1 std of â1 1.0870 std of â2	0.4775 std of b1	1.2196 std of b2	4.8527

table summarizes the results obtained for different values of a 1 , a 2 , b 1 and b 2 .

Analytical method for the chage-point estimateFor k 0 ∈ {4, . . . , n -4}, we construct n -7 two subsamples as follows :
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In this paper, we presented an analytical method of estimating change-point parameters. The results obtained for the Weibull distribution are satisfying. The proposed method is very simple to program that could be easily adapted to other distributions.

To estimate the values of the cumulative distribution function, we use the median rank. For each subsample, we have

Then the model ( 9) is written :

By the equations ( 6), ( 7) and ( 8), we deduce the estimators of a 1 , b 1 , a 2 and b 2 :

1 , . . . , X

(1) 2 , . . . , X

(n-4) 2

X

(1) 1 , . . . , X

2 , . . . , X

Table 3: Distribution of data into two subsamples ordered. X (i) j denotes the i -th order statistic of sample j (k 0 ) (j = 1, 2).

Illustrative data, simulations and application

Illustrative data.

To illustrate all the steps of the method studied in this paper, we propose the data presented in the Table 4. These data have been simulated from Python 3.3. This is a sample with size 30 representing a point-change. The first 13 data are simulated

Application

We apply the method to study data used by Bhattacharya & Bhattacharjee [START_REF] Bhattacharya | A Study on Weibull Distribution for Estimating the Parameters[END_REF]