
HAL Id: hal-02465807
https://cnam.hal.science/hal-02465807v1

Submitted on 4 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Label-based Edge Partitioning for Multi-Layer Graphs
Camelia Constantin, Cédric Du Mouza, Yifan Li

To cite this version:
Camelia Constantin, Cédric Du Mouza, Yifan Li. A Label-based Edge Partitioning for Multi-Layer
Graphs. 52nd Hawaii International Conference on System Sciences (HICSS 2019), Jan 2019, Maui,
Hawaii, United States. pp.2216-2225, �10.24251/HICSS.2019.269�. �hal-02465807�

https://cnam.hal.science/hal-02465807v1
https://hal.archives-ouvertes.fr

A Label-based Edge Partitioning for Multi-Layer Graphs

Camelia Constantin

LIP6, Sorbonne Université, France

camelia.constantin@lip6.fr

Cedric du Mouza

CEDRIC, CNAM, France

dumouza@cnam.fr

Yifan Li

LIP6, Sorbonne Université, France

iamyifanli@gmail.com

Abstract

Social network systems rely on very large underlying

graphs. Consequently, to achieve scalability, most data

analytics and data mining algorithms are distributed

and graphs are partitioned over a set of servers. In

most real-world graphs, the edges and/or vertices have

different semantics and queries largely consider this

semantics. But while several works focus on efficient

graph computations on these “multi-semantic” graphs,

few ones are dedicated to their partitioning. In this

work, we propose a novel approach to achieve edge

partitioning for multi-layer graphs, which considers

both structural and edge-types (labels) localities. Our

experiments on real life datasets with benchmark

graph applications confirm that the execution time and

the inter-partition communication can be significantly

reduced with our approach.

1. Introduction

Graph theory has been intensively studied in the

past few centuries for solving real world problems in

physics, biology, sociology and information systems. In

particular, with the development of computer science,

a number of data structures and algorithms have been

developed to facilitate this calculation for a wide range

of graph-related tasks from local telephone network

design to components placement of an electronic circuit.

However, the data stores created in last decades are

becoming unexpectedly large especially in social media.

For instance, Facebook has generated a massive social

network with more than one billion users and hundreds

of times more connections.

A solution to achieve scalability for analyzing and

mining data is to partition the graph. In modern

distributed computing systems, two main partition

approaches for graph data are considered to scale to

very large graphs: vertex partition and edge partition.

Recently, [1] demonstrated that the vertex-cut method

outperforms edge-cut for distributed computation over

real world graphs, which are likely to have highly

skew degree distribution. With respect to the workload

balance status in a distributed computing context, it can

improve the overall performance significantly.

Real life graph data often consists of different

types of edges and/or vertices. Many graph computing

tasks depend partly on this kind of information, like

the recommendation calculation for given topics in

social network, the community detection and analysis

and the matching of regular expressions in labeled

graph. However existing graph partitioning methods

do not consider the heterogeneity structure of these

graphs when allocating edges to the different servers.

Naive approaches where the graph is split in several

graphs, one per layer, lead either to vertices/edges

redundancy or to unbalanced vertices/edges allocation.

Additionally they require computations on different

graphs so more communication and execution

times. We believe that considering the edge/vertex

heterogeneity when partitioning is essential to provide

efficient computations by drastically reducing the

communication between servers.

In this paper we consider a Multi-layer Graph model

which assumes different types of connections, such as

the Like/Follow/Friend interactions in social networks

and/or the multi-labels on edge in user-interest graphs.

Figure 1, represents an example of a 3-layer graph for

a social network where we assume 3 topics: sport,

technology and news. On the left-hand side, we have

its representation as a single graph whose edges are

multi-labeled. On the right-hand side we have its

decomposition in three layers, i.e., three graphs, each

one corresponding to a distinct label. Consequently to

determinate recommendations for Adam on the topic

news, we can run the recommendation algorithm on

the according layer and not the complete multi-labeled

graph. So the main contribution of our paper is a new

edge partition method which enhances distributed graph

computation by considering simultaneously the graph’s

topology and its edge-semantics heterogeneity.

The paper is organized as follows: after an

Figure 1. Multi-Layer Graph representations

introduction about multi-layer graph edge partitioning

issue in Section 1, we present related work in Section 2.

Then we introduce our block-based approach for graph

partitioning using connectivity computation and block

profiles in Section 3. We discuss about the seeds

selection in Section 4 and block refinement and merging

in Section 5. Experiments in Section 6 validate our

approach. Finally Section 7 concludes the paper and

gives perspectives.

2. Related work

Numerous applications rely on graph exploitation,

like online social network advertisement, public

transportation optimization, or biological network

analysis. In research, many efforts have been

done on graph mining algorithms such as clustering,

recommendation computation or pattern matching, by

measuring topological properties, analyzing attributed

contents,. . .. Nowadays it becomes crucial to find

solutions to deal with current large graphs for

maintaining those achievements from existing works.

