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Abstract

In this paper we studie an analytical method to detect the change-point in the
model of simple linear regression. The study method is used to estimate the param-
eters of a Weibull model represantative a change-point. The procedure proposed
in this paper is illustrated through a classical change-point data. For the accuracy
of the method a simulation study is performed.

Keywords: Change-point; simple linear regression model; Weibull distribution.

1 Introduction

Change-point models have originally been developed in connection with applications
in quality control, where a change from the in-control to the out-of-control state has to
be detected based on the available random observations. Up to now various change-
point models have been suggested for a broad spectrum of applications like quality
control, reliability, econometrics, medicine, signal processing, meteorology, etc.

The general change-point problem can be described as follows: A random process
indexed by time is observed and we want to investigate whether a change in the distri-
bution of the random elements occurs.

Formally, let X1, ..., X, denote a sequence of independent random variables, where
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the elements X7, ..., X have an identical distribution function f; and Xx1,..., X,
are distributed according to f5 and the change-point & is unknown.

The change point problem has been considered and studied by several authors. Change-
point analysis concerns with the detection and estimation of the point at which the
distribution changes. One change point problem or multiple change points problem
have been studied in the literature, depending on whether one or more change points
are observed in a sequence of random variables. Several methods, parametric or non-
parametric, have been developed to approach the solution of this problem while the
range of applications of change point analysis is broad.
There is an extensive bibliography on the subject and several methods to search for
the change-point problem have appeared in the literature. The CUSUM (cumulative
sum) approach : Basseville & Nikiforov [1l], Lucas & Crosier [12], Ritov [15] and
Yashchin [16]. The maximum-logarithm of the likelihood ratio approach : Guralnik
& Srivastava [10], Gustafsson [11] and Ghorbanzadeh [7]]. The Bayesian approach
Bradley & all [5], Barry & Hartigan [2] and Ghorbanzadeh & Lounes [9]]. The
Non-Parametric approach : Pettitt [13], Dehling & all [6] and Ghorbanzadeh &
Picard [8]].

In this work we consider the change-point model for a simple linear regression with
one change point. Consider n pairs of observations (X;,Y;) and we suppose that the
relationship between X and Y can be described by a simple linear regression, where
the structure changes after a change point & € {4,...,n — 4}. This restriction on k is
needed to ensure that the parameters in the model are estimable. Thus, the observations
(X;,Y;) follow a linear model for ¢ < k and another linear model for ¢ > k. Therefore,
the model is given by

}/;:Bl+A1h(XZ)+El7,L le:LkJ (1)

Y;‘:BQ—FAQ}T,(XZ‘)—FEQJ‘ 1fz:k+1,n

where Aj and Bj (j = 1,2), are the unknown parameters, ¢; ; are independent errors
and h is a known function.

The methode proposed in this paper is illustrated through a classical change-point data
from Quandt [[14]]. We use the model (1)) to estimate the parameters of a Weibull model

represantative a change-point. For the accuracy of the method a simulation study is
performed.

2 Analytical method for the chage-point estimate

For ko € {4,...,n — 4}, we construct n — 7 two subsamples as follows :
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ko Sample; (ko) Samples (ko)
4 X1,.... X, Xs,.... X,
5 X1,..., X5 Xg,..., X
n—4 X13-~'aXn—4 X7L—37"'7XTL

Table 1: Distribution of data into two subsamples.

For each kg € {4,...,n — 4}, we consider the following models

Yi :Bl(ko) +A1(k}0) h(Xz) +€17¢(k0) lf = 1,...]{30 (2)

Y; = Ba(ko) + Aa(ko) h(X;) +e2,i(ko) i i=ko+1,...n

Foreach kg € {4,...,n—4}, A1(ko), B1(ko) , A2(ko) and Ba(kq) solve the following
minimization problem:
min D(kqg, A1(ko), B1(kg), As(ko), Ba(k
(i o 5 a0 A1 (ho): B ko), Az (ko). Balko))

where

n

ko
D(ko, A1(ko), Bi(ko), Az(ko), Ba(ko)) = Y €5 (ko) + Y €3,(ko) (3
i=1 i=ko+1

By classics calculations, we obtain the estimator of A;(kg), B1(ko) , A2(ko) and
By (ko)

