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Abstract

Daily river flow forecast is an essential step for real-time hydro-power reservoir operation. The purpose of the flow forecast is to
assist in the decision-making process in order to ensure optimal and reliable operational policy. The paper presents, in a region
where meteorological and hydrological data are insufficient, inaccessible and sometimes unreliable, a data-driven model based on
Constructive Fuzzy Systems. The model is capable of exploiting the available data with high prediction efficiency was compared
to an Autoregressive method. A case study was applied to Litani River in the Bekaa Valley - Lebanon using 4 years of rainfall,
temperature, and river flow daily measurements. A reference Auto-Regressive (AR) model, a classical Constructive Fuzzy System
Modeling (C-FSM) and the Constructive Fuzzy System Modeling coupled with Moving Average (C-FSM MA) filter are trained.
Upon testing, the last two models have shown primarily competitive performance and accuracy with the ability of preserving the
day-to-day variability up to 12 days ahead. In fact, for the longest lead period, the models AR, C-FSM and C-FSM MA were able
of explaining respectively 75%, 79.5% and 84.3% of the actual river flow variation. These results indicate that Moving Average
(MA) filter provides a supportive pre-processing tool in the process of streamflow forecasting.

© 2017 Published by Elsevier Ltd.
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1. Introduction

Accurate prediction of river flow is of vital importance
for efficient reservoir water management and control. How-
ever, forecasting river flow remains one of the very difficult
issues in hydrological sciences because it is characterized
by a dynamic, uncertain and nonlinear problem (Huamani
et al., 2011). This problem deals with a system that re-
ceives thousands of inputs interacting in a complex and
noisy environment.

Over the past few decades, several types of stochastic
models have been suggested for hydrological time series
modeling such as Box and Jenkins (Box and Jenkins, 1970)
methods for Auto-Regressive (AR), Auto-Regressive Mov-
ing Average (ARMA), Auto-Regressive Integrated Moving

Average (ARIMA), Auto-Regressive Moving Average with
Exogenous inputs (ARMAX) models. They were generally
utilized in the linear sense for estimating future river flow.
Later on, several studies were dedicated to the formulariza-
tion and development of nonlinear river flow models that
aim to improve the quality of hydrological forecasting. In
fact, (Porporato and Ridolf, 2001) dealt with local linear
models with time-dependent parameters, whereas (Dibike
and Solomatine, 2001) and (Pulido-Calvo and Portela,
2007) have considered data-driven nonlinear models based
on Artificial Neural Network (ANN) or on Wavelet Neu-
ral Network (WNN) as in (Cuia et al., 2015). In (Hua-
mani et al., 2011), the followed methodology was based on
Fuzzy Inference Systems (FIS). However, (Coulibaly and
Baldwin, 2005), (Firat, 2008) and (Kisi et al., 2012) have
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discussed extensively neuro-fuzzy hybrid models that have
the capability of preserving the learning abilities of ANNs
and the reasoning of fuzzy systems. Although a variety of
forecasting approaches have been successfully formulated,
choosing the proper model to accurately predict river flows
still imposes a challenge to hydrologists up to date.

In this paper, the study is carried on the Litani River
which rises in the central Bekaa Valley. Its water flow is
received at the Qaraoun dam, the largest artificial lake in
Lebanon. The main concern was dealing with meteoro-
logical and hydrological data suffering from insufficiency
and also from certain inaccuracies and sometimes unre-
liability in the information provided by the gauging sta-
tions. Besides that, in the past decades, Litani River ex-
perienced many major outlaw actions like: major garbage
dumping, direct release of urban sewage water, industrial
discharges, lack of riverbed maintenance, infringements,
and prohibited diversions (International Resources Group
(IRG), 2012). Thus, the river flow prediction model fea-
tures a highly dynamic and non-linear structure. In addi-
tion, It accompanies forecasting errors related to noisiness
and non-homogeneity of data. However, during the au-
thors literature review, Fuzzy theory appears to be quite
effective for handling these aspects, especially when the
inherent physical relationships are not fully understood
(Nayak and Sudheer, 2008). In addition, according to
(Cheng and Li, 2012), Fuzzy Time Series (FTS) has at-
tracted more interest due to its capabilities of dealing with
the uncertainty and the vagueness that are often inher-
ent in real-world data resulting from imprecision in mea-
surements, imperfect sets of observations, or difficulties
in acquiring measurements under uncertain circumstances.
(Bouchon-Meunier et al., 2008) also claim that fuzzy logic
provides an interesting tool in the field of data mining,
mainly because of its ability to represent flaw information,
which is crucial when databases are complex, large, im-
precise and contain heterogeneous data. Therefore, in this
study, the proposed Fuzzy inference approach (Luna et al.,
2007) is adopted for daily river flow time series modeling.

Indeed, the presented method is based on a
Constructive-Fuzzy System Modeling (C-FSM) and it is
formed of two steps: First, the model is initialized by ap-
plying the Subtractive Clustering (SC) algorithm on the
available historical data to determine the initial structure
of the system (Huamani et al., 2011). In fact, this pro-
cedure had provided an extra tool to divide the heteroge-
neous data into more homogeneous sub-populations which
in turn improves the forecasting accuracy (Asadia et al.,
2013). Second, the initial structure is modified and re-
fined based on constructive offline learning where a classi-
cal Expectation Maximization (EM) algorithm is used for
adjusting the parameters of the model.

Up-to-date, the major concern in Fuzzy modeling, is
the identification of the suitable input vector. Tradition-
ally, the family of Auto-Regressive models has been widely
used for modeling water resources time-series. The or-
der of these models is typically estimated by examining

the plots of the Auto-Correlation Function (ACF), Partial
Auto-Correlation Function (PACF) and Cross-Correlation
Function (CCF). According to (Sudheer et al., 2002) and
(Galavi and Shui, 2012), the statistical parameters ACF,
PACF and CCF could be also utilized in Fuzzy modeling.
Concerning Litani River, the determination of the number
of antecedent rainfall, temperature and river flow values
involves the computation of time lags that have a signifi-
cant influence on the forecasting process.