The natural way to achieve scalability is the classical

strategy ”divide and rule”, and to the best of our

knowledge, the initial work on this topic was Bulk

Synchronous Parallel(BSP) model[2]. Later, the

authors of [3] proposed METIS and its parallel

implementation ParMETIS, which are a set of serial

programs which allows graph partitioning based on

the multilevel recursive-bisection, multilevel k-way, and

multi-constraint partitioning schemes. Giraph [4] is

another system developed, w.r.t the distributed graph

processing, to help for easily implementing their

applications over large graph in a parallel computing

framework. More precisely, this work relies on

Pregel model [5] by Google which converts the graph

computation procedure into a sequence of iterations,

namely supersteps, separated by global synchronization

points. During each superstep, there is a common

user-defined function executed on every vertex and the

messages will be sent/received by them to perform a

specific graph algorithm, the processing will terminate

when the graph reaches stable state which means no

vertex is active. Almost at the same time, Low

et al. proposed the GraphLab [6], an asynchronous

shared-memory abstraction for distributed machine

learning over graph data which is able to efficiently

utilize memory of multiprocessors and get fast

convergence for graph algorithms. All these proposals

significantly improved the graph computations but

the performance tends to degrade when the graph is

particularly skewed, like the ones in social networks.

In [1], the new version of GraphLab, named

PowerGraph, is proposed to overcome the limits of

previous solutions for computing real life graphs which

follow the highly skew degree distribution (power-law

graphs). They introduced a new computation model

named GAS that factors the vertex program along edges,

to achieve the scalability of graph computation via

partitioning graph data by edge instead of vertex. The

graph processing module in Spark, GraphX[7], also

employs a similar idea to GAS but provides more edge

partitioning strategies to program developers.

In addition to their large scale, real graphs are also

characterized by their heterogeneity. In other words,

the vertices and edges in real world graphs usually

have different types or attributes, which can largely

impact the execution of graph algorithms deployed over

them. While some recent works deal with heterogeneous

network partitioning [8, 9] or clustering [10, 11], much

additional efforts are still required to transfer vertex

partitioning to edge partitioning, and to consider the

relation between locality and label distribution has not

been studied well. In [12], the authors present the

C3R framework to detect user communities based on

novel regularized spectral clustering approach that is

able to perform an efficient partitioning of multi-layer

user relations graph. But the time complexity of the

framework, which is introduced by the graph Laplacians

computation is a limit for real (very large) datasets.

Our approach is, to the best of our knowledge, the

first one which achieves scalable edge partitioning for

efficient querying on very large real multi-layer graphs.

3. Block Construction

In a vertex-cut partitioning, i.e, edge partitioning,

a vertex which belongs to several edges might be

duplicated across partitions. In this Section, after

introducing some definitions, we present how to

allocate the different edges to limit the communication

between a vertex and its replicated when processing a

computation over a multi-graph.

Multi-layer graph.

Definition 1 (Multi-layer graph) A multi-layer graph

is a triple G(V,E,Λ) where E ∈ V × V denotes a set

of edges, V a set of vertices and Λ : E → 2L \ ∅ is the

labeling function, with L the domain of the edge labels.

In other word, a multi-layer graph is a graph whose

edges are labeled with one or more labels. Conceptually

a multi-layer graph may be considered as a set of graphs,

one for each label, which share the same vertices. We

define the restriction of a multi-layer graph G to a given

label l as:

Definition 2 (Multi-layer graph restriction) Let

G(V,E,Λ) be a multi-layer graph and a label

l ∈ dom(Λ). The restriction of G to l, denoted Gl, is

the graph Gl(Vl, El) where

Vl ⊆ V ∧El ⊆ E ∧ ∀e ∈ El, l ∈ Λ(e)
∧ ∀e′ ∈ E \ El, l /∈ Λ(e′)

So the graphGl is the graph, possibly not-connected,

which contains all edges from G labeled with l.

Block definition.

A block corresponds to a tightly knit cluster in graph,

e.g. a community in social network. In our approach,

we consider the block as a set of edges which are

”close” one to another, and these blocks become the

component units of each partition in computation, but

also the allocation units for workload over machines.

More formally, a block is defined as follows.

Definition 3 (Block) Consider a graph G(V,E), a set

S ⊆ V of vertices called seeds, and an allocation

function alloc : E × S → boolean. A block b is a

couple (s, E′) where s ∈ S is a node called the block

seed and E′ ⊆ E is a subset of edges such as ∀e ∈ E′,

alloc(e, s) = true and ∀s′ ∈ S − {s}, alloc(e, s) =
false.

The alloc function allows to allocate an edge to the

seed which is ”close”, considering both the topology

(locality) and the labels (similarity). Consequently a

block groups a set of edges close to each other in the

graph and which share some common topics.