3 (W)~ T (X)) (Y - V) S
Al(k‘o) = =1 5 Bl(ko) = Yk?o - A1(l€0) hko (X)

ko _ 5
55 (h(X0) — Py ()

(h(X3) = T (X)) (Vi = Vi)

, Ba(ko) = ?ZO - 142(19’0)5;0 (X)

n

S (h(X:) = iy (X))

i=ko+1

“
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where

]Co n
— 1 — 1
i (X) = % Zh(Xi) ; hy (X) = p— Z h(X;)

i=1 i=ko+1

1 & 1 "
= —*
Y;m:kaZYi ,Y;m:n_ko}ZY;
i=1 i=ko+1

Let D(ko) = D (ko, A1 (ko), Bi(ko), Aa(ko), B2(ko)) and
k= argkmin D(ko)
By equation @]), we deduce the estimators Oof A4, By, Ay and By
Ay = Ai(k*) , Bi = Bi(k*) , Ay = Ay(k*) , By = Ba(k*)
and the change-point time is estimated by

k = length of Sample, (k*)

3 Application to Quandt’s data

®

(6

)

®)

This data was illustrated by Quandt [14]. He considered a simple linear regression

model with one point-change. The data, listed in Table 2]

7 1 2 3 4 5 6 7 8 9 10
X; 4 13 5 2 6 8 1 12 17 20
Y; | 3473 | 11555 | 5714 | 5710 | 6.046 | 7.650 | 3.140 | 10312 | 13.353 | 17.197
) 11 12 13 14 15 16 17 18 19 20
X, 15 11 3 14 16 10 7 19 18 9
Y, | 13036 | 8264 | 7.612 | 11.802 | 12.551 | 10296 | 10.014 | 15472 | 15650 | 9.871

Table 2: Quandt’s data.

The results obtained by the model (Eb show a change after the first k = 12 observations,

giving
Y; =2.2215 + 0.6912 X ifi=1,...12

Y, = 5.9141 + 04787 X;  ifi =13,...20

The following graph shows the estimation results.
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Figure 1: Estimation results for Quandt’s data.

4 The change-point detection model for the Weibull dis-
tribution

In the following, we note W (a, b) the Weibull distribution with the cumulative distri-
bution function F'(z) = 1 — exp( — (g)b)

In this section We assume that a sequence of observations X1, ..., X, represents a
change point with :

XiNW(al,bl) lflil,k
®

XiNW(ag,bg) le:k+1,TL
For kg € {4,...,n — 4}, we build n — 7 two subsamples and we order they as the
Table[3l

For each subsample, we use the Benard’s approximation ( Bernard & Bosi-Levenbach
[4]) for median ranks, given by:

1 —0.3

) = ——— ; 1,...,k

MR = =01 Pe il o} o
. 1—0.3 .

MRQ(Z):m ZG{kO“”l,‘..,TL}

The cumulative distribution function of Weibull distribution will be transformed to a
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linear function:
ln( —In(1 - F(m))) =blnz — blna

LetY = 1n< —In(1 - F(m))) ,A=band B = —blna.

To estimate the values of the cumulative distribution function, we use the median
rank. For each subsample, we have

Yizln(—ln(l—MRl(i))> ifi=1,...k
(11)
Y,;—ln(—ln(l—MRg(i))> ifi=ky+1,...n
Then the model (@) is written :
(12)
Y,:Bg(ko)—FAQ(ko)hl(Xz) le:k0+1,n
By the equations (6), (7) and (8), we deduce the estimators of a1, b1, az and by :
) B;(k* S
a; = exp( — ’g )) ;b= Ak (=1,2) (13)
J
ko Sample; (ko) ordered Samples (kq) ordered
1 X0 xW X, xp
5 xW o x® x\ o xo)
n—4 x o xiY xM . xiY

Table 3: Distribution of data into two subsamples ordered. X J@ denotes the ¢ — th
order statistic of sample; (ko) (j = 1, 2).

