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Abstract

This paper proposes a subspace decomposition method based on an over-complete dictionary in sparse
representation, called “sparse signal subspace decomposition” (or 3SD) method. This method makes use of a novel
criterion based on the occurrence frequency of atoms of the dictionary over the data set. This criterion, well adapted
to subspace decomposition over a dependent basis set, adequately reflects the intrinsic characteristic of regularity of
the signal. The 3SD method combines variance, sparsity, and component frequency criteria into a unified framework.
It takes benefits from using an over-complete dictionary which preserves details and from subspace decomposition
which rejects strong noise. The 3SD method is very simple with a linear retrieval operation. It does not require any
prior knowledge on distributions or parameters. When applied to image denoising, it demonstrates high
performances both at preserving fine details and suppressing strong noise.

Keywords: Subspace decomposition, Sparse representation, Frequency of components, PCA, K-SVD, Image denoising

1 Introduction
Signal subspace methods (SSMs) are efficient techniques
to reduce the dimensionality of data and to filter out noise
[1]. The fundamental idea under SSM is to project the data
on a basis made of two subspaces, one mostly contain-
ing the signal and the other the noise. The two subspaces
are separated by a thresholding criterion associated with
some measures of information.
The two most popular methods of signal subspace

decomposition are wavelet shrinkage [2] and principal
component analysis (PCA) [3]. Both techniques have
proved to be quite efficient. However, wavelet decompo-
sition depending on signal statistics is not equally adapted
to different data and requires some knowledge on prior
distributions or parameters of signals to efficiently choose
the thresholds for shrinkage. A significant advantage of
the PCA is its adaptability to data. The separation crite-
rion is based on energy which may be seen as a limitation
in some cases as illustrated in the next section.

*Correspondence: hongsun@whu.edu.cn
1School of Electronic Information, Wuhan University, Luojia Hill, Wuhan
430072, China
2Signal and Image Processing Department, Telecom ParisTech, 46 rue Barrault,
75013 Paris, France
Full list of author information is available at the end of the article

In recent years, sparse coding has attracted significant
interest in the field of signal denoising [4]. A sparse rep-
resentation is a decomposition of a signal on a very small
set of components of an over-complete basis (called dic-
tionary) which is adapted to the processed data. A difficult
aspect for signal subspace decomposition based on such
a sparse representation is to define the most appropri-
ate criterion to identify the principal components (called
atoms) from the learned dictionary to build the principal
subspace. The non-orthogonal property of the dictionary
does not allow to use the energy criterion for this purpose,
as done with PCA.
To solve this problem, we introduce a new criterion to

measure the importance of atoms and propose a SSM
under the criterion of the occurrence frequency of atoms.
We thus make benefit both from the richness of over-
complete dictionaries which preserves details of infor-
mation and from signal subspace decomposition which
rejects strong noise.
The remainder of this paper is organized as follows:

Section 2 presents two related works to signal decomposi-
tion. Section 3 introduces the proposed sparse signal sub-
space decomposition based on the adaptive over-complete
dictionary. Some experimental results and analysis are
presented in Section 4. Finally, we draw the conclusion in
Section 5.
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2 Review of PCA and sparse codingmethods
We start with a brief description of two well-established
approaches to signal decomposition that are relevant and
related to the approach proposed in the next section.

2.1 PCA-based subspace decomposition
The basic tool of SSM is principal component analysis
(PCA). PCA makes use of an orthonormal basis to cap-
ture on a small set of vectors (the signal subspace) as much
energy as possible from the observed data. The other basis
vectors are expected to contain noise only, and the signal
projection on these vectors is rejected.
Consider a data set

{
xm ∈ R

N×1}M
m=1 grouped in a

matrix form X of size N × M: X = {xm}Mm=1. The PCA
is based on singular value decomposition (SVD) with
singular values σi in descending order obtained from:

