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Abstract. Influence Maximization (IM) consists in finding in a net-
work the top-k influencers who will maximize the diffusion of informa-
tion. However, the exponential growth of online advertisement is due to
Real-Time Bidding (RTB) which targets users on webpages. It requires
complex ad placement decisions in real-time to face a high-speed stream
of users. In order to stay relevant, the IM problem should be updated to
answer RTB needs. While traditional IM generates a static set of influ-
encers, they do not fit with an RTB environment which requires dynamic
influence targeting. This paper proposes RTIM, the first IM algorithm
capable of targeting users in a RTB environment. We also analyze influ-
ence scores of users in several social networks and provide a thorough
experimental process to compare static versus dynamic IM solutions.

1 Introduction

Since Kempe et al. [16], Influence Maximization (IM) is a well studied maximum
coverage problem which consists in finding the smallest subset of individuals in
a social network who will maximize information diffusion through social influ-
ence. In this paper, we are interested in enhancing IM methods with Real-Time
Bidding (RTB) constraints. We consider that a user can be influenced because
he saw an ad, interacted with it, or purchased the product. To be more relevant,
IM algorithms need to take into consideration time and targeting requirements
of RTB.

However, online advertising revenue outpaced all other advertising strategies
thanks to the advent of RTB [24, 27] and Social Network Services (SNS). RTB is
an online auction system which allows online advertisers to bid in real-time for
ad locations on a webpage in less than 100ms [27]. RTB ad targeting is initially
based on the content of the web page and users’ consumer profile, but fails to
rely on the social value of each customer as suggested in [9]. As far as we know
no RTB algorithms attempt to find an IM solution to improve bidding decisions.
They only consider influence as a parameter and not as a propagation value on
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a network. It is important to note that there is potential here for IM to integrate
full bidding, however this approach is left for future work.

Existing IM algorithms propose various optimization technics to statistically
choose a seed set of users that maximizes influence. However, as far as we know,
no existing IM algorithm can work within a real-time bidding environment and
satisfy it’s requirements. Indeed, whereas existing algorithms take hours to find
seed sets up to 200 seeds in a large social network [1], they do not scale up or
take into account real time streams of users.

This article targets the issue with the following constraints: a) only an online
user can be targeted, b) deciding whether to target a user must be done in under
100ms, c) the propagation influence score relies on a social network containing
millions of users and relationships, d) thousands of users must be targeted in
real-time while maximizing scores of large seed sets.

Therefore, to target influential users in a RTB environment it is necessary
to develop an IM algorithm capable of deciding in real-time which users are
worth targeting. To achieve this we propose the RTIM approach which stands
for Real-Time Influence Maximization.

Our main contributions are as follow:

— We propose an elegant approach for real-time influence maximization focus-
ing on the stream of online users,

— We provide a deep analysis of users’ influence scores for various social net-
work datasets in order to showcase users’ behavior in IM,

— We set up a thorough experimental setting for RTIM and IMM models on
different social networks.

In this article, we first explain in Section 2 the state of the art on IM. Section 3
explains our two stages RTIM approach and Section 4 gives the RTIM model
and algorithms. In order to understand the impact of our model, we propose
an analysis of influence in different datasets in Section 5. This leads to the
experimental process in Section 6 with a dynamic stream evaluation. Finally, we
conclude and give some perspectives in Section 7.

2 IM State of the Art

Influence Maximization takes place in a social network graph G = (V, E)
where V' is the set of vertices (users), E the set of directed edges (influence
relationships). In this graph G, a user is activated if he has successfully been
influenced by a neighbor and therefore influences his own outgoing neighbors.
A targeted user is a user for whom a piece of information is shown to be
propagated.

The goal of IM is to produce a seed set S of targeted users which maximizes
its influence on G. The optimal seed set, or the final result is defined as S*.
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2.1 Propagation models

Kempe et al. [16] propose two common propagation models: Independent Cascade
(IC) and Linear Threshold (LT). IC considers that each user can be influenced
by a neighbor independently of any of his other neighbors. LT considers that a
user is activated if the sum of successful influence probabilities from his neighbors
is greater than his activation threshold.