Once relevant inputs are selected, three models are con-
sidered: an Auto-Regressive model (AR), a classical Con-
structive Fuzzy System Modeling (C-FSM) and a Con-
structive Fuzzy System coupled with a Moving Average fil-
tering method (C-FSM MA). The Moving Average (MA)
aims to reduce rainfall fluctuation and filter out noise. The
filtered rainfall data is then fed into the C-FSM forecasting
model. As a matter of fact, this technique has been used
extensively in (Vos and Rientjes, 2005) and (Wu et al.,
2012) for predicting runoff and precipitation respectively
via ANN modeling. The time series model of AR type is
developed in this study as a benchmark model since the
correlation analysis used to determine its structure was
also adopted for the Fuzzy modeling.

The main scope of this paper is not solely comparative.
It aims to analyze and discuss stochastic modeling of river
flow time series using FIS coupled with traditional corre-
lation analysis. (Huamani et al., 2011) have presumed the
normality of the gathered data, and in the course of the
C-FSM training process they didn’t state a clear approach
for choosing the appropriate cluster radius. In this work,
and to boost the performance of the C- FSM, the collected
data had been brought to near a normal distribution us-
ing a suitable transformation. In addition, a calibration
phase is introduced before validation to select the suitable
cluster radius. Moreover, several scenarios were tested by
simulating the streamflow associated with different data
processing techniques in order to assess their performance.

This study is a part of a wider research project enti-
tled “Operational Optimization of a Multipurpose Cascade
Hydropower-Irrigation System”. The resulting forecast-
ing model can help in predicting the daily water stock in
Qaraoun lake. In fact, water storage is deeply involved in
short-term hydro generation optimal scheduling of cascade
hydropower stations. The outcome is a multi-functional
tool for optimal operation planning capable of enhancing
performance of a multi-purpose reservoir system.

The paper is organized as follows: the next section de-
scribes the AR, C-FSM and C-FSM MA models general
structure and the utilized optimization algorithm. In Sec-
tion three, a case study is presented; in fact, this section is
divided into two subsections: the first one describes the se-
lected area for the present study and the collected data; the
second subsection exhibits data pre-processing techniques
and input selection. Section four addresses applications of
models, results and discussions. Afterward, in section five
conclusions are drawn.
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2. Models Description

2.1. Auto-Regressive Model (AR)

2.1.1. (AR) structure

An Auto-Regressive model (AR) defines the next ran-
dom variable in a sequence as an explicit linear function of
previous ones within a time frame. The structure of AR
model of order p is given in equation (1):

y(t) + a1y(t− 1) + ...+ apy(t− p) = e(t) (1)

where y(t) is the output at time t, a1, ..., ap are the pa-
rameters of the AR model to be estimated from the data,
y(t− 1), ..., y(t− p) are the previous outputs on which the
current output depends and e(t) is the white-noise distur-
bance.
It is known that, the name “autoregressive” comes from
the fact that the output y(t) is regressed on the past values
of itself.

2.1.2. Optimization algorithm

There are many ways to estimate the coefficients of (1),
such as the ordinary least squares procedure, method of
moments, Markov chain - Monte Carlo or Yule–Walker
methods. However, in this paper Yule–Walker equations
are used to relate the Auto-Regressive model parameters
to the Auto-correlation coefficient ρ of the random process
y(t).

The values of a1, ..., ap are determined by solving the
matrix equation (2):

1 ρ1 · · · ρp−1

ρ1 1 · · · ρp−2

ρ2 ρ1 · · · ρp−3

...
...

. . .

ρp−1 ρp−2 · · · 1




a1
a2
a3
...
ap

 = −


ρ1
ρ2
ρ3
...
ρp

 (2)

2.2. Constructive Fuzzy System Modeling (C-FSM)

2.2.1. C-FSM Structure

Typically, the Multiple Input Single Output (MISO)
model structure based on first order Takagi-Sugeno Fuzzy
system is composed of a set of M fuzzy rules. Its repre-
sentative power is manifested through its capability of de-
scribing a highly complex nonlinear system using a small
number of simple rules.

Let us denote by xk = [xk1 xk2 ... xkp] ∈ Rp the input

vector at instant k , k ∈ Z+ − {0}; ŷk is the output of
the model, for a given xk.The aim is subdividing the
input space into M fuzzy sub-regions and approximating
the system in each subdivision by a simple linear model.
Each partition is defined by its center ci ∈ Rp and its
covariance matrix Vi ∈ Rp×p, whereas a data point can
belong to all partitions with different membership degree
gki that lies between 0 and 1, such that the sum of all
membership values is equal to 1. Afterward, an IF-THEN
rule is set to each sub-region; it is defined in the form:

Ri : IF < xk belongs to the ith region with a mem-
bership degree gki > THEN

yki = ϕk × θTi (3)

Where ϕk = [1 xk1 xk2 ... xkp] ∈ Rp+1, and θi =
[θi0 θi1 ... θip] ∈ Rp+1 is the coefficients vector (parame-
ter) for the local model (Figure 1). Every input pattern
has a membership degree associated to each subregion of
the input space and is calculated by the formula:

gi(x
k) = gki =

αiP
[
i
∣∣xk ]

M∑
q=1

αqP [q |xk ]

(4)

where αi is a positive parameter that is considered as an
indirect measure of the relevance of each rule and satisfies
M∑
i=1

αi = 1. P
[
i
∣∣xk ] is the conditional probability of acti-

vating the ithrule given the input vector xk and is defined
as:

P
[
i
∣∣xk ] = 1

(2π)p/2 det(Vi)
1/2 exp

{
− 1

2
(xk − ci)V

−1
i (xk − ci)

T
}

Where det(.) is the determinant function.