X = UA = U�VT (1)

where U and V are unitary matrices of sizes N × N and
M × M, respectively

(
UTU = IN ,VTV = IM

)
, and � =[

diag [σ1, · · · , σr] , 0
0

]
of sizeN×M with σ1 ≥ σ2 ≥ · · · ≥

σr > 0, {σi}ri=1 are positive real known as the singular
values of X with rank r (r ≤ N).
Equation (1) can be rewritten in a vector form as:

[x1 x2 · · · xm · · · xM]
= [u1 u2 · · ·un · · ·uN ] . [α1 α2 · · ·αm · · ·αM]

(2)

where U = {
un ∈ R

N×1}N
n=1 and A = {

αm ∈ R
N×1}M

m=1.
Equation (2) means that the data set {xm}Mm=1 is expressed
on the orthonormal basis {un}Nn=1 as {αm}Mm=1.
In the SVD decomposition given in Eq. (1), the standard

deviation σi is used as themeasurement for identifying the
meaningful basis vector ui. PCA takes the first P(P < r)
components {un}Pn=1 to span the signal subspace, and the
remainders {un}rn=P+1 are considered in a noise subspace
orthogonal to the signal subspace. Therefore, projection
on the signal subspace will hopefully filter out noise and
reveal hidden structures. The reconstructed signal ŜPCA
of size N × M is obtained by projecting in the signal
subspace as:

ŜPCA = [u1 · · ·uP 0P+1 · · · 0N ] . [α1 α2 · · ·αm · · ·αM]
(3)

The underlying assumption is that information in the
data set is almost completely contained in a small lin-
ear subspace of the overall space of possible data vectors,
whereas additive noise is typically distributed through the
larger space isotropically. PCA, using the standard devi-
ation as a criterion, implies that the components of the
signal of interest in the data set have a maximum variance

and the other components are mainly due to the noise.
However, in many practical cases, some components with
low variances might actually be important because they
carry information relative to the signal details. On the
contrary, when dealing with noise with non-Gaussian
statistics, it may happen that some noise components may
actually have higher variances. At last, note that it is often
difficult to provide a physical meaning to the orthonormal
basis {ui}ri=1 of the SVD decomposition (Eq. (2)) although
they have a very clear definition in the mathematical
sense as orthogonal, independent, and normal. It is there-
fore difficult to impose known constraints on the signal
features when they exist after the principal component
decomposition.

2.2 Sparse decomposition
Recent years have shown a growing interest in
research on the sparse decomposition of M obser-
vations

{
xm ∈ R

N}M
m=1 based on a dictionary

D = {dk}Kk=1 ∈ R
N×K . When K > N , the dictionary is

said to be over-complete. dk ∈ R
N is a basis vector, also

called an atom since it is not necessarily independent. By
learning from data set {xm}Mm=1, the sparse decomposition
is the solution of Eq. (4) [4]:

{D,αm} = argmin
D,αm

‖ αm ‖0

+ ‖ Dαm − xm ‖22≤ ε, 1 ≤ m ≤ M
(4)

where αm = [αm(1) αm(2) . . . αm(K)]T ∈ R
K×1 is the

sparse code of the observation xm. The allowed error
tolerance ε can be chosen according to the standard devi-
ation of the noise. An estimate of the underlying signal
{sm}Mm=1 embedded in the observed data set {xm}Mm=1
would be:

[
ŝ1 ŝ2 · · · ŝm · · · ˆsM

]

= [d1 d2 · · ·dk · · ·dK ] . [α1 α2 · · ·αm · · · αM]

or equivalently Ŝ = DA
(5)

where the matrixA of size K×M is composed ofM sparse
column vectors αm.
The first term on the right side of Eq. (4) is a sparsity-

inducing regularization that constrains the solution with
the fewest number of nonzero coefficients in each of the
sparse code vectors αm(1 ≤ m ≤ M). The underlying
assumption is that a meaningful signal could be repre-
sented by combining few atoms. This learned dictionary
adapted to sparse signal descriptions has proved to be
more effective in signal reconstruction and classification
tasks than the PCA method, which is demonstrated in the
next section. The second term in Eq. (4) is the residual
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of the reconstruction, based on the mean-square recon-
struction error estimate in the same way as in the PCA
method.
On the other hand, we note that the dictionary D, a

basis in sparse decomposition, is produced by learning
noisy data set {xm}Mm=1, so the basis vectors {dk}Kk=1 should
be decomposed into a principal subspace and a residual
subspace. However, it is impossible to exploit an energy-
constrained subspace since {dk}Kk=1 are not necessarily
orthogonal or independent.