Under the IC model, time unfolds in discrete steps. At any time-step, each
newly activated node u; € V,,Vi € V gets one independent attempt to acti-
vate each of its outgoing neighbors v; € Out(u;), V5 € V{i} with a probability
p(u,v) = e;5. In other words, e;; denotes the probability of u; influencing v;.

As explained in [12] there is a real challenge in acquiring real-world data
to build datasets containing accurate influence probabilities. Common practice
is to use theoretical edge weight models. For IC, the Constant model is where
each weight e;; is given a constant probability [3,8,10,11, 13, 16]. Some define
p € [0.01,0.1] [4, 23]. The Tri-Valency model is where the weights are randomly
chosen from a list of probabilities such as {0.001, 0.01, 0.1} [3, 6, 15]. Finally,the

Weighted Cascade (WC) model is where e;; = m where In(v;) is the num-
J

ber of neighbors that influence u [3,4,8,10,11,6,7,16,25,26,19]. Under WC, all
neighbors that influence u; do so with the same probability. Therefore, it is easier
to influence a user with a low in-degree.

For LT, the general edge weight rule is that the sum of the weights which
must equal 1. Therefore, WC applies to LT. Additional alternative models can be
found in [21] where an extensive IM state-of-the art is done.

IC is very useful to model information diffusion when a single exposition
to a piece of information from one source is enough to influence an individual.
LT doesn’t change the fundamental approach of our algorithm, it should not
be difficult to extend to. For these reasons, we limit our approach to IC. In
addition, we define the edge weights using the WC model, because we believe
it better corresponds to the diversity of influence between individuals in a real-
world social network.

2.2 Properties

Kempe et al. [16] prove that influence maximization is NP-Hard under both the
IC and LT models and computing the influence score is monotone and sub-
modular which Chen et al. [3] prove to be #P-Hard under the IC model.

The propagation function f is sub-modular if it satisfies a natural diminishing
returns property i.e., the marginal gain from adding an element v to a set S
is at least as high as the marginal gain from adding the same element to a
superset of §. Formally, a sub-modular function satisfies: VS C T C (2 and
x e T, f(Su{z}) — f(S) > f(T U{z}) — f(T). This sub-modular property
is essential as it guarantees that a greedy algorithm will have a (1 — 1/e — €)
approximation to the optimal value [22]. As it is presented previously, many IM
algorithms rely on this theoretical guarantee to validate their strategy.
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2.3 Computing score

Influence Score: Computing the influence score requires solving Eq. (1), which
is a generalization of the inclusion-exclusion principle from [28].

o(8) = astw)= > P( J »)

v EV v, €V pj€Puy, (1)

P, = {all paths event existence between u and v; }

In Equation 1, the influence score of a seed set o(S) is the sum of activation
probabilities as(v) of any node v € V when users in S are targeted. The acti-
vation probability of a user is the probability that there exists a path between
that user and any targeted user.

Computing ¢(S) is proven by [15] to be #P-Hard but [16] approximate the
exact result by running n = 10,000 Monte Carlo simulations. In this article, the
result of these simulations is written o (S).

[16] prove that IM is an NP-Hard problem. In fact, it simply consists of two
challenges. The first is finding the optimal seed set out of 2!VI subsets of users or
(ZIX ) if we know k, and computing the influence score according to Equation 1.

2.4 Algorithms

Clearly presented by Arora et al. [1] there are three main categories of IM algo-
rithms: greedy, sampling and approximation.

GREEDY [16], CELF [17] and CELF++ [13] are all three lazy-forward al-
gorithms which guarantee an approximation of (1 — 1/e — €). To find &* they
start with S = () and incrementally add to S the node v which brings the largest
marginal gain: ope(SUv) > ope(S), until |S| = k. CELF, CELF++ improve
computation time with the submodular property by storing temporary results.