Figure 1. C-FSM general structure with a total of M fuzzy rules
(Luna et al., 2007)

The final model output is computed by a non-linear
weighted average of the aggregated local outputs and their
respective membership degrees. Thus, the estimated out-
put value of the global model for the future time instant
k is:

ŷk =

M∑
i=1

gki y
k
i (5)

2.2.2. Optimization Algorithm

The constructive offline learning process for building a
FIS model determines automatically the number of fuzzy
rules as well as its internal parameters ci, Vi, θi and αi

for i = 1, ...,M. In fact, the procedure is carried over
two stages: model initialization and structure modifica-
tion stage (Luna et al., 2007).
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At stage one, the model is initialized by using the
well known Subtractive Clustering algorithm (SC) (Chiu,
1994). Its goal is to determine the initial structure of the
fuzzy system that will serve as a starting point for the
next stage. The input-output pattern constructed from
the available historical data is fed into the SC routine that
is available in MATLAB.
The function returns the cluster centers in the matrix C
and the vector S which contains the sigma values that
specify the range of influence of a cluster center in each
of the data dimensions. ra is a number ranging between 0
and 1 that specifies the cluster center’s range of influence,
assuming that data falls within a unit hypercube.
Suppose the initial number of rules M0 is the length of
the matrix C. Then, the C-FSM structure is initialized as
follows:

� c0i = Ci|1...p the first p components of the ith center
found by the SC algorithm.

� V 0
i = r2aI, the covariance matrix codifying the spread

where ra is the spread parameter that is used in the
SC algorithm and I is the p× p identical matrix.

� θ0i =
[
Cp+1

i 0 ... 0
]
, Cp+1

i : last p + 1 component

determined by the SC algorithm.

� σ0
i = 1.0, the initialized standard deviation for each

local output yki .

� α0
i = 1/M0.

Once the model initialization is completed, parameters
are re-adjusted based on EM algorithm with the objec-
tive of maximizing the log-likelihood L (6) of the observed
values of yk at each step M of the learning process.

L(D,Ω) =

N∑
k=1

ln

(
M∑
i=1

gi(x
k,C)× P (yk

∣∣xk, θi)) (6)

where D =
{(
xk, yk

)
; k = 1, ..., N

}
is the training set, Ω

contains all the model parameters and bold C contains the
centers and the covariance matrix parameters. However,
for maximizing L it is necessary to estimate hki : the pos-
terior probability of xk belong to an active region of the
ith local model that is computed for i = 1, ...,M by:

hki =
αiP

[
i
∣∣xk ]P [yk ∣∣xk, θi ]

M∑
q=1

αqP [q |xk ]P [yk |xk, θq ]

(7)

The conditional probability P
[
yk
∣∣xk, θi ] is defined as:

P
[
yk
∣∣xk, θi ] =

1√
2πσ2

i

exp

(
−
[
yk − yki

]2
2σ2

i

)
(8)

The variance of the local output yki can be estimated by:

σ2
i =

(
N∑

k=1

hki
[
yk − yki

]2)
/

N∑
k=1

hki (9)

The EM algorithm for finding the parameters is summa-
rized by:

1. E step: Estimate hki via (7)

2. M step: Maximize (6) and update the model param-
eters:

αnew
i =

1

N

N∑
k=1

hki (10)

cnewi =

(
N∑

k=1

hki xk

)
/

N∑
k=1

hki (11)

V new
i =

[
N∑

k=1

hki (xk − ci)
T

(xk − ci)

]
/

N∑
k=1

hki (12)

for i = 1, ...,M . An optimal solution for θi is obtained
by solving the equation:

N∑
k=1

hki
σ2
i

(
yk − ϕk × θnewi

)
.ϕk = 0 (13)

After adjusting the parameters, L(D,Ω) is re-
calculated and saved as Lnew(D,Ω).

3. Convergence: Stop the process if:

Lnew(D,Ω)− Lold(D,Ω) < ε

else return to step 1.

2.3. Constructive Fuzzy System Modeling coupled with
Moving Average (C-FSM MA)

To enhance the performance of the forecasting model,
the C-FSM MA adopts the C-FSM structure, whereas its
inputs are fed by treated data obtained through the use of
the (MA) filter presented in subsection 3.2.

3. Case Study

3.1. Study Area and Collected Data

The Litani is the longest river in Lebanon reaching a
length of 170 Km. Its watershed covers an area of 2160
Km2 and it is fed by an average level of rainfall around 764
millions of cubic meters (Litani River Authority (LRA),
2016) . It rises near the ancient city of Baalbeck in the
central Bekaa Valley, 85 Km east of the Capital Beirut. It
flows southward for 100 Km or so before bending sharply
toward the west, entering the Mediterranean at Kasmieh
just north of the city of Tyre. In the late 1950s, a ma-
jor development on the Litani River involved constructing
the artificial Qaraoun lake (Figure 2) and its associated
structures: hydropower plants and irrigation systems. The
power plants, located in the vicinity of the river, generate
around 190 MW of electric power (10% of the total power
production of Lebanon). In the irrigation sector, the use of
the Litani River is projected to increase from around 5000
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Figure 2. Litaini River Basin (Source: Litaini River Basin Management Support Program - USAID)
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ha to more than 21000 ha in the near future (Ramadan
et al., 2012).

Due to urbanization and industrialization, the Litani
River basin is today experiencing increasing water de-
mands, groundwater over-exploitation, and extensive pol-
lution. As previously mentioned, a walk along the river-
side shows: Extensive garbage dumping, direct release of
urban sewage water, agricultural run-off, uncontrolled in-
dustrial discharges, lack of riverbed maintenance, infringe-
ments and prohibited diversions (International Resources
Group (IRG), 2012). All these activities are often illegit-
imate but there are rarely available possibilities for water
users to behave differently.
Litani River catchment receives annually 500-600 mm of
rainfall (Verner et al., 2013). The peak of rainy season is
between December and April, where 75 percent of the rain
occurs (Figure 3). Average Temperatures range between
9oC in the winter to 27oC in the summer.