To take into consideration the locality of edges we

propose a Connectivity Computation.

3.1. Connectivity Computation

To preserve the locality inside a block, we adapt

the Inverse P-distance to capture the connectivity, i.e.,

closeness, from a seed to a given vertex. The idea is

that the more paths there exist between two vertices

and the shorter they are, the more connected (closer)

these vertices are. We assume in the following that we

have a directed graph but all the definitions work for a

undirected graph with the associate semantics for paths

and using the degree instead of the outdegree.

We compute the connectivity score conl
v(i, j)

between vertex i and j for a given label l in multi-layer

graph G:

conl
v(i, j) =

∑

p∈P l
ij

S(pl) (1)

where P l
ij is the set of paths between i and j in the

multi-layer graph restriction Gl (i.e., the set of l-labeled

paths in the multi-layer graph G), and S(pl) is the

inverse distance value calculated on path pl, (v0, v1, ...,

vk) as:

S(pl) = (1 − α)k ·
k−1
∏

i=0

1

outDegl(vi)
(2)

where α ∈ (0, 1) is the decay factor used in distance

calculation, and outDegl(vi) is the number of out-edges

with label l from vertex vi.
Based on our vertex-to-vertex connectivity score

we define an edge-to-vertex connectivity score which

captures how ”close” an edge is from a given vertex.

Definition 4 (Edge Connectivity) The connectivity

score conl
e(k, e

′) between a vertex k and an edge

e′ = (i, j) is:

conl
e(k, e

′) = θ(conl
v(k, i), con

l
v(k, j))

where θ is an aggregation function.

In the experiments we chose as the aggregate function

the average function but any other aggregate function

may be selected.

Figure 2. An example of connectivity scores

calculation over multi-layer graph.

Example 1 Figure 2 depicts a 2-layer graph with labels

a and b and three seeds (vertices 4, 7 and 8). For the

vertices 2 and 5 we compute the connectivity scores

to the different seeds for the different labels. For

instance, considering the label a, we compute on the

restriction Ga the connectivity scores between the vertex

2 and the seeds 4, 7 and 8. Assume (al edges are

not depicted) that we get respectively the connectivity

scores cona
v(v2, v4) = 0.65, cona

v(v2, v7) = 0.40 and

cona
v(v2, v8) = 0.32. Similar computation for the vertex

5 on Ga gives respectively the scores 0.70, 0.35 and

0.60. Consider the aggregate θ = avg, we obtain for the

edge e2,5 the edge connectivity scores cona
e(v4, e2,5) =

1.35/2, cona
e(v7, e2,5) = 0.75/2 and cona

e(v8, e2,5) =
0.92/2. Observe that we have some vertex connectivity

scores equal to zero. It means that there exists no path

between the vertex and the corresponding seed.

Since for each label, we have for each vertex (resp.

edge) a score to each seed, we can adopt the following

matrix representation.

Definition 5 (Connectivity Scores Matrices)

Consider the set S = {s1, s2, . . . , sκ} of seeds

and the set L = {l1, l2, . . . , lλ} of labels. The vertex

connectivity score matrix for a vertex k, denoted Vk, is

a matrix with size |S| × |L| where

∀i ∈ [1..κ], ∀j ∈ [1..λ], Vk(i, j) = conj
v(k, si).

From this definition we can deduce the definition of

the edge connectivity score matrix Eǫ for an edge ǫ =
(k, k′) as:

∀i ∈ [1..κ], ∀j ∈ [1..λ], Eǫ(i, j) = θ(Vk(i, j), Vk′ (i, j))

where θ is an aggregation function.

Observe that the computation of these two matrices

can be implemented by performing a Breadth-First

Search (BFS) from each seed in S for each label in

L, which can be easily deployed in Pregel-like model

systems. This computation has a time complexity of

O(|S| × |L| × (rq)), where |S| denotes the number

of seeds, |L| the number of labels and r the average

degree of vertices, q corresponds to the depth of the

BFS performed, generally a small value, e.g. 5 in our

experiments. In the matrix Eǫ each column corresponds

to a label, and the highest score in a column points

out the topologically closest seed for this edge in the

corresponding graph restriction. However the candidate

seed proposed for the edge allocation is likely to be

different from one label to another. To determine the

block to allocate the edge, we must consider all the

labels in the same time. To achieve this, we first build a

block profile for the different blocks.

Example 2 Consider the example in Figure 2. The left

table (resp. right table) corresponds to the matrix V2

of vertex 2 (resp. V5 of vertex 5) for the seed set S =
{4, 7, 8} and the label set L = {a, b}. According to

Definition 4, with the choice of addition as aggregation

function θ, we obtain the connectivity scores matrix Eǫ

from the edge ǫ = (2, 5) to every seed for each label in

multi-layer graph:

Eǫ =

1.35 0.64
0.75 0.16
0.92 0.78

We observe that for the label a (first column), the

edge ǫ got the best score with seed S4 while for the label

b the best score is obtained with seed S8.