Reverse Influence Sampling method [2] from Borg et al. like in IMM [25], TIM
or TIM+ [26], use topological sampling. In the transpose graph, they generate a
set R of size 0 of random paths of greatest influence by picking users uniformly
at random (Reverse Reachable sets). Using a greedy method, they build 8* by
continuously adding to &* the user who covers the greatest number of Reverse
Reachable sets and removing them from R.

Approximation algorithms such as EaSyIM [10], IRIE [15], SIMPATH [14],
LDAG [5] or IMRANK [6], offer heuristics to compute o(S) Eq. (1), such as
using the most probable path or the independence of paths.

Conclusions: Greedy solutions require hours or days of processing due to the
repeated computation of opr¢(S). They perform poorly for seed sets larger than
50 and do not scale to large datasets [1]. Heuristics don’t offer theoretical guar-
antee and often lack in precision. Sampling algorithms are significantly faster
than greedy, are more precise than heuristics and offer a theoretical guarantee.
In addition, none of these solutions are meant to dynamically generate a seed set
with RTB constraints.There exists a great number of specific IM contributions



RTIM: a Real-Time Influence Maximization Strategy 5

which have been listed in [21]. It shows clearly, that no contributions have been
made regarding the analysis of the IM challenge in a stream of online users.

To this end, we propose the RTIM algorithm: Real-Time Influence Mazximiza-
tion. It targets influential users, henceforth generating a seed set of influencers
under RTB constraints. To ensure this, RTIM takes places in two stages: a pre-
processing stage and a live stage which we present in the following.

3 RTIM Approach

RTIM is meant to perform in a RTB environment. The latter, consists of
users who connect to a website which sells ad slots. The IM algorithm has to
determine wether it is useful for targeting. As we know, these users, all belong
to a very large social network through which they may influence neighbors.

The originality of our approach lies in its ability to target users who appear
in this dynamic stream by estimating whether they will have a significant gain
based on previously targeted users in the same stream and belonging to the
same social network. While traditional approaches determine the best seed set
of targeted users by processing a graph in which any user is considered online.
Contrary to these solutions, RTIM allows us to adapt our IM strategy to take
place in a RTB streaming environment.

Static algorithms, such as IMM [25], correspond to an optimistic approach
which assumes that pre-computed users from their seed set will necessarily be
online in the stream. However, many users of the pre-defined seed set won’t be
available to target during the advertisement campaign. In contrast, our approach,
which can be considered as a pessimistic approach, allows us to dynamically fill
our seed set with online users of interest for the advertisement campaign.

3.1 Step I: Pre-processing - Building the Influence Graph

First, an influence graph G;(V, E,wy) is built with weights on each edge to
estimate the influence based on the number of incoming edges of a vertex. This
influence estimation is commonly adopted in influence propagation [23]. It is
defined formally as follows:

Definition 1 (Influence graph) Consider G(V, E) the social graph where V
is the set of vertices and E C V?2 is the set of oriented edges. The influence
graph for G is the graph Gr(V, E,wy) with the same sets of vertices and edges
and a weighted function wr : E — R such that for an edge e;; from vertice v; to

.. ) — 71
Ui wr (ew) ~ indegree(vj)

Figure 1 depicts the influence graph for a social network between 5 users. For
instance, user us who follows or is influenced by users w1, ug and us has each of
his incoming edge e € F weighted by: wy(e12) = wy(es) = wr(es2) =1/3 =0.33



6 D. Dupuis et al.

05~ 033 025 0:33
- 05
02 0.5
05 025

" o
59
1
0.25
users
-—
° stream Uz | U4 us us U4 U1
t1 t2 t3 t4 ts te
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To estimate the influence score, we use the Monte Carlo approach by running
n simulations, where n is a large number ([16] set n = 10,000). The influence
score of each user u is the average number of users activated for all simulations.