5 Illustrative data, simulations and application

5.1 IHlustrative data.

To illustrate all the steps of the method studied in this paper, we propose the data
presented in the Table ] These data have been simulated from Python 3.3. This is
a sample with size 30 representing a point-change. The first 13 data are simulated
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according to the Weibull distribution W (6, 3) and the remains are simulated according
to the Weibull distribution W (10, 9).

) 1 2 3 4 5 6 7 8 9 10
X, | 566 | 478 | 549 | 630 | 469 | 729 | 402 | 501 | 559 | 3.79
7 11 12 13 14 15 16 17 18 19 20
X; | 548 | 548 | 637 | 894 | 881 | 11.09 | 817 | 9.8 | 1031 | 9.72
) 21 22 23 24 25 26 27 28 29 30
X, | 1012 | 966 | 989 | 1040 | 1001 | 847 | 7.14 | 1030 | 1120 | 10.44
Table 4: Illustrative data.
The steps of the study method are illustrated in the Table[3]
ko Sampleq (ko) ordered Y Samplea (ko) ordered Y D
3.79, 4.02, 4.69, 5.01, 5.48, -3.62, -2.71, -2.23, -1.89, -
5.48, 5.59, 6.37, 7.14, 7.29, 1.63, -1.41, -1.23, -1.06, -
8.17, 8.47, 8.81, 8.94, 9.66, 0.92, -0.78, -0.65, -0.54, -
4 4.78,5.49, 5.66, 6.3 -1.75,-0.72, -0.05, 0.61 2.1898
9.72,9.86,9.89, 10.01, 10.12, 0.42, -0.31, -0.21, -0.1, 0.0,
10.3, 1031, 104, 10.44, 0.1, 0.21, 0.32, 0.43, 0.55,
11.09, 11.2 0.68,0.82, 1.01, 1.29
3.79, 4.02, 5.01, 5.48, 5.48, -3.58, -2.67, -2.19, -1.85, -
5.59, 6.37, 7.14, 7.29, 8.17, 1.59, -1.37, -1.18, -1.02, -
8.47, 8.81, 8.94, 9.66, 9.72, 0.87,-0.73, -0.6, -0.48, -0.37,
5 4.69, 4.78, 5.49, 5.66, 6.3 -1.97,-0.97,-0.37,0.14, 0.71 2.3498
9.86,9.89,10.01, 10.12, 10.3, -0.25,-0.15,-0.04, 0.07, 0.18,
10.31, 104, 10.44, 11.09, 0.29, 0.4, 0.52, 0.66, 0.81,
11.2 0.99, 1.28
7.14, 8.17, 8.47, 8.81, 8.94, -3.19, -2.27, -1.78, -1.43, -
3.79, 4.02, 4.69, 4.78, 5.01, -2.93, -2.0, -1.49, -1.13, -
9.66, 9.72, 9.86, 9.89, 10.01, 1.16, -0.92, -0.72, -0.54, -
13 5.48, 5.48, 5.49, 5.59, 5.66, 0.84,-0.59,-0.37,-0.16, 0.05, 1.3247
10.12, 10.3, 10.31, 104, 0.37, -0.2, -0.05, 0.11, 0.27,
6.3,6.37,7.29 0.25,0.47,0.72, 1.08
10.44,11.09, 11.2 0.44,0.62,0.84, 1.17
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3.79, 4.02, 4.69, 4.78, 5.01,
5.48, 5.48, 5.49, 5.59, 5.66,
6.3, 637, 7.29, 8.17, 8.81,

-3.58, -2.67, -2.19, -1.85, -
1.59, -1.37, -1.18, -1.02, -
0.87,-0.73, -0.6, -0.48, -0.37,

25 7.14,8.47,10.3,10.44, 11.2 -1.97,-0.97,-0.37,0.14,0.71 3.0564
8.94, 9.66, 9.72, 9.86, 9.89, -0.25,-0.15,-0.04,0.07, 0.18,
10.01, 10.12, 10.31, 104, 0.29, 0.4, 0.52, 0.66, 0.81,
11.09 0.99, 1.28
3.79, 4.02, 4.69, 4.78, 5.01, -3.62, -2.71, -2.23, -1.89, -
5.48, 5.48, 5.49, 5.59, 5.66, 1.63, -1.41, -1.23, -1.06, -
6.3, 6.37, 7.29, 8.17, 8.47, 0.92, -0.78, -0.65, -0.54, -
26 7.14,10.3,10.44, 11.2 -1.75,-0.72, -0.05, 0.61 3.1428

8.81, 8.94, 9.66, 9.72, 9.86,

9.89, 10.01, 10.12, 10.31,

10.4,11.09

0.42, -0.31, -0.21, -0.1, 0.0,
0.1, 0.21, 0.32, 0.43, 0.55,

0.68,0.82,1.01, 1.29

Table 5: The steps of the calculations for the data in the Table 4]

The following figure represents the sum of squared errors defined in equation (3).