3.2. Block Profiles

The block profile is a summarization of the interests

of the users within a block. Different content-based

profiles for communities are proposed in literature

like in [13, 14]. We propose a simple block profile

construction based on the number of occurrences of

the different labels of the edges of the block, but more

advanced strategies may be used.

So assume that for the set of edges E of a graph G
we have a set E′ : {E1, E2, ..., Ek} of blocks, such that
⋃

1≤i≤k Ei ⊆ E and ∀i, ∀j, i 6= j ⇒ Ei∩Ej = ∅. Also

assume the existence of the function occ : 2E ×L → N
which returns the number of occurrences of a given label

in a set of edges. We define the label score of a block as:

Definition 6 (label score of a block) The label score

for a block E and a label l is:

score(E, l) =
occ(E, l)

∑

li∈L occ(E, li)

The block profile of a given block E consists of

the set of the different label scores computed for each

label l ∈ L = {l1, l2, . . . , lλ}. So we can represent

the different block profiles for a set of blocks E′ :
{E1, E2, ..., Ek} as a matrix P that we denote the blocks

profile matrix:

P = (pij)1≤i≤λ,1≤j≤k with pij = score(Ei, lj)

Label correlation. The precedent definition

assumes that the labels are independent one from

another. In many applications, there exist however

correlations between labels. For instance, we expect to

group the edges (vertices) with labels IT and Computer

together, or those with labels Politics and Polls, since

they are more likely to be queried or processed

concurrently in applications.

So we assume the existence of a correlation matrix

of labels C(L) ∈ [0, 1]|L|×|L|, with ∀i, ∀j, cij = cji
is the correlation score for label li with lj . Different

correlation functions exist to build this matrix like

Pearson, Kendall or Spearman, for instance. Observe

that if the different labels are independent the matrix

C(L) is equals to identity matrix I |L|2 .

Finally we adapt the definition of the block profile

matrix to take into consideration the label correlation:

Definition 7 (blocks profile matrix) Consider the set

of blocks E′ : {E1, E2, ..., Ek} and the set of labels

L = {l1, l2, . . . , lλ}, the blocks profile matrix Pcorr is

the matrix

Pcorr = PT × C(L)

For the sake of simplicity, we use the notation P
instead of Pcorr in the following.

3.3. Edge Allocation

Intuitively, starting a topic-based algorithm in

a block with a small number of labels shared

by its different edges will lead to less inter-block

communication and consequently a faster execution

time than a block with a large number of different labels

with a uniform distribution. So our goal is to build such

topic focused blocks, which represent basically blocks

of users sharing similar interests, i.e., a community. To

achieve this, we allocate an edge based on topology and

on the different block’s profiles.

Proposition 1 (Edge allocation) Consider an edge ǫ
and blocks profile matrix P . ǫ is allocated to the seed

si determined by:

argmaxx∈{1,...,|S|}{ax|ax ∈ A = (Eǫ ⊙ P)× 1n}

where ⊙ denotes the entrywise product, and 1n is a

vector with all values to 1.

Example 3 Assume in Figure 2 that labels a and b are

independent, and the blocks matrix profile P for the

blocks corresponding to the seeds 4, 7 and 8 is:

0.8 0.2
0.75 0.25
0.5 0.5

Then A = (Eǫ ⊙ P)× 1n is:

A =

1.35 0.64
0.75 0.16
0.92 0.78

⊙

0.8 0.2
0.75 0.25
0.5 0.5

 ·

[

1
1

]

=

1.35 ∗ 0.8 0.64 ∗ 0.2
0.75 ∗ 0.75 0.16 ∗ 0.25
0.92 ∗ 0.5 0.78 ∗ 0.5

·

[

1
1

]

=

1.208
0.6025
0.85

So from above result, edge e2,5 should be allocated

to the block associated to seed 4.

4. Seeds Selection

The choice of the seeds may largely impact the

quality of the resulting partitioning since the edge

allocation highly depends on the topological and

thematic proximity of the seeds. While the seed

selections is known as an NP-hard problem, we propose

in the following a strategy with a linear complexity

to select the seeds based on the topology and on the

”profiles” of the seeds.

We first propose the Variance of Edges, V OE(E′),
to measure how the labels from L are spread out over

a set of edges E′ ⊆ E. Intuitively, the more common

edge labels and the fewer of them are involved, the

higher V OE for E′. Formally, given a set of edges

E′ ⊆ E, and set of labels L ∈ L, V OE(E′) is defined

as the mean of the squared deviation from the mean of

label(E′) for each label in L:

∑L

l (labell(E′)− µ)2

|L|
,

where labell(E′) is number of edges having label l in

edges E′ and µ =
∑L

l labell(E′)/|L|. Based on this

measure, we can now propose criteria to select the seeds

for our block construction.