Each simulation randomly test each outgoing edge of a user against the edge
weight wy(e;;). When a neighbor is activated we can then recursively test neigh-
bors until no more nodes are activated.

Since the simulations are all independent and the graph data structure is
only read during the process, we can run the n simulations in parallel. However
running 10,000 Monte Carlo simulations for each user u € G remains extremely
costly. Consequently, this computation must be performed offline and all influ-
ence scores are stored in a vector I: Yu; € G, I; = opro(u;)

3.2 Step II : User targeting at runtime

With the influence score computed in the pre-processing step, RTIM is able
to select, during the stream, users to target. Consider the temporal stream of
users 7 in which appears every online connection events of users from G. Since
a user can only be targeted when he appears in the stream, we need to decide
in real-time whether he is worth targeting or not. To make this decision, our
RTIM algorithm takes into consideration the influence score of users and the
probability that they have already been targeted by neighbors.

To verify these two criteria, we set two thresholds, ; and 04, respectively
the minimum influence score and the activation probability. Whenever a user is
online, we check whether his influence score is important enough (above y) to
be a potential target for the ad campaign or not. We also check the probability
for him to be activated by users he follows (above 64). If 8; is validated and not
04, the user is targeted and added to the seed set. His activation probability is
set to 1. This activation is propagated in the neighbourhood. This will enable
us to make better targeting decisions for future users who appear in the stream.

Figure 2 illustrates the stream of users that are online and their correlation
with the graph. 7T is a basic example of a RTB stream where users appear one at
a time in discrete steps (in red/bold) and can only be targeted when available.
When the first user us appears (time ¢1), we verify his influence score Io. If
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I > 07 then we consider that us tries to activate his followers uy, uz and us,
and propagate probabilities to their own neighbors. Assume that u; is activated
(A1 > 04) while uz and us are not. When user u4 is online (¢2), his influence
score is insufficient to be targeted and is avoided. Then, when user ug appears in
the stream (¢3), he is considered to be an influencer (I3 > ;) and not activated
(A3 < 04). Thus the activation probability is propagated to uy, us, us and ug.
When us appears in T, even if his influence score is higher than 07, A5 > 64
since he has been influenced by uy and ug. Thus it is not worth targeting him.

By applying the whole stream of users 7, our approach generates the seed
set §* where every user u € G verifies 6; and 64. The key point resides in the
fact that RTIM maximizes the influence of connected users while removing those
who are too close to users already targeted.

4 RTIM Model

Traditional influence maximization algorithms have an optimistic approach since
they determine statically the users to target based on the final global influence
score of the set of targeted users. If the advertisement campaign is not time-
limited (infinite stream), these solutions potentially maximize the total score.

RTIM’s strategy is quite different since it decides to target a user in real-time
when he is available. So RTIM can be considered as a pessimistic algorithm since
we decide to add him to the final seed set instantaneously, even if a ”better”
user to add to the seed set appears later in the stream.

Activation probability graph. At time ty, when 7T starts, we create the
activation probability graph as the influence graph G; described in Section 3.1.
We can adopt the matrix representation for the graph in the following equation:
Mg, (V,E) = Ag x InDegy, where Ag is the adjacency matrix, i.e., Agli,j] =1
if there exists an edge from user u; to user u;, 0 otherwise, and InDegy is the
indegree vector, with InDegy [i] = Tndegree(un) The activation probability vector
AV is initialized as the vector with only 0 values.

Activation probability updates. Consider we have at time t;_; > tg, an
activation probability vector AV (¢x_1). Then assume that at time ¢, a user u;
connects and we decide to target him. So his activation probability AV (t5_1)[i] is
now set to 1. This probability update impacts other probabilities in the graph.
Indeed, users who follow u; are now more likely to see this ad and we avoid
targeting them in the future. We must update other activation probabilities
through influence propagation to obtain the AV (t) probability vector.