Figure 3. Average rainfall and average max./min temperature
(Source:www.worldweatheronline.com)

Long-term hydrological and meteorological data are es-
sential for investigating the river flow regime. For the
Litani basin, such data are either incomplete, missing or
not available due to civil war and other logistic constraints.
In fact, the available data covers only 4 years (June 2009
- December 2013) of rainfall, temperature and river flow
daily measurements, retrieved from two distinct places:
Machghara weather station and Joub-Jannine hydrologi-
cal gauging station (Table 1).

Table 1. Machghara and Joub-Jannine stations

Name Location Measurements Duration
Station Latitude Longitude Daily basis

Machghara 33.5253 35.6468 Rainfall, Temperature 2009-2013
Joub-Jannine 33.3821 35.4648 River flow 2009-2013

During the author’s visit to Qaraoun dam, an interesting
piece of information was revealed: the director in charge
claims that the Joub-Jannine streamgage station is not
fully automated which may result in frequent gaps and
data inconsistency. However, to cover up the gaps, the op-
erators of Joub-Jannine station (upstream) acquire river
flow data from the Qaraoun reservoir (downstream) 5-6

Km away. This matter introduces non-homogeneity into
data series that was confirmed using Pettitt and Von Neu-
mann homogeneity tests. Thus, besides the uncertainties
associated with extreme events (meteorological, hydrologi-
cal and illegal activities), numerous data limitations affect
the accuracy of the results addressed in the paper, includ-
ing insufficient data and inconsistency due to the fact that
some measurements were taken from different sources. All
these factors suggest a river system with high variability.
Figure 4 shows the mean monthly river flow values with
the day-to-day variability at every month. High stream-
flow, with high variability, occurs in the wet season for the
period starting January to April and during December,
with a peak flow in February, whereas the river is almost
dry from July till October.

Figure 4. Average and standard deviations of the monthly flow -
Litani River

Based on available data, Litani River is characterized
by a strong seasonal pattern: high water flow in winter
and spring while a low discharge in summer. Further, it
possesses great inter-annual variability (Coefficient of vari-
ation: CV = 1.336 > 1) with a rather weak flow. Accord-
ing to (Leopold et al., 1995), this is mainly due to the fact
that the river follows a pluvial regime.

It was found by (Rushworth et al., 2013) that under dif-
ferent climate conditions, the influence of precipitation on
flow variability arises due to several reasons: 1- antecedent
ground wetness, 2- time-delay in rainfall caused by spatial
separation, 3- snow accumulation and melt. Therefore,
the rainfall is not the only term that induces variation in
the streamflow. In fact, by calculating the coefficient of
determination R2 of the available data, only 4.2% of the
variation in streamflow is explained by the variation of
rainfall.

Figure 5 depicts streamflow, rainfall, and temperature
of the entire data set. The following can be noticed: At
the middle of the wet season (around January), the fast re-
sponding “runoff” causes a more instantaneous response of
streamflow to rainfall. In fact, surface runoff accounts for
much of the flow during prolonged rainy periods, which
wasn’t the case at early days of the season. Fast runoff
arises when antecedent soil moisture increases to a level
where rainfall can move faster near the soil surface with-
out being absorbed. It can result in a rapid increase in flow
over a short time period. During the rainy season, runoff
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Figure 5. Daily river flow (m3/s), temperature (0C) and rainfall (mm) starting 01 Jun 2009 till 31 Dec 2013

in Litani River catchments is one of the most important
drivers of variation in flow levels (Rushworth et al., 2013).
It is affected by physical factors including soil and sub-
surface composition, surrounding land usage, evaporation,
and transpiration. However, at the early spring months, as
the weather gets warmer and the rainfall starts to tapper
off, the snowmelt becomes the main driver of the Litani
River. Starting April, the river begins to exhibit a de-
crease in flow and it continues in this manner until it dries
around June month when all the accumulated snow at the
mountains tops melts off.

In what follows, we proceed by utilizing flexible statisti-
cal methods with the aim of constructing a framework that
allows us to approximate the flow generating processes
with an attempt to identify rainfall-flow, temperature-flow
and flow-flow (present-previous flow) relationships.

3.2. Data Preprocessing and Input Selection

The available weather and streamflow measurements,
corresponding to the continuous period starting from June
2009 to December 2013, were split into two subsets: a
training data set composed of all data preceding January
2013 and a testing set formed of the remaining data.

3.2.1. Standardization/Normalization

According to (Firat, 2008), (Luna et al., 2007) and (Wu
et al., 2012) standardization is crucial in the improvement
of both Fuzzy and Auto-Regressive models. In fact, all
series presented in this paper: rainfall (P ), temperature
(T ) and river flow (Q) have periodic and seasonal compo-
nents. They were removed by standardizing the original
data through the following transformation:

zkm =
ykm − µ(m)

σ(m)
(14)

where zkm is the stationary version of the time series yk at
instant k, µ(m) is the monthly average value and σ(m) is
the monthly standard deviations.

For the standardization process of the river data, aver-
age flow was considered with the monthly values presented
in Figure 4 along with their standard deviation.

Moreover, in the course of Fuzzy System Modeling
(FSM), the model is initialized using Subtractive Cluster-
ing (SC) with spread radius ra ∈ [0, 1], Thus, it is necessary
to re-scale or normalize the trained data set within a unit
hypercube, using the formula:

Zk
norm =

zk − zmin

zmax − zmin
(15)

where Zk
norm is the normalized data at time k, zk is

the observed value, zmin and zmax are the minimum and
maximum in the data set.

3.2.2. Data Filtering via Moving Average (MA)

MA filters data by replacing each data point with the
average of the neighboring k data points, where k is the
size of the memory window. The method is based on the
idea that any large irregular component at any point in
time will exert a smaller effect if we average the point
with its immediate neighbors (Newbold et al., 2003). The
equally weighted MA is the most commonly used method,
where each value of the data carries the same weight in
the data filtering process. The k -term unweighted moving
average y∗t can be calculated by:

y∗t =
1

k

k−1∑
i=0

yt−i (16)

where t = k; ..., N .