Definition 8 (Seed) A vertex s ∈ V belongs to the seed

set S, which satisfies:

i) ∀s′ ∈ S, s /∈ neighbor(s′)

ii) ∀v ∈ V \ S, β · DegL(s) + (1 − β) ·
V OE(adjacent(s)) ≥ β · DegL(v) + (1 − β) ·
V OE(adjacent(v))

where adjacent(x) denotes the set of edges with x as

vertex, DegL(x) =
∑

l∈L labell(adjacent(x)) and β
is an ad-hoc parameter in [0, 1].

The first criterion avoids to select adjacent seeds

which allows a better coverage of the large graph.

Observe that we can decide to extend this criterion

by requiring a distance of 2 or 3 between two seeds

(but remember that recent results exhibit an average

path length of 3.7 for Twitter [15]). The second

criterion means that the seeds are selected among

the most popular accounts (i.e., accounts with the

largest number of labels on adjacent edges) but also

those which federates a community around them with

common/similar interest (i.e., labels), that will lead to a

good block/partition construction. Indeed by selecting

seeds with high degree and high VOE we expect to

build dense blocks with a few number of distinct labels,

leading to lower communication, thus processing time,

when querying or mining the graph. Observe that the

size of the seed set is a preset value, larger than the

number of requested partitions.

We implemented the seed selection as a greedy

algorithm presented in Algorithm 1. This algorithm has

a linear complexity since it relies on a single scan of the

list of vertices ordered by their degree. Consequently

the number of vertices checked is comprised between

|S| and |V |, where |S| denotes the size of the seed set.

The detailed procedure of selection is described in

Algorithm 1. Example 4 illustrates the seed selection

algorithm.

Example 4 Suppose we have a 2-layer graph G′, with

labels L = {a, b}, and 3 candidate seeds, {c1, c2, c3},

available. The statistics of labels on their adjacent

edges are

(labela(adjacent(c1)), label
b(adjacent(c1))) = (6, 4),

(labela(adjacent(c2)), label
b(adjacent(c2))) = (2, 6) and

(labela(adjacent(c3)), label
b(adjacent(c3))) = (4, 4).

Thus, we can calculate the DegL(ci) of each candidate,

represented here as a vector dv = [6 + 4, 2 + 6, 4 +
4]T = [10, 8, 8]T . We normalize this scores and get

Algorithm 1: Seeds selection algorithm

input : the graph G(V, E), the set of labels L
output : a set of seeds S
parameter: the number of seeds m and the importance factor

of VOE β

1 C ← ∅; //the seed-candidates

2 N ← ∅; //the neighbor vertices of existing candidates

3 while |C| < m do
4 v = argmaxx∈V \NDeg(x); //the vertex with max

”Degree”
5 C+ = {v → (Deg(v), V OE(Adjacent(v)))} ;
6 N+ = neighbor(v) ;

7 C′ ← norm(C); //we normalize the Deg() and VOE() values
for elements in C

8 foreach c ∈ C′ do
9 (deg, voe) = c.value() ;

10 c.valueUpdate(deg ∗ (1− β) + voe ∗ β) ;

11 S ← C′.maxByValue(m); //to select the candidates with first
m max values

12 Return S;

the vector dv′ = [10/26, 8/26, 8/26]T . At the same

time, their V OEs can be figured out via formulas above.

For instance, for c1, its V OE is ((6 − 5)2 + (4 −
5)2)/2 = 1. We compute similarly the values for c2
and c3 and find 4 and 0 respectively. We also represent

them as a vector ov = [1, 4, 0]. After normalization

we get the vector ov′ = [1/5, 4/5, 0/5]T . We

assume in the following that the ad-hoc parameter β
is set to 0.5. We get consequently the final suitability

score for each candidate, as (1 − 0.5)dv′ + 0.5ov′ =
[0.292, 0.554, 0.154]T . We conclude that candidate c2
is most suitable for becoming a seed among these three

candidates since it has the maximum value.

5. Block Refinement and Merging

Our edge allocation algorithm ensures the

construction of blocks which present a topic

homogeneity but which may lead to a block size

heterogeneity with small blocks or oppositely very

large blocks. To make blocks fit the expected partition

size we propose to proceed in two steps: first we split

the oversized blocks into smaller ones and second we

merge the different blocks to get the final partitioning.

For the first step, splitting a block into several

sub-blocks (i.e., re-allocating edges to different

sub-blocks) in a random way would reduce the benefit

of our block constructions where locality and topic

similarity were considered. So we propose to iterate

recursively the edge allocation algorithm by selecting

⌈size(B)/max size block⌉ seeds within the oversized

block B. The block construction process stops when

all blocks have a size lower than the given parameter

max size block.