Definition 2 (Activation probability propagations) Consider G(V, E) the
social graph and its influence graph Gr(V,E,wr) as defined in Section 3. The
activation probability vector AV (t) for G at instant ty, is recursively defined as:

AV O (t) = Mg, (V, E) x AV (tp_1)
AV () = Mg, (V, E) x AV (1)



8 D. Dupuis et al.

Algorithm 1 Updating activation probabilities

Require: graph G, nodes u and v, v’s activation probability A[v], u’s neighbors N,
current path weight p, depth d
1: procedure ACTIVATIONSCORES(G, u, p, d)
2 for v € N, do
3: A 1 —(1—A]) * (1 — p * Wuw)
4: if d > 1 then
5 ACTIVATIONSCORES(G, v, p * Wyv,d — 1)

So, after targeting a user u; (AV (¢tx—1)[i] = 1) the vector is recursively com-
bined with the activation probability graph Mg, in order to propagate the acti-
vation while obtaining a convergence after ¢ iterations:

AV (t) = AV (1) = Mg, (V, E) x AV () (1)

Since this model corresponds to a Matriz population model [18]*, we can
guarantee its convergence due to the fact that the Eigenvalues of Mg, (V, E) are
real strictly positive (the matrix is real, asymmetric and non-diagonal). Moreover
the propagation is an increasing and monotone function bounded to 1.

The aim of RTIM is to determine in real-time if a user is a good influencer
while not already having been influenced by other users. To target influencers,
we need to determine users worth targeting but also when users are considered
activated by influencers. For this we define the threshold #; as the minimum
influence score to reach, set to the influence score of the k** influencer. We also
define the activation probability threshold 64, set by default to 0.5. Any user
whose activation probability is greater than 6 4 is considered to be activated and
therefore will have attempted himself to propagate the information provided by
an influencer and is therefore not worth targeting.

During the live stage we need to update users’ activation probability. To
achieve this, we propagate probabilities at depth less than d. For a user, if his
influence score is above 6; and his activation probability is below 64, the user is
targeted. Otherwise we ignore him.

Equation 1 gave the activation probability of a user v. Since we consider
paths of length 2 all paths between u and v are independent:

Alu] = P( U pj)=1- H (1 —wi), (2)

PjEPuy w; EPI,

Algorithm 1 illustrates activation probabilities updates. For each neighbor v
of user u we propagate his activation probability (line 3). While the depth of
propagation is sufficient we follow the propagation recursively (line 4&5). In
the worst case it runs in O(|V|%) when all users are interconnected. However,
updates can take place in a separate thread during the live stage.

For the live stage of RTIM, we consider that if any neighbor (of depth d) of
a user is targeted then we update his activation probability. First, Algorithm 2

4 Our model is not a Markov chain since the sum of a column can exceed 1.
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Algorithm 2 RTIM Live

Require: graph G, user u, vector of influence scores I, influence threshold 0;, u’s
activation probability A[u], depth d, stream of users T, seed set S and max size k

1: Initialize A < 0

2: while |S| < k do

3: u < next(T)

4 if I[u] > 60; and Afu] < 64 then
5: ACTIVATIONSCORES(G, u, 1, d)
6 S+ SUu
—F— Youtube — K- Youtube Zipf —A— LiveJournal — 2\ — LiveJournal Zipf Twitter Twitter Zipf
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Fig. 3. Datasets’ influence score distributions

initializes the activation probabilities to the 0 vector (line 1). Then, while the
seed set is not filled (line 2) we check each new incoming user u if he validates
both 0; and 64 (line 3&4). Deciding to target a user (line 4) is done in O(1)
and is thus instantaneous. If he does we add u to the seed set and propagate the
activation by applying Algorithm 1 (line 5&6).

5 Influence Analysis

Our model is experimented with empirical datasets of different sizes: Youtube,
LiveJournal and Twitter. We need their characteristics to understand the im-
pact of our approach. We can see in Table 1 the global statistics: # nodes, #
edges, and node degrees (mean, variance and standard deviation).

