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Abstract—A finite m ixture m odel i s a  c onvex c ombination of 
more probability density functions. By combining the properties 
of the individual probability density functions, mixture models 
are capable of approximating any arbitrary distribution. In this 
work we propose a method for the Generate a random sample 
from a finite mixture distribution. The proposed method envelope 
conventional models: translation, scaling and translation-scaling.
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butions, Skew normal distribution.

I. INTRODUCTION

A finite m ixture m odel i s a  c onvex c ombination o f more 
probability density functions. By combining the properties of 
the individual probability density functions, mixture models 
are capable of approximating any arbitrary distribution. Con-
sequently, finite m ixture m odels a re a  p owerful a nd flexible 
tool for modeling complex data. Mixture models have been 
used in many applications in statistical analysis and machine 
learning such as modeling, clustering, classification and latent 
class and survival analysis. Mixture of normal distributions 
has provided an extremely exible method of modeling a wide 
variety of random phenomena and has continued to receive 
increasing attention Titterington et all [1], Law & Kelton 
[2], Venkataraman [3] and Castillo & Daoudi [4]. In this 
work, we apply the model proposed in the mixture of normal 
distributions and Skew normal distributions who studied by 
several authors as Azzalini [5], Henze [6] and Ghorbanzadeh 
et all [7].

II. MIXTURE MODELS

we say that a distribution f is a mixture of k component 
distributions f1, . . . , fk if

f(x) =
k∑

i=1

θi fi(x) (1)

with the θi being the mixing weights, 0 ≤ θi ≤ 1,
θ1 + . . . + θk = 1. The equation (1) is a complete stochastic
model, so it gives us a recipe for generating new data points:
first pick a distribution, with probabilities given by the mixing
weights, and then generate one observation according to that
distribution. In practice, a lot of effort is given over to
parametric mixture models, where the fi are all from the
same parametric family, but with different parameters, for

example they might all be Gaussians with different centers
and variances.
In the litterature , Simulation of a variate from a finite
k-mixture distribution is undertaken in two steps. First a
multivariate Y : θ1, . . . , θk mixture indicator variate is drawn
from the multinomial distribution with k probabilities equal to
the mixture weights. Then, given the drawn mixture indicator
value, k say, the variate X is drawn from the kth component
distribution. The mixture indicator value k used to generate
the X = x is then discarded.
In this work we assume that the functions f1, . . . , fk
are known and are defined from translation or scaling or
translation-scaling of a kernel distribution.

III. METHOD OF SIMULATION

Let g a probability density function with the cumulative
density function G. For the mixture distributions obtained
by the translation of the kernel g we have the following
proposition.

Proposition 1. Let Y and Z two independent random vari-
ables with Y ∼ g and for i = 1, . . . , k , P (Z = µi) = θi. The
random variable X defined by X = Y +Z has the probability
density function:

f(x) =

k∑
i=1

θi g(x− µi) (2)

Proof Conditional on {Z = µi}, we have

P (X ≤ x|Z = µi) = P (Y + Z ≤ x|Z = µi) =

P (Y ≤ x− µi) = G(x− µi)

We deduce,

FX(x) = P (X ≤ x) =
k∑

i=1

P (X ≤ x|Z = µi) P (Z = µi)

=
k∑

i=1

θi G(x− µi)

by deriving , we get the probability density function of X
defined in (2).
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For the mixture distributions obtained by the scaling of the
kernel g we have the following proposition.

Proposition 2. Let Y and W two independent random vari-
ables with Y ∼ g and for i = 1, . . . , k , P (W = σi) = θi with
∀i , σi > 0. The random variable X defined by X = WY has
the probability density function:

f(x) =

k∑
i=1

θi
1

σi
g

(
x

σi

)
(3)

Proof Conditional on {W = σi}, we have
P(X ≤ x|W = σi) = P (WY ≤ x|W = σi) =

P
(
Y ≤ x

σi

)
=

G
(

x
σi

)

Wededuce, FX(x) = P (X ≤ x) =
k∑

i=1

P (X ≤ x|W = σi) P (W = σi) =
k∑

i=1

θi G
(

x
σi

)

by deriving , we get the probability density function of X
defined in (3).
For the mixture distributions obtained by the translation-
scaling of the kernel g we have the following proposition.