Finally to get the final partitions and to respect their

maximum size we perform block merging. Relying only

on block sizes to decide which blocks to merge (we

call this strategy the 4/3 algorithm in the following)

would result in partitions composed by sub-blocks

topologically and/or thematically distant. So we propose

to exploit the block locality to decide the blocks

to merge. To achieve this we consider the block

meta-graph, a weighted directed graph G′, where the

vertex v′i represents the block bi and the weight wbi,sj

on edge e′i,j is a vector which is the sum of edge

connectivity scores from every edge in bi to seed sj(of

block bj), in other words, ⊕e∈bi(E
e
ǫ)j , then we can

merge the blocks according to Algorithm 2.

Algorithm 2: Meta-Block allocation algorithm

input : A set of blocks B of size n, a set of partitions P of
size m, the labels L, the partition maximal size z

output : Each block is allocated to a pj ∈ P

1 Initialization to avoid large blocks;

2 B′ ← ∅ ;
3 foreach bi in the B do

4 bi.size←
∑L

l
labell(bi)

5 if bi.size > z then B′ ← B′ ∪ split(bi) else

B′ ← B′ ∪ bi
6 while B′ 6= ∅ do
7 pi = smallest(P)//retrieve the smallest partition;

8 V = B′.multiple(PL(pi), wT
bi,sj

); //PL: blocks

profile matrix
9 b← largest(V); //to select the block with largest

value in V
10 pi = merge(pi, b); //merge b with the smallest partition

11 B′ = B′ − {b};
12 Return P ;

Note that functions split() and merge() in

Algorithm 2 correspond to the split and merge functions

introduced earlier in this Section.

6. Experiments

To evaluate our partitioning method on multi-layer

graphs, we consider three graph-basic fundamental

operations used in graph analysis and mining: Finding

users with similar interest, Shortest Paths and Random

Walk, over our real-world datasets. We conduct

the experiments on a Spark(1.6.1)[16] platform which

is deployed on a 16 nodes cluster representing 100

cores. Observe that while the memory available

allowed to store and handle our experimental datasets,

we discard this centralized solution which was

quickly outperformed by distributed solutions for our

experiments. As the workload, i.e., the number of edges,

is balanced between partitions for each partitioning

strategies used in experiments, we focus on the runtime

of each method to evaluate their performance.

Table 1. Datasets
Edges Vertices Layers

Twitter 85,062,587 2,141,325 17

Higgs 15,450,464 456,630 4

6.1. Settings

Datasets

Two distinct datasets whose main features are

summarized in Table 1 are used in our experiments:

TWITTER: An excerpt of Twitter with around 2

million vertices and 85 million edges corresponding to

the sole follow links [17]. There exists a label l on

an edge (u, v) to depict the interest of u for the posts

(tweets) of v on topic l. 17 labels are extracted from

a supervised classification model to tag the different

edges: leisure, technology, entertainment, labor, social,

disaster, sport, life, environment, religion, law, politics,

business, health, education, climate, war.

HIGGS[18] dataset built from the graph derived

from Twitter during the discussions and interactions

on the news of discovery of elusive Higgs boson on

4th July 2012. For this dataset no topic is considered

but we distinguished 4 different interactions between

users extracted in this graph and used to tag the edges:

following, replying, mentioning and retweeting.

These datasets are large enough to illustrate the

benefit of our partitioning approach. To handle larger

graphs one may add more cluster nodes.

Competitors

We compare our algorithm with the most popular

edge-partitioning algorithms, i.e. the ones proposed

in GraphX and in PowerGraph. More precisely we

compare the following partitioning strategies:

• Random edges allocation methods [7], such as

RandomVertexCut, CanonicalRandomVertexCut,

EdgePartition1D and EdgePartition2D.

• Greedy method introduced in PowerGraph [1].

• Our block-based method, esp., the Meta-Block

version has been employed in all following

experiments as it always outperform 4/3 block

allocation method (greedy block allocation). We

choose to initially build ten times more blocks

than the expected number of partitions.

6.2. Finding user with similar interest

For the first experiment, we compare the impact of

the partitioning strategies when performing the regular

expression query (v, l, ∗, l, x) which means we want

to find all the vertices x which are connected to a

given vertex by an edge with the same label l as v.

This regular expression is a frequently-used query in

graph mining operation [19] when we want to detect

users x with similar interest l (whatever l may be)

than user v. We run the different graph-partitioning

algorithms to build partitionings with different sizes for

each method. Then we conduct the regular expression

query on these different partitionings and compare the

resulting performances for 100,000 randomly selected

vertices. Performance times correspond to total time

(including pre-processing time).