D(ko)

5.0

4.5F

3.5}

2.5}

15¢

1.0

Figure 2: Sum of squared errors defined in equation (3).

The following figure shows the weibull probability plot.
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Figure 3: The weibull probability plot for the illustrative data. The estimators are the
values : a1 = 5.78,b1 = 6.15, ao = 10.16, by = 9.83 and k = 13.

5.2 Simulations

In order to study the performance of the method, we simulated 1000-samples of sizes
n = 30 and 100 with a change-points & = 13 and 41. We considered three cases:
the first relates to the change in the second parameter of the Weibull distribution, the
second case, the change in the first parameter and the third case, the change in both
parameters. For each sample we calculated the parameter estimators, the following
table summarizes the results obtained for different values of a1, as, by and bs.
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(11:&2:6

by =2,by=5

mean of 4, | 6.1633 || mean of éy | 6.0181 || meanof by | 2.0747 || mean of by | 4.8576
std of @y 1.0793 || stdofa, | 04221 || stdofby | 0.7989 || stdofby | 2.2538

’ a1 =6,a0 =10,b; = by =4 ‘
meanof a; | 6.5194 mean of as | 9.3962 || mean of 131 4.1095 || mean of 132 3.4012
std of @, 0.9955 || stdofas | 0.8481 || stdof by 2.1639 || std of by 1.2270

’ ay =6,a0 =10,b; =3, =9 ‘
mean of a; | 7.0964. || mean of as | 9.9036 || mean of 131 2.7622 || mean of 52 9.0453
std of @, 1.0870 || stdofas | 0.4775 || std of by 12196 || stdofby, | 4.8527

Table 6: Statistics of estimators of ay,as, b1, b for size n = 30 and change-point

k=13.

’ a1 =a,=6,bp =2,b5 =5 ‘
meanof 4,  6.1116 | meanof 4,  6.0298 | meanof by  1.9759 | mean of by  4.8201
stdofa;  0.6597 | stdofa; 02304 | stdof by 0.5492 | std of by 1.4703

’ a1 =6,a2 =10,b0 = by =4 ‘
mean of ;  6.2783 | meanof o  9.3905 | meanof by  4.2397 | meanof by 3.4163
stdofa;  0.8557 | stdofas  0.7253 | std of by 1.5346 | stdofby,  0.9326

’ a; =6,a0 =10, = 3,0 =9 ‘
mean of a; 6.8058 | mean of as 9.9860 | mean of 31 2.7517 | mean of 132 8.7966
stdofa;  0.8215 | stdofas 02530 | stdof by 0.4662 | std of by 1.7604

Table 7: Statistics of estimators of a1, as, b1, bs for size n = 100 and change-point

k =41.

10
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5.3 Application

We apply the method to study data used by Bhattacharya & Bhattacharjee [3] which

represents the Average Monthly Wind Speed (m/s) at kolkata (from 15¢ March, 2009 to
315 March, 2009).

The following figure represents the sum of squared errors for the Average Monthly
Wind Speed (m/s) at kolkata data.

S A A A A RN NN NSNS

Figure 4: Sum of squared errors defined in equation (3).

The following figure shows the weibull probability plot for the Average Monthly Wind
Speed (m/s) at kolkata data.
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Figure 5: The weibull probability plot. The estimators are the values : a; = 1.13,
b1 =1.88,a49 =1.27,by = 1.65 and k = 15.
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6

conclusion

In this paper, we presented an analytical method of estimating change-point parameters.
The results obtained for the Weibull distribution are satisfying. The proposed method
is very simple to program that could be easily adapted to other distributions.
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