3 The proposed sparse subspace decomposition
In this section, we introduce a novel criterion to the
subspace decomposition over a learned dictionary and a
corresponding index of significance of the atoms. Then
we propose a signal sparse subspace decomposition (3SD)
method under this new criterion.

3.1 Weight vectors of learned atoms
At first, we intend to find out the weight of the atoms. In
the sparse representation given in (5), coefficient matrix
A is composed by M sparse column vectors αm, each αm
representing the weight of the observation xm, a local
parameter for the m-th observation. Let us consider the
row vectors {βk}Kk=1 of coefficient matrix A :

A = [α1 α2 · · · αM]

=

⎡

⎢⎢⎢
⎣

α1(1) α2(1) · · · αM(1)
α1(2) α2(2) · · · αM(2)
...

...
. . .

...
α1(K) α2(K) · · · αM(K)

⎤

⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎣

β1
β2
...
βK

⎤

⎥⎥⎥
⎦

where βk = [α1(k) α2(k) . . . αM(k)] ∈ R
1×M

(6)

Note that the row vector βk is not necessarily sparse.
Then Eq. (5) can be rewritten as:

Ŝ = DA

= [d1 · · ·dk · · ·dK ] .
[
βT
1 · · ·βT

k · · ·βT
K

]T (7)

Equation (7) means that the row vector βk is the weight
of the atom dk , which is a global parameter over the data
set X. Denoting ‖βk‖0 the �0 zero pseudo-norm of βk .
‖βk‖0 is the number of occurrences of atom dk over the
data set {xm}Mm=1. We call it the frequency of the atom dk
denoted by fk :

fk � Frequency(dk|X) = ‖βk‖0 (8)

In the sparse decomposition, basis vectors {dk}Kk=1 are
prototypes of signal segments. That allows us to take them

as a signal patterns. Thereupon, some important features
of this signal pattern could be considered as a criterion to
identify significant atoms. It is demonstrated [5] that fk is a
good description of the signal texture. Intuitively, a signal
pattern must occur in meaningful signals with higher fre-
quency even with a lower energy. On the contrary, a noise
pattern would hardly be reproduced in observed data even
with a higher energy.
It is reasonable to take this frequency fk as a relevance

criterion to decompose the over-complete dictionary into
a principal signal subspace and a remained noise subspace.
Here, we use the word “subspace,” but in fact, these two
subspaces are not necessarily independent.

3.2 Subspace decomposition based on over-complete
dictionary

Taking vectors {βk}Kk=1, we calculate their �0-norms
{‖βk‖0}Kk=1 and rank them in descending order as follows.
The index k of vectors {βk}Kk=1 are belonging to the set
C = {1, 2, · · · , k, · · · ,K}. A one-to-one index mapping
function π is defined as:

π(C → C) : k = π(k̃), k, k̃ ∈ C
s.t. ‖βπ(1)‖0≥‖βπ(2)‖0 ≥ · · · ≥‖β

π(k̃)‖0 ≥ · · · ≥‖βπ(K)‖0
(9)

By the permutation π of the row index k of matrix A =
[
βT
1 · · ·βT

k · · ·βT
K

]T
, the reordered coefficient matrix Ã

becomes

Ã =
[
βT

π(1) βT
π(2) · · ·βT

π(k) · · ·βT
π(K)

]T
(10)

With corresponding reordered dictionary D̃ = {dπ(k)}Kk=1,
Eq. (7) can be written as:

Ŝ = D̃Ã

= [
dπ(1) · · ·dπ(k) · · ·dπ(K)

]
.
[
βT

π(1) · · ·βT
π(k) · · ·βT

π(K)

]T

(11)

Then, the span of the first P atoms can be taken as a
principal subspace D(S)

P , and the remaining atoms span a
noise subspace D(N)

K−P as:

D(S)
P = span{dπ(1),dπ(2), · · · ,dπ(P)}

D(N)
K−P = span{dπ(P+1),dπ(P+2), · · · ,dπ(K)}

(12)

An estimate ŜP of the underlying signal S embedded in
the observed data set X can be obtained on the principal
subspace D(S)

P simply by linear combination:
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ŜP = D(S)
P .A(S)

P

= [
dπ(1) · · ·dπ(k) · · ·dπ(P)

]
.
[
βT

π(1) · · ·βT
π(k) · · ·βT

π(P)

]T

(13)

3.3 Threshold of atom’s frequency
Determining the number P of atoms spanning the signal
subspace D(S)

P is always a hard topic especially for wide-
band signals. Here, P is the threshold of atom’s frequency
fk to distinguish a signal subspace and a noise subspace.
One of the advantages of 3SD is that this threshold P can
be easily chosen without any prior parameter.
For a noiseless signal even with some weak details, such

as the image example in Fig. 1a, the atoms’ frequencies
f image
π(k) s shown in Fig. 1d (in black line) are almost always
high except the zero value. For a signal with strong noise,
such as the example in Fig. 1b, the atoms’ frequencies
f noise
π(k) s shown in Fig. 1d (in red line) are almost always
equal to 1 without zero and very few with a value 2 or 3. It
is easy to set a threshold P of fk (dotted line in the Fig. 1d)
to separate the signal’s atoms from the noise’s atoms. By
contrast, using the values of atom’s energies ‖βk‖2s for the
two images shown in Fig. 1c, it is rather a puzzle to identify
principal bases.
For a noisy signal, such as an image example in Fig. 2a,

its adaptive over-complete dictionary (Fig. 2b) consists
of atoms of principal signal patterns, strong noise pat-
terns, and noisy signal patterns. Principal signal atoms
should have higher frequencies, strong noise atoms lower
frequencies and noisy signal atoms moderate frequen-
cies. Intuitively, the red line (Fig. 2c) should be a suitable
threshold P of the frequencies fks. In practical implemen-
tation, the value of P could be simply decided relying on
the histogram of fk . As shown in Fig. 2d, one can set

the value of fk associated with the maximum point of its
histogram to P as follows:

P = arg max Hist
k

(‖βk‖0) (14)

In fact, the performances in signal analyses by 3SD
method are not sensitive to the threshold P, owed to the
dependence of the atoms. To illustrate this point, we take
three images, Barbara, Lena, and Boat. Their histograms
of fk are shown in Fig. 3a with the maximum points in dot-
ted lines, 121, 97, and 92, respectively. Figure 3b reports
the peak signal-to-noise ratio (PSNR) of the retrieved
images ŜP on the signal principal subspace D(S)

P with
respect to P. We can see that the PSNRs of the results
remain the same in a large range around the maximum
points (in dotted lines). Consequently, taking the value of
fk associated to the maximum point of its histogram as the
threshold P is a reasonable solution.

4 Results and discussion
4.1 Signal decomposition methods
Taking a part of the noisy Barbara image (Fig. 4a), we show
an example of the sparse signal subspace decomposition
(3SD) and the corresponding retrieved image (Fig. 4b). For
comparison, the traditional sparse decomposition and the
PCA-based subspace decomposition are shown in Fig. 4c, d.
We use the PSNR to assess the noise removal perfor-

mance:

PSNR = 20 · log10
[
MAX{S(i, j)}] − 10 · log10 [MSE]

MSE = 1
IJ

∑I−1

i=0

∑J−1

j=0

[
S(i, j) − Ŝ(i, j)