In Figure 3, we observe that for the Twitter graph

the communication cost linearly increases with the

number of partitions for all partitionings. However our

partitioning strategy largely reduces the execution time.

For instance with 100 partitions, we obtain a gain of

0.84, 0.3 and 0.33 for the random, EdgePartition2D or

PowerGraph partitionings respectively.

We perform similar experiments with Higgs graph

and results are depicted in Figure 4. Our method

also outperforms existing ones for this dataset with

a similar gain which enlightens that our approach

remains efficient for graphs with a small number

of distinct labels. Indeed, our partitions present

a topic-homogeneity, so few distinct labels inside a

partition, whatever the number of existing labels is. In

plus we group edges based on topological proximity.

Consequently the search for this regular expression on

the graph is mainly processed within each partition, with

few communication between partitions, whatever the

size of the graph and/or the number of label are.

6.3. Shortest Path

For this experiment we study the shortest path

algorithm used in many applications such as community

detection, influence or similarity computation, etc.

Here, in our multi-graph assumption, we consider that

a shortest path (SP) search corresponds to the following

problem: for a graph G, given some landmarks Λ ⊆ V
and a specific label t, we want to find for every vertex

v ∈ V the shortest path to each reachable λ ∈ Λ
in the graph restriction Gt. The result of this search

is a vector of shortest path values to each landmark

for each vertex. Observe that since the algorithm can

be implemented using recursive search of neighbors

(BFS), the implementation can be naturally deployed in

Figure 3. Regular expression query on Twitter graph

Figure 4. Regular expression query on Higgs graph

Figure 5. Shortest path on Twitter graph

Figure 6. Shortest path on Higgs graph

Pregel-like systems, such as PowerGraph and GraphX.

We construct 40-160 partitions for Twitter graph and we

pick up a set of vertices randomly selected as landmarks

(20 and 50 for respectively Twitter and Higgs datasets).

The results are presented in Fig. 5. We notice that the

runtime decreases from 10 to 60 percent, compared to

other methods. The rationale is that our partitioning

considers the connectivity and the labels for building

blocks. So the resulting partitions usually present large

subgraphs extracted from restriction graphs. Since the

shortest paths are computed on the restricted graph of

a chosen label, the computation is more likely to stay

within a partition and thus reduces the communications

between partitions. For the competitors the vertices

which belong to the same restriction graph are allocated

to much more partitions. So the vertex replication factor

will be higher and more messages between partitions

are required when performing a computation leading to

higher runtimes. We make similar observations for the

Higgs dataset (Fig. 6), so our partitioning strategy is

also efficient for graphs with less labels.

6.4. Random Walk

Random-walks are the building blocks for numerous

widespread algorithms in different areas such as

recommendation, similarity computation, item ranking

or knowledge inference. In this Section, we conduct

an experiment to illustrate how random walk-based

algorithms may benefit from our partitioning algorithm.

Algorithms on labeled graphs generally consider edge

label as independent during the computation. However,

the layers or labels of multi-graph are not independent in

a variety of applications [20]. So we propose two types

of random walk implementations for our experiments:

1) Independent-label Random Walks, where the random

walks are conducted over only edge with queried label

λ, i.e., the graph restriction Gλ.

2) Correlated-label Random Walks, where we rely on

the Correlation Matrix of Labels L, C(L), in Sec.3.3

into random walks execution. Thus the transitions for

random walks consider all outgoing edges but with a

weight which depends on the correlation between its

label and the requested label. We choose here the

Pearson correlation score, but other correlation scores

may be investigate in the future. More precisely the

transition probabilities are defined as:

P (vi → vj) =

P (vi→vj |λ,C(L))
∑

ei,k∈E
P (vi→vk|λ,C(L))

if ei,j ∈ E,

0 otherwise.

where E is the edges of multi-layer graph G, λ is

the label to query and C(L) is the correlation matrix

of labels L. In above formula, we propose to calculate

the overall probabilities of each transition via linearly

summarizing all conditional ones. For the conditional

probability P (vp → vq|λ,C(L), ep,q ∈ E), it can be

estimated as:

P (vp → vq|λ,C(L), ep,q ∈ E) =
∑

l∈Labs(ep,q)

Ck,t(L)

where Labs(ep,q) is the set of labels for the edge ep,q.

In Fig. 7, we see the benefit of our partitioning

algorithm when performing independent-label random

walks on Twitter dataset with a 30%-70% decrease

for the runtime compared to executions on partitions

produced by GraphX strategies, and around 5-10%

decrease for GraphLab. The rationale is that with our

partition building the random walk is likely to remain

in the same partition since our partition algorithm

considers graph distance and labels.

Fig. 8 presents the results for correlated-label

random walks on Twitter dataset. We notice that our

method, MetaBlock hasCML, always provides the

best execution times. The gain is even more important

compared to independant-label random walks. This is

due to our building which groups edges considering the

topics and their correlation.