3.2.3. Correlation analysis

One of the most important steps in the forecasting
model development process is the determination of signifi-
cant input variables. The employed statistical approach in
this study was suggested by (Sudheer et al., 2002) to iden-
tify the appropriate input vector. The method is based on
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the heuristic that the possible influencing variables, related
to different time lags, can be identified through correla-
tion analysis (Shanmuganathan and Samarasinghe, 2016).
Basically, Cross Correlation and Partial Auto-Correlation
between the variables are utilized.

Using available training data, the PACF suggests a sig-
nificant correlation at 95% confidence level up to 6 days of
river flow lag (Figure 6). One may notice that lag 6 shows
better significance than lags 4 and 5. This anomaly is
closely related to the limited data, since lag 6 had dropped
below threshold once the PACF is carried on the whole
data set (training and testing). During the transformation

Figure 6. Partial Auto-Correlation function (PACF) of Litani flow

of rainfall into streamflow, the rainfall input to the system
goes through two operators: i -“translation” in time; and
ii- “attenuation” due to the storage characteristics of the
watershed (Chow et al., 1988). The sophistication and
complexity of these two operations may explain the weak
Cross Correlation between rainfall and streamflow (Figure
7). In order to enhance the similarity between rainfall and
streamflow, (Wu et al. (2012)-Wu et al. (2009)) explored
the efficiency of various data pre-processing methods in
improving the input-output mapping of the ANN model
by filtering raw data. One of the used techniques is the
Moving Average (MA).

Figure 7. Cross-Correlation Function (CCF) between unfiltered rain-
fall and Litani flow

In this paper, the MA operation entails the window size

k in Eq. (16) to filter the raw rainfall data. A suitable k
was found by a systematic increase of k from 1 to 12, where
at every step, the filtered data is cross-correlated with the
river flow data. The targeted value of k corresponds to the
optimal zero-lag Cross-Correlation. Physically, it is known
that, Cross-Correlation measures the similarity between
two signals. Thus k was chosen in a way that reveals the
best similarity between rainfall and streamflow.

The plot in Figure 8 shows that the best zero lag correla-
tion occurs at a window size 12. Thus MA(12) is adopted
for the filtering process. It is clear that the filtered rainfall

Figure 8. Moving Average (MA) window size k versus zero lag Cross-
Correlation

data exhibits better correlation than the unfiltered one
when cross correlated with the river-flow (Figures 7, 9).
We note here that wider window size was not considered

Figure 9. Cross-Correlation Function (CCF) between filtered rainfall
and Litani flow

since the improvement in Cross-Correlation was negligi-
ble. Figure 10 exhibits the enhanced similarity between
the river flow and the filtered rainfall data.

Furthermore, the temperature (T ) and the river-flow
(Q) were also cross-correlated and the result showed a neg-
ative correlation up to lag 20 which can be interpreted as
(T ) varies in opposite sense with (Q). Therefore, (T ) is
also considered as an input in the suggested models.

3.2.4. Data Transformation

According to (Aqil et al., 2007) , networks trained on
transformed data attain better performance. In this pa-
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Figure 10. Daily river flow (m3/s), rainfall (mm) and filtered rainfall (mm) starting 01 Jun. 2009 till 31 Dec. 2013.

per, a log transformation has been considered to bring the
observed data as much as possible to resemble a normal
distribution. The log transformation is performed on each
input and output variable independently, using the follow-
ing equation:

Y = a log10(X + b) (17)

The forecasted results are then back-transformed using the
inverse transformation:

X = 10Y/a − b (18)

Where a and b are arbitrary constants.
The coefficients a and b of (17) are obtained on trial-and
error basis, until the data follow a normal distribution. For
a = 0.5 and b = 1, the descriptive statistics of the entire
data is shown in Table 2.

Table 2. Statistical properties of raw and logarithmic transformed
daily data

Daily Rainfall [mm]

Dataset Entire Entire Training Testing
(Observed) (transformed) (transformed) (transformed)

Statistics (2009-2013) (2009-2013) (2009-2012) (2013)
Mean 2.993 0.092 0.098 0.070
St. Deviation 10.797 0.213 0.223 0.170
Skewness 5.262 2.485 2.405 2.653
Kurtosis 32.578 5.171 4.681 6.143
CV 3.608 2.320 2.282 2.417

Smoothed Daily Rainfall [mm]

Mean 2.985 0.175 0.189 0.125
St. Deviation 5.268 0.211 0.221 0.157
Skewness 2.253 1.016 0.909 1.222
Kurtosis 4.985 -0.288 -0.581 0.446
CV 1.765 1.203 1.170 1.263

Daily River flow [m3/s]

Mean 7.463 0.318 0.314 0.329
St. Deviation 9.973 0.253 0.255 0.244
Skewness 1.670 0.402 0.428 0.312
Kurtosis 2.926 -1.283 -1.296 -1.215
CV 1.336 0.796 0.812 0.741

It can be noticed from Table 2 that the statistical indica-
tors: standard deviation, skewness and kurtosis show high
values for observed data. After the logarithmic transfor-
mation, these indicators were reduced significantly. How-
ever, regarding the temperature, the skewness and kurtosis

were relatively small. Thus, in this study, there is no need
to consider data transformation for the temperature.

3.2.5. Input Selection

This paper aims modeling river flow process by AR
and FSM models by using recorded rainfall, temperature
and streamflow data. Based on the graphical interpre-
tation of PACF and CCF, several input combinations of
river flow, rainfall and temperature were examined in the
modeling process. The input pattern considers both past
and present precipitations (..., Pt−2, Pt−1, Pt) and tem-
peratures (..., Tt−2, Tt−1, Tt) but only past stream data
(...Qt−3, Qt−2, Qt−1) for the river flow. The output corre-
sponds to the present river flow (Qt), where the subscript
t represents the time step. As a consequence, different in-
put combinations of Q, P and T data were constructed
and listed in Table 3.