We can see that Youtube is the "smallest” graph with less connections (mean
degree of 10) but with a high variation compared to its size. LiveJournal is
highly connected with a high number of edges and a mean degree of 34. However,
users are more homogeneously connected (low variance and STD). Twitter, on
the other hand, is the biggest graph in which users can have varying numbers of
connections with a mean degree of 70 but a variance of 6.4M.

Figure 3 shows the distribution of influence scores for our graph datasets.
These distributions can be characterized by a standard Zipf-Mandelbrot distri-
bution [20], traditionally used for distribution of ranked data. It is defined by:
ZM(r) = ﬁ where r is, here, the rank of the influencer. ry is a constant
representing the number of top influencers. B corresponds to the starting score
modifier and « is the decreasing speed of scores.
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# of|# of|Deg. |[Degree |STD B ro] o« |AX?Pearson
nodes|edges|Mean |Var. Value

Youtube 1.13M[5.97M| 10.53| 10,304 101 8 x 10[11]0.78 0.976

LiveJournal|3.99M |69.3M| 34.70 7,381 85| [1.55 x 10%] 0 ]0.395] 0.971

Twitter 41M] 1.46B] 70.50(6,426,184| 2,534| | 1.7 x 10°[ 6 [0.99 0.969

Table 1. Datasets characteristics Table 2. Zipf-Mandelbrot pa-
rameters for graph datasets

Table 2 gives the corresponding values for those Zipf-Mandelbrot distribu-
tions and the X2-Pearson values (observation probabilities) found for each dis-
tribution. Youtube and Twitter behave similarly with a high ro (resp. 11 and 6)
leading to 100 to 750 top-influencers. We can see that Twitter has more top in-
fluencers and then drops faster than Youtube. LiveJournal behaves differently
with very few top influencers compared to Youtube or Twitter. The low value r(
shows that top-influencers’ score decreases faster at the beginning of the curve.

However, the decreasing speed of the influence score a witnesses really high
values (resp. 0.78 and 0.99) which means that it is harder to become a top influ-
encer on Twitter than Youtube. Likewise, the absolute number of influencers is
really high with a B value between 10* and 10° leading to a long tail which only
starts after more than 10° for Youtube and 2 x 10° users for Twitter. On the
other hand, LiveJournal’s scores curve decreases more slowly than the others
with an a of only 0.395 giving the idea that the number of connections between
users are closer to the average than Twitter or Youtube. Consequently, the long
tail is reached more slowly than the others (4 x 105 users).

This conclusion is interesting in order to understand the impact of these
social networks on influence maximization. Indeed, targeting top influencers in
real-time requires choosing influencers according to their estimated score. For
instance, users from the long tail are pretty identical and cannot be differentiated
from each other, thus the decision to target or not an influencer depends on «
which tells us how much an influencers score evolves.

6 Experiments

We wish to show in this section the impact of choosing influencers in a real-time
stream of users. In order to do this, we need to compute the influence scores of
users, generate multiple streams of users with varying distributions and compare
the final solution of each algorithm for different graph datasets.

6.1 Experimental process

Since RTIM is an IM algorithm which runs under RTB constraints, we want to
compare it to an existing IM algorithm. We choose IMM [25] since it is the best
compromise between computation speed, scalability and accuracy, especially on
large datasets. The code for IMM is provided by [1] in C++.



RTIM: a Real-Time Influence Maximization Strategy 11

Average Median Max
Youtube 70.3 ms 6.30 ms 193.4 ms
LiveJournal 61.1 ms 6.03 ms 192.0 ms
Twitter 85.9 ms 44.5 ms 411.1 ms

Table 3. Update activation probabilities time

Stage I: Pre-processing. First, IMM is run in its entirety and adds k users
to its seed set Syarapr (B = 10,000 and optimal seed € = 0.1). Recall that IMM
relies on the fact that every user in the graph has the same probability to appear.