7. Conclusion

In this paper, we present our approach for edge

partitioning for multi-layer graphs which takes into

account the locality of graph structure and the

distribution of edge labels. We introduce new metrics,

like Edge Connectivity Score and Blocks Profile Matrix,

to determine the edge allocation. Our experiments

Figure 7. Independent-label random walks

Figure 8. Correlated-label random walks

on real-world datasets illustrate that the partitioning

provided by our proposal allows different classical graph

algorithms for graph analysis or graph mining to be

executed much faster than when using another graph

partitioning strategy.

As future work, we first intend to extend our proposal to

support more complex graph models, where for instance

the vertices also have different types of labels. We

also plan to investigate a self-adaptive mechanism to

determine the different parameters of our algorithm such

as the number of seeds. Finally we intend to investigate

the other kinds of relevant/valuable graph operations

that our approach may improve.

References

[1] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and
C. Guestrin, “PowerGraph: Distributed Graph-parallel
Computation on Natural Graphs,” in OSDI, pp. 17–30,
2012.

[2] L. G. Valiant, “A Bridging Model for Parallel
Computation,” Commun. ACM, vol. 33, no. 8,

pp. 103–111, 1990.

[3] G. Karypis and V. Kumar, “A Fast and High
Quality Multilevel Scheme for Partitioning Irregular
Graphs,” SIAM J. Scientific Computing, vol. 20, no. 1,
pp. 359–392, 1998.

[4] Apache, “Giraph.” http://giraph.apache.org,
2012.

[5] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert,
I. Horn, N. Leiser, G. Czajkowski, and G. Inc, “Pregel: A
System for Large-scale Graph Processing,” in SIGMOD,
pp. 135–146, 2010.

[6] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola,
and J. M. Hellerstein, “Distributed GraphLab: A
Framework for Machine Learning and Data Mining
in the Cloud,” Proc. VLDB Endow., vol. 5, no. 8,
pp. 716–727, 2012.

[7] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica,
“GraphX: A Resilient Distributed Graph System on
Spark,” in GRADES, pp. 2:1–2:6, 2013.

[8] D. Alistarh, J. Iglesias, and M. Vojnovic, “Streaming
Min-max Hypergraph Partitioning,” in NIPS,
pp. 1900–1908, 2015.

[9] K. Wei, R. Iyer, S. Wang, W. Bai, and J. Bilmes,
“Mixed Robust/Average Submodular Partitioning: Fast
Algorithms, Guarantees, and Applications,” in NIPS,
pp. 2233–2241, 2015.

[10] J. Chen, W. Dai, Y. Sun, and J. Dy, “Clustering and
Ranking in Heterogeneous Information Networks via
Gamma-Poisson Model,” in ICDM, pp. 424–432, 2015.

[11] Y. Huang and X. Gao, “Clustering on Heterogeneous
Networks,” Wiley Int. Rev. Data Min. and Knowl. Disc.,
vol. 4, no. 3, pp. 213–233, 2014.

[12] A. Farseev, I. Samborskii, A. Filchenkov, and T. Chua,
“Cross-Domain Recommendation via Clustering on
Multi-Layer Graphs,” in SIGIR, pp. 195–204, 2017.

[13] H. Fani, F. Zarrinkalam, E. Bagheri, and W. Du,
Time-Sensitive Topic-Based Communities on Twitter,
pp. 192–204. Cham: Springer International Publishing,
2016.

[14] H. A. Abdelbary, A. M. ElKorany, and R. Bahgat,
“Utilizing Deep Learning for Content-based Community
Detection,” in 2014 Science and Information
Conference, pp. 777–784, 2014.

[15] Q. Grossetti, C. Constantin, C. du Mouza, and
N. Travers, “An Homophily-based Approach for Fast
Post Recommendation in Microblogging Systems,” in
EDBT, (Wien, Austria), Mar. 2018.

[16] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauly, M. J. Franklin, S. Shenker, and I. Stoica,
“Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing,” in
NSDI, pp. 15–28, 2012.

[17] C. Constantin, R. Dahimene, Q. Grossetti, and
C. du Mouza, “Finding Users of Interest in
Micro-blogging Systems,” in EDBT, pp. 5–16, 2016.

[18] M. De Domenico, A. Lima, P. Mougel, and M. Musolesi,
“The Anatomy of a Scientific Rumor,” vol. 3, pp. 2980
EP –, 10 2013.

[19] P. Barceló, L. Libkin, and J. L. Reutter, “Querying Graph
Patterns,” in PODS, pp. 199–210, 2011.

[20] Y. Wang, X. Lin, and Q. Zhang, “Towards Metric
Fusion on Multi-view Data: A Cross-view Based Graph
Random Walk Approach,” in CIKM, pp. 805–810, 2013.