Table 3. Model Structure: input-output configuration

Model Input structure Output

AR Qt−1, Qt−2, ..., Qt−7 Qt

C-FSM Qt−1, Qt−2, ..., Qt−7, Pt, Pt−1, Tt, Tt−1 Qt

C-FSM MA Qt−1, Qt−2, ..., Qt−7, Pt, Pt−1, ..., Pt−8, Tt, Tt−1 Qt

Another major input that needs to be identified in the
Fuzzy modeling is the cluster radius. We recall that the
radius specifies the range of influence of the cluster cen-
ter on each input-output point. Knowing that the cluster
radius falls within the unit hypercube, a smaller cluster
radius yields an increase in clusters and thus a greater
number of rules which will increase the model’s complex-
ity. However (Velasquez and Palade, 2013) suggests that,
the best value for a given radius is usually between 0.2 and
0.5, so the clustering radius is identified through a trial and
error procedure by varying the cluster radius from 0.2 to
0.5 with an increment of 0.01 to get the best performance
during the calibration phase.
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4. Results and Discussions

4.1. Performance Metrics

Models performance and testing were conducted consid-
ering the Root Mean Square Error (RMSE-[m3/s]), Mean
Absolute Error (MAE-[m3/s]) and the Mass Curve Coef-
ficient (E) defined by the following equations:

RMSE =

√
n∑

i=1
(ŷk−yk)2

n (19)

MAE = 1
n

n∑
i=1

∣∣ŷk − yk∣∣ (20)

E =

n∑
i=1

(yk−y)2−
n∑

i=1
(yk−ŷk)2

n∑
i=1

(yk−y)2
(21)

4.2. Some Tweaks

For the sake of being fair with all Fuzzy models, a cali-
bration phase was considered and performed on one month
data (December 2012). Since FSM is sensitive to the num-
ber of clusters; the best radius ra, that corresponds to the
optimal efficiency E for 1 day lead forecast, is achieved by
varying it from 0.2 to 0.5 with an increment of 0.01 and
limiting the number of clusters between 2-8 to avoid over
fitting (Nayak and Sudheer, 2008).

Table 4 displays different scenarios with the utilized data
processing method and the optimization algorithm. Fur-
ther it presents, in case of Fuzzy modeling, the used clus-
ter radius (obtained during calibration) and whether the
model is coupled with an Adding Operator (Luna et al.,
2007).

Table 4. AR, C-FSM and C-FSM MA Models

Scenario Data Pre-processing Optimization Algorithm

AR(7) Std Yule-Walker

Expectation-Maximization
Group SC→ ra Cluster no AO

1 C-FSM 1 Std/Norm 0.36 7 No
C-FSM MA 1 MA/ Std/ Norm 0.47 4 No

2 C-FSM 2 Std/Norm 0.36 7 Yes
C-FSM MA 2 MA/ Std/ Norm 0.47 4 Yes

3 C-FSM 3 Dtrans / Std/ Norm 0.37 7 No
C-FSM MA 3 MA/ Dtrans/ Std/ Norm 0.36 8 No

4 C-FSM 4 Dtrans / Std/ Norm 0.37 7 Yes
C-FSM MA 4 MA/ Dtrans/ Std/ Norm 0.36 8 Yes

Std: Standardization, Norm: Normalization, Dtrans:
Data Transformation, MA: Moving Average, SC:
Subtractive Clustering, AO: Adding Operator

Regarding normality, (Huamani et al., 2011) asserted
that the data have to be normally distributed before the
model coefficients can be estimated, while (Mehmmet,
2009) claimed that the normality assumption is not restric-
tive and good results can be obtained by using real world
observations directly. In the current application, this issue
is investigated by comparing performance of the models

developed on transformed (into the normal domain) and
non-transformed data.

With respect to (George and Mallery, 2010), skewness
and kurtosis values lying between -2 and +2 are consid-
ered acceptable in order to prove normal univariate dis-
tribution. Thus, after the transformation (Table 2), the
smoothed rainfall and streamflow data satisfy the claim of
(George and Mallery, 2010) concerning normality. On the
other hand, the raw rainfall data was pushed as much as
possible to match a normal distribution.

4.3. Obtained results

Table 5 shows the performance metrics of 12 prediction
horizons for the 9 scenarios carried in the real world (i.e.
results were restored to the original space). After fitting
the historical flow data to the benchmark AR model of
order 7, it shows, for all lead days, the poorest forecast-
ing among the other models. This is due to the fact that
AR models are unlikely able to capture any nonlinear de-
pendency. Whereas, the performance of the Fuzzy models
accompanied with different pre-processing techniques were
more useful for detecting nonlinearities in the streamflow.

Furthermore, due to estimation errors of the previous
steps that are fed into the input pattern for the next
step ahead, one can notice from observing the perfor-
mance indices of all scenarios a decreasing trend in the
Mass Curve Coefficient (E) and an increase in the Root
Mean Square Error (RMSE) and the Mean Absolute Er-
ror (MAE). Based on the obtained results, the models ef-
ficiency (E) in explaining the hydrological process range
between 54.4% and 89%.

4.3.1. Effect of data transformation on model performance

For 12 days lead, the AR(7) model gave a RMSE of
6.668 m3/s, the C-FSM 1 model with un-transformed in-
puts gave RMSE of 4.924 m3/s, i.e. a reduction of 26.15%
versus AR. However, the C-FSM 3 model with transformed
inputs reduces the RMSE by 30.31% with an improvement
of 4.16% more than C-FSM 1 model. In a way, this result
supports the claim of (Mehmmet, 2009) that using un-
transformed data can still provide good results. In gen-
eral, results presented in Table 5 showed that the C-FSM
3 model whose inputs are transformed are more accurate
(in terms of the Mass Curve Coefficient E) than C-FSM 1,
where it emerges as a better performer for most lead days.