RTIM uses the Monte Carlo approach to compute the influence score of each
user in the graph. We run n parallel simulations per node (n = 10,000) with a
limit depth of 3 for scalability purposes. Thanks to the graph topology with a
high connectivity (see Section 5), those Monte Carlo simulations converge faster.
The influence scores of each user are stored in a vector I for future use.

Stage II: Live stream generation. It’s during this stage that we read our
stream and both algorithms have the opportunity to target influencers. Since
no real streams of connected users are available online, we simulate users’ be-
havior in the social networks with different distributions. Streams contain 10%
of the total number of users and can appear several times with two different
distributions: Uniform and Log.

The Uniform distribution supposes that all users have an equal probability
of appearing in the stream. This distribution can be considered to be the worst
case where top influencers can appear as frequently as low influencers.

The Log distribution supposes that users who have more in/out edges in the
graph are more likely to be connected. The probability of user u; being in the
stream is therefore P(u; € S) = log(degu,)/ > ., cv log(degy,), where deg., is
the degree of u;. We apply a logarithm on deg,, in order to give users with a
low influence score a reasonable probability of showing up in the stream. This
Log stream can be considered to be the best case where highly linked users are
more likely to be present in the stream, and potentially top-influencers.

To ensure the stability of our model, we generated multiple random versions
of each stream. Our results are averages of all versions.

Stage III: Live stream process. For IMM, during the live stage, if a user in
the stream belongs to Syaras, he is targeted and immediately added to the final
seed set S7p,s- Regardless of the number of times he appears in the stream, the
user is only targeted once. At the end of the stream: Sy, = St N'T

For each user u; in the stream, if ap(u;) < 04 and ope(u;) > 67, RTIM
targets u; instantaneously. u; is added to the final seed set Sjp;,, and we update
the activation probability of his neighbors in a separate thread.

Table 3 gives the time spent to update propagation probabilities in the net-
work. It shows that the average update time is less than 100ms which satisfies
our real-time requirement, and in most of the case far less (median). However,
some updates, especially on large dense graphs can take up to 411ms. This is
still negligible since a user cannot influence another in less than half a second.
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6.2 Experimental results

In the following experiments, we see the real-time evolution of the seed set in-
fluence score and size on the Youtube, LiveJournal and Twitter datasets.

Youtube. Figure 4 gives the results produced for a stream of 2.27 x 10°
connected users over the Youtube dataset. The left-hand side shows the evolution
of the seed set size where IMM hardly finds pre-defined influencers, especially
for the Uniform distribution. RTIM evolves almost linearly with twice as many
seeds for the Uniform distribution and 3.3 times more for the Log one. According
to the Log distribution, RTTM finds more influencers and reaches k more quickly.
The sudden stop of the RTIM seed set at 1.89 x 10° users is due to the fact that
the marketing campaign is over with a full seed set of k£ = 10,000 users.

The other side shows that RTTM produces seed sets with higher scores than
IMM. We can see different evolutions from the Uniform and Log streams. In
fact, IMM targets few users in the Uniform distribution, since highly connected
users are less often available online. On the other hand, RTIM targets more users
according to their local influence on the graph. According to the Log distribution,
IMM is closer to RTIM since top-influencers are more present in the stream.
Consequently, it takes time for IMM to reach this goal by the end of the stream
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with a similar score (1,105 less), while RTIM stopped earlier when the seed set
size reached k. This confirms the fact that IMM is better at maximizing k& than
RTIM in an infinite stream, however in a finite ad campaign this is not the case.

LiveJournal. Figure 5 focuses on LiveJournal. The stream contains almost
4 % 10° online users. On the left part, we can see the evolution of seed set sizes
for which IMM finds very few expected influencers and produces 8.5 times less
seeds for the Uniform stream (respectively 7 for the Log stream) than RTIM.
In fact, RTIM targets influencers more easily than IMM which can be explained
by the distribution of scores (see Section 5) with a very slow decreasing of the
scores (a = 0.395). This can be confirmed by the fact that LiveJournal has a
low degree standard deviation and variance. Thus RTIM adapts locally to the
users connection with similar scores while IMM only focuses on pre-chosen seeds.