Proposition 3. Let Y , Z and W three random variables Y
independent of the pair (Z,W ) with Y ∼ g and for i =
1, . . . , k, P (Z = µi,W = σi) = θi. The random variable X
defined by X = WY +Z has the probability density function:

f(x) =

k∑
i=1

θi
1

σi
g

(
x− µi

σi

)
(4)

Proof Conditional on {Z = µi,W = σi}, we have

P (X ≤ x|Z = µi,W = σi) =

P (WY + Z ≤ x|Z = µi,W = σi)

= P
(
Y ≤ x−µi

σi

)
= G

(
x−µi

σi

)

We deduce,

FX(x) = P (X ≤ x)

=
k∑

i=1

P (X ≤ x|Z = µi,W = σi) P (Z = µi,W = σi)

=
k∑

i=1

θi G
(

x−µi

σi

)

by deriving , we get the probability density function of X
defined in (4).

IV. SIMULATION RESULTS

In this part we will present the simulation results obtained by
our method. We consider the mixture of translation, scaling
and translation-scaling for two distributions normal and normal
distribution Skew.

A. Mixture of normal distributions

For this part we consider the kernel probability density
function g the standard normal N (0, 1) probability density
function defined by g(x) = 1√

2π
e−

x2

2 .

In the case of the translation model we simulated a sample
of size 5000 for the values θ1 = 0.28, θ2 = 0.37, θ3 = 0.35,
µ1 = −4, µ2 = −1 and µ3 = 3. The following figure show
the results obtained by the Proposition 1.

Figure 1. Simulation results for the mixture of three normal distributions with
the mixing weights θ1 = 0.28, θ2 = 0.37 and θ3 = 0.35.

In the case of the scaling model we simulated a sample of
size 5000 for the values θ1 = 0.28, θ2 = 0.37, θ3 = 0.35,
σ1 = 2, σ2 = 3 and σ3 =

√
3. The following figure show the

results obtained by the Proposition 2.

Figure 2. Simulation results for the mixture of three normal distributions with
the mixing weights θ1 = 0.28, θ2 = 0.37 and θ3 = 0.35.
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In the case of the translation-scaling model we simulated a
sample of size 5000 for the values θ1 = 0.25, θ2 = 0.35, θ3 =
0.40, (µ1, σ1) = (−4, 1), (µ2, σ2) = (1,

√
3) and (µ3, σ3) =

(6,
√
2). The following figure show the results obtained by the

Proposition 3.

Figure 3. Simulation results for the mixture of three normal distributions with
the mixing weights θ1 = 0.25, θ2 = 0.35 and θ3 = 0.40.

B. Mixture of skew normal distributions
The probability density function of the skew normal distri-
bution with parameter λ noted SN (λ), is given by g(x) =
2ϕ(x) Φ(λx), where ϕ and Φ denote the standard normal
N (0, 1) probability density function and cumulative distribu-
tion function, respectively.
In this part for the simulation of the normal skew distribution

, we apply the algorithm developed in Ghorbanzadeh et
all [7]. In the case of the translation model we simulated
a sample of size 5000 from SN (6) with translation values
µ1 = −1.5, µ2 = −1 , µ3 = 0.5 and with the mixing weights
θ1 = 0.28, θ2 = 0.37, θ3 = 0.35. The following figure show
the results obtained by the Proposition 1.

In the case of the scaling model we simulated a sample
of size 5000 from SN (−7) with scaling values σ1 = 3,
σ2 = 4.7 , σ3 = 5.5 and with the mixing weights θ1 = 0.3,
θ2 = 0.4 , θ3 = 0.3. The following figure show the results
obtained by the Proposition 2.

In the case of the translation-scaling model we simulated
a sample of size 5000 from SN (2) with scaling values
translation-scaling (µ1, σ1) = (−4, 1), (µ2, σ2) = (−2, 3) and
(µ3, σ3) = (2, 1.3) and with the mixing weights θ1 = 0.25,
θ2 = 0.35 , θ3 = 0.4. The following figure show the results
obtained by the Proposition 3.

V. CONCLUSION

Researchers are faced with homogeneous data in their studies.
They can model these data with a known distribution. In

Figure 4. Simulation results for the mixture of three skew normal distributions
with the mixing weights θ1 = 0.28, θ2 = 0.37 and θ3 = 0.35.

Figure 5. Simulation results for the mixture of three skew normal distributions
with the mixing weights θ1 = 0.3, θ2 = 0.4 and θ3 = 0.3.

the growing research work area, the modeling might be easy
like this. There are many data which are heterogeneous in
many areas. In these cases, the mixture models can be more
appropriate for modeling the data. The method studied in this
work is very simple to implement and program. The results
obtained by simulations for finite mixture weights with three
components, are very satisfactory.
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Figure 6. Simulation results for the mixture of three normal distributions with
the mixing weights θ1 = 0.25, θ2 = 0.35 and θ3 = 0.4.
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