On the other hand, C-FSM 4 did not exhibit a clear
better performance than C-FSM 2, neither did C-FSM 2.
Apparently, the adding operator didn’t work well for both
models with transformed and un-transformed inputs.

4.3.2. Impact of (MA) filter on model performance

Upon using the (MA) filter, a significant observation
was obtained. The coefficient of determination R2 of the
sub-series joining the filtered rainfall and the river flow
indicates a value of 0.2786. That is, 27.86% of the vari-
ability in river flow is explained by that of the filtered
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Table 5. Performance measures of forecasting daily river flow for a horizon h varying from 1 to 12

Horizon [h]

Scenario Performance index 1 2 3 4 5 6 7 8 9 10 11 12

AR(7) 3.454 3.700 4.075 4.192 5.003 5.240 4.811 4.633 4.862 5.094 5.034 6.668
C-FSM 1 3.377 4.276 4.623 5.206 4.687 4.950 4.523 5.099 4.564 4.912 4.640 4.924
C-FSM MA 1 3.349 3.534 3.868 3.763 4.987 4.491 4.637 4.373 4.640 4.754 4.827 5.774
C-FSM 2 RMSE 3.346 4.283 4.615 5.184 4.510 4.985 4.777 5.040 4.708 5.060 4.822 5.125
C-FSM MA 2 [m3/s] 3.301 3.486 3.816 3.698 4.899 4.625 4.213 4.181 4.644 4.913 4.948 4.960
C-FSM 3 3.324 3.413 3.717 3.613 4.941 4.183 4.455 4.471 4.995 5.063 5.119 4.647
C-FSM MA 3 3.344 3.496 3.823 3.722 4.891 4.351 4.448 4.281 4.807 4.885 4.979 5.127
C-FSM 4 3.352 4.178 3.691 3.527 5.020 4.371 4.831 4.585 5.360 5.297 5.354 4.715
C-FSM MA 4 3.348 3.433 3.632 3.474 4.885 3.757 4.203 4.203 4.807 4.798 5.054 4.350

AR(7) 0.951 1.203 1.458 1.524 1.824 1.957 1.939 1.961 1.916 2.090 2.046 2.695
C-FSM 1 0.924 1.260 1.438 1.743 1.759 1.786 1.743 2.160 1.873 2.048 1.745 1.801
C-FSM MA 1 0.917 1.156 1.369 1.403 1.751 1.760 1.804 1.826 1.821 1.880 1.887 2.412
C-FSM 2 MAE 0.928 1.291 1.409 1.762 1.727 1.833 1.923 2.213 1.970 2.240 1.950 2.136
C-FSM MA 2 [m3/s] 0.907 1.138 1.347 1.379 1.767 1.764 1.658 1.722 1.804 2.027 1.954 2.227
C-FSM 3 0.842 1.031 1.241 1.285 1.715 1.540 1.700 1.715 1.818 1.965 1.887 1.943
C-FSM MA 3 0.884 1.110 1.326 1.368 1.734 1.673 1.753 1.746 1.812 1.900 1.867 2.168
C-FSM 4 0.841 1.229 1.289 1.301 1.783 1.620 1.834 1.799 2.053 2.209 2.198 1.973
C-FSM MA 4 0.898 1.122 1.264 1.311 1.788 1.482 1.725 1.705 1.800 1.831 1.922 1.870

AR(7) 0.878 0.860 0.830 0.820 0.743 0.719 0.763 0.780 0.758 0.734 0.740 0.544
C-FSM 1 0.888 0.820 0.791 0.734 0.784 0.762 0.799 0.747 0.797 0.765 0.789 0.764
C-FSM MA 1 0.885 0.872 0.847 0.855 0.745 0.796 0.780 0.806 0.782 0.771 0.762 0.663
C-FSM 2 0.890 0.820 0.791 0.736 0.800 0.758 0.776 0.753 0.784 0.751 0.772 0.744
C-FSM MA 2 E 0.888 0.876 0.852 0.860 0.754 0.783 0.819 0.823 0.781 0.755 0.750 0.751
C-FSM 3 0.887 0.881 0.858 0.866 0.750 0.821 0.797 0.795 0.744 0.737 0.731 0.779
C-FSM MA 3 0.885 0.875 0.850 0.858 0.755 0.806 0.797 0.812 0.763 0.755 0.746 0.731
C-FSM 4 0.885 0.821 0.860 0.873 0.742 0.804 0.761 0.785 0.706 0.712 0.706 0.772
C-FSM MA 4 0.885 0.879 0.865 0.876 0.755 0.855 0.819 0.819 0.763 0.764 0.738 0.806

rainfall. Therefore, the explained variability has increased
from 4.18% to 27.86% when using filtered instead of raw
rainfall data. This can be interpreted by the fact that,
Moving Average contains within a “memory” that has the
ability to record, to a certain extent, the variation caused
by snow melt and antecedent ground wetness resulted from
previous precipitations. Thus (MA) didn’t just remove the
noise but it has improved the explained variance by more
than 27%.

The impact of the (MA) filter on the performance of
the C-FSM model is described as follows: each of the three
models C-FSM MA 1, C-FSM MA 2 and C-FSM MA 4 ex-
hibits a noticeable prediction efficiency in many lead days
in terms of RMSE, MAE and E compared with C-FSM 1,
C-FSM 2 and C-FSM 4. But the remarkable performance
is achieved by C-FSM MA 4 that shows almost the low-
est RMSE, the lowest MAE and the highest E. Figure 11
shows the time series plot for 1, 4, 9 and 12 days ahead
forecast associated with C-FSM MA 4 model. During the
beginning and the end of the wet season (October, Novem-
ber, December and March, April, June), the flow variabil-
ity is low and the model shows a noticeable fit with the
actual flow. However, it wasn’t the case during January
and February months.

Furthermore, the actual flow is characterized with a very
sharp spike (12 Jan. 2013). This can be interpreted as an
anomaly in the observation due to inaccurate measure-
ments and can’t be considered as a flood for two main
reasons:

� The accumulated rainfall, a week before the spike oc-
currence date, was only 21 mm, and

� The average temperature during this week was below
6.5 degrees Celsius.