We can see the evolution of seed set scores on the right part where scores are
really different from the Youtube dataset. The impact of pre-determined seeds
have a huge impact on the final seed set score since very few influencers appears
in the stream while RTIM can choose a ”similar” score in the neighbourhood.

Moreover, RTIM obtains a lower seed set score for the Uniform distribution
than the Log one. It is due to the fact that RTIM Log fills the seed set more
quickly after only 2.38 x 10° users in the stream. The impact of the specific
distribution of scores of LiveJournal and the fact that users have high mean
degrees (with a low variance) give more chances for common users (lower scores).

Twitter. The seed sets produced for Twitter are presented in Figure 6.
The stream is composed of 4.17 x 10 connected users. We observe first that
RTIM seed sets evolves very quickly for both Uniform and Log streams. This
is due to the huge amount of high score users of the Twitter distribution (see
Section 5 with B = 1.7 x 10°), consequently RTIM targets any user in the stream
that reaches the threshold 6;. On the other hand, IMM evolves more slowly, 10
times less for Uniform and 3.5 times less for the Log stream. RTIM fulfills the
marketing campaign k = 10,000 after 4 x 10° users in the stream.

For seed set scores, they evolve similarly to the Youtube dataset with close
scores for the Log stream, even if the gap is higher due to huge seed set scores
(600,000 less). The effect of the high decrease of the influence score (o = 0.99 in
Table 1) is observable here where IMM targets high influencers that have suffi-
cient impact to grow rapidly while RTIM targets good influencers to guarantee
a global impact in a minimum amount of time.

Conclusions. Our experiments showed that RTTM provides better seed sets
score while maximizing the score in a minimum of time while IMM succeeds in
maximizing on the whole dataset. The impact of the live stream distribution
between Uniform and Log is such that both methods behave clearly better on
users with very high degrees however IMM is more sensitive to this setting.

The seed set score curve is logarithmic since IM is sub-modular. Indeed, the
more users we target the smaller the marginal gain to the overall seed set. First,
the decrease of those scores is in favor of RTIM when « is low (LiveJournal)
where IMM makes a choice on similar influencers while RTIM targets only avail-
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able ones. Second, graphs with very high influence scores (induced by B) give
RTIM more choices of influencers and so it fills up the seed set quickly.

7 Conclusion

In this article we have shown, that it is possible to answer the influence maxi-
mization problem in a real-time bidding environment, that up to now have not
been applied to IM algorithms. We have shown, that static IM algorithms, such
as IMM, that pre-compute the best seed set of size k can solve this problem
so long as they are capable of generating in reasonable time a large seed set
with k& > 10,000. We have shown, in addition, that it is possible, in this setting,
to compete with these powerful static IM algorithms by using a dynamic IM
algorithm, such as RTIM, based on the local influence of each user. In fact, we
have proven, that dynamic IM algorithms such as RTIM can outperform static
algorithms when the stream of users is finite in size (or a fixed period of time).
It is important to note, that the RTB environment is more complex than the
constraints which we used. It is for instance, not guaranteed that a user having
been displayed an advertisement will see it, click on it, or even convert. For future
works, we propose to extend RTIM to fully answer RTB constraints. Contrary to
IM algorithms, RTIM could choose to target another user if a previous targeted
one was not considered as activated. We can therefore, make RTIM much more
interactive with dynamic user behavior while static solutions like IMM cannot.
In addition, should the graph be updated we can recompute local influence
scores, if necessary, or keep targeting users in the live stream. Whereas, static
IM algorithms need to recompute the best possible seed set for each new graph.
We can also improve RTIM by adapting dynamically the 6; threshold when
processing the live stream. In fact, online user behavior, such as periodicity of
connection during the day or week, has an impact on the final seed set score.
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