These two reasons are not enough to produce a sudden
elevation in the river flow from 20 m3/s to 71 m3/s based
on previous observations (Figure 5).

Besides inaccurate measurements, the river flow forecast
is disrupted by vast sources of noise due to: illegal activi-
ties previously mentioned (International Resources Group
(IRG), 2012), some meteorological conditions (wind, evap-
oration, irradiance, etc.) and urbanization. All these fac-
tors distort the accuracy of the river flow model and cause
a decrease in the forecasting precision. To reduce the noise
effect, one can consider different noise filters. However, for
the mentioned sources of distortion, quantitative data is
not available. Thus, the attention is turned to the noise ex-
isting within the rainfall data and (MA) filter. In this case,
the Noise to Signal ratio (Jayawardena and Gurung, 2000)
was calculated for the two time series (12 days ahead) C-
FSM 4 and the denoised one C-FSM MA 4. The obtained
respective values were 0.48 and 0.44. Hence, the MA filter
applied to rainfall has reduced the noise in the streamflow
time series by 8.33% . This percentage is an acceptable
value bearing in mind the scarcity of noise sources data.
Furthermore, some people claim that filtering may remove
noise as well as variability. Therefore, it might not be a
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Figure 11. C-FSM MA 4 river flow estimates (a) 1 day (b) 4 days (c) 9 days (d) 12 days ahead along with the observed flow for Litani River
over the testing period (1 January - 31 December, 2013)

good choice for daily streamflow forecasts. In fact, this
issue is explained and discussed in the next paragraph.

Although, the performance of C-FSM MA 4 model was
more than satisfactory with an efficiency reaching 80.6%
for the 12 days ahead forecast. The model was also able
to explain 84.27% of the actual river flow variability. The
C-FSM MA 4 model managed to reproduce the day-to-
day variability almost within naturally occurring ranges by
taking the “memory” advantage of (MA) filter. Whereas,
the C-FSM 4 model that was fed with unfiltered rainfall
could capture 79.52 % only.

Further, the nonlinearity of streamflow processes is also
investigated. (Brock et al., 1996) introduced a test for
the existence of nonlinearity in streamflow processes. It
is found that the shorter the time-scale, the stronger the
nonlinearity. All annual series are linear, whereas all
daily streamflow processes are strongly nonlinear. Look-
ing backward to the linear benchmark model, the Auto-
Regressive time series forecast was correlated with the
original river flow. It revealed that, for 12 days ahead
forecast, the coefficient of correlation is 0.86, which means
that nonlinear identification was difficult and the AR, as
expected, manifests not much of accurate results. How-
ever, regarding C-FSM MA 4 model, the coefficient of cor-
relation between the observed and the forecasted flows for
12 days lead is equal to 0.92. Thus, this model is more
competent in capturing the nonlinearity in river flows at
different lead days.

Figure 12 shows the scatter plot of both the observed
and the predicted flows obtained by using the C-FSM MA
4 model on the testing period for 12 days lead. The line
y = x represents the perfect fit case when the predicted
and the observed river flows are equal. In fact, the reader

can notice that, along the line y = x, a tight dispersion for
the low flows and a wide one for the high flows (within the
circle). Thus, based on the data distribution for high and
low flows, the forecasting model showed a good prediction
accuracy for the low values of the flow but it was unable
to maintain the same accuracy for the high values.

Figure 12. Observed versus predicted river flow for the testing period:
01 Jan. till 31 Dec. 2013

In general, models performance in reproducing and in-
ferring river flow for the testing year were more than sat-
isfactory, given the limitations descending especially from
the quality and quantity of the historical observations. If
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somehow, an advanced data acquisition system was in-
stalled on the river’s site, it will have the ability to obtain
more accurate and reliable meteorological and hydrological
measurements. Thus by sweeping off uncertainties related
to missing or inaccurate observations, the models would
have delivered even better results. Further, reliable and
longer climate and discharge measurements would have
allowed a proper training and testing of the model per-
formance. The data scarcity did not allow to account
for other sources of uncertainty, such as factors related
to climate change and urbanization. However, the C-FSM
models proved to be accurate enough to provide plausi-
ble results and a reasonable agreement with the observed
streamflow. Thus, they were robust enough to be used in
a situation where data possess a certain level of hetero-
geneity.

5. Conclusion

In this paper, a comparative study was presented between

Auto-Regressive (AR), Constructive Fuzzy System Modeling

(C-FSM) and the Constructive Fuzzy System Modeling cou-

pled with Moving Average (C-FSM MA) methods for multi-

step-ahead daily river flow time series forecasting. For achiev-

ing this objective, the Litani River - Lebanon was selected as

a case study. The suggested models with different inputs vari-

ables were trained and tested. Then the results were compared

and evaluated using three statistical indicators (RMSE, MAE,

and E). Despite the scarcity, heterogeneity and non-normality

of meteorological-hydrological data aside with uncertainties in-

herited from illegal activities reported along the river, due to

factors like urbanization and industrialization, the outcomes

of the C-FSM and C-FSM MA models came very satisfactory.

Furthermore, the Moving Average filter had provided a sup-

portive tool during fuzzy modeling. It didn’t just reduce the

noise inherent within rainfall data but it has also preserved the

streamflow variability due to rainfall. Overall, the analysis pre-

sented in this study provides that, a variant of the C-FSM MA

model had shown a better accuracy over the rest of the models

in the river flow forecasting.

Although, the available data suffers from different types of

drawbacks, the data driven models based on constructive fuzzy

system modeling was successfully applied to establish river flow

with plausible performance. These results motivate the authors

to adopt the methods suggested in this paper for generating fu-

ture streamflow scenarios as a part of short-term hydropower

operation scheduling. The time series forecast will help in find-

ing the optimal operation policy at different stages through

right discharge decisions.
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