]2

(15)

Fig. 1 Sparse signal subspaces with criterion of atom’s frequency. a Image with details. bWhite noise. c �2-norm of βk . d �0-norm of βk
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Fig. 2 The threshold P of the frequencies fks. a Noisy image. b Over-complete dictionary D. c Frequency of dk . d Histogram of dk ’s frequency

and the structural similarity index metric (SSIM) between
the denoised image and the pure one to evaluate the
preserving detail performance:

SSIM(S, Ŝ) = (2uSuŜ + c1)(2σSŜ + c2)(
u2S + u2

Ŝ
+ c1

) (
σ 2
S + σ 2

Ŝ
+ c2

) (16)

where ux is the average of x, σ 2
x is the variance of x, σxy is

the covariance of x and y, and c1 and c2 are small variables
to stabilize the division with a weak denominator.

Let us look at the proposed sparse signal subspace
decomposition on the top of Fig. 4b. The 128 atoms dks
of the learned over-complete dictionary D are shown in
descending order of their energies measured by ‖βk‖2.
The 32 principal signal atoms are chosen from the dic-
tionary D under the frequency criterion. They are shown
in descending order of their frequencies measured by
‖βk‖0 composing a signal subspace D(S)

32 . We can see
that some of the principal atoms are not among the first
32 atoms with the largest energy in the over-complete

Fig. 3 The insensitivity of the threshold P. a Histograms of fk . b PSNR of ŜP with respect to P
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Fig. 4 Signal decompositions. a Image sample. b Sparse Subspace decomposition. c Sparse decomposition. d Subspace decomposition

dictionary D. The retrieved images are shown at the bot-
tom of Fig. 4b. The image S on D is apparently denoised.
The image Ŝ on the signal subspace D(S)

32 improves

obviously by preserving fine details with a high SSIM =
0.86 and at suppressing strong noise with a high PSNR =
36.41. On the other hand, the residual image on noise
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subspaceD(N)
96 contains some very noisy information. This

is because the atoms of the over-complete dictionary are
not independent.
For the same example, the classical sparse decompo-

sition is shown in Fig. 4c, using the K-SVD algorithm
[6] in which the allowed error tolerance ε (in Eq. (4))
is set to a larger value to filter out noise. The retrieved
image S has a high PSNR = 29.62, but it has obvi-
ously lost the weak information with SSIM = 0.82.
This is because signal distortion and residual noise can-
not be minimized simultaneously at dictionary learning
by Eq. (4).
In another comparison, the PCA-based subspace

decomposition is shown in Fig. 4d. The 64 components
are orthonormal and the 32 principal components are of
the largest variance. The retrieved image by projecting on
the signal subspace is rather noisy with PSNR = 29.62.
This is because it cannot suppress strong noise and pre-
serve weak details of information only using the variance
criterion.

4.2 Application to image denoising
The application of 3SD to image denoising is presented
here. A major difficulty of denoising is to separate the
underlying signal from the noise. The proposed 3SD
method could win this challenge. In the 3SD method,
the important components are selected from the over-
complete dictionary relying on their occurrence number
over the noisy image set. Evidently, the occurrence num-
bers would be large for the signal, even for weak details,
such as edges or textures. On the other hand, the occur-
rence numbers would be low for different kinds of white
Gaussian or non-Gaussian noises, even strong at intensity.
The 3SD algorithm for image denoising is presented as

follows:
Input: Noisy image X
Output: Denoised image Ŝ

- Sparse representation {D,A}: using K-SVD
algorithm [6] by (4)

- Identify principal atoms from D based on A :
� Compute the frequencies of atoms

{‖βk‖0}Kk=1 according to (6) and (8)
� Get the permutation π sorting the index

k of {‖βk‖0}Kk=1 by (9)
� Compute the threshold P by (14)

- Obtain the signal principal atoms {dπ(k)}Pk=1
by (12)

- Reconstruct image ŜP by (13)

In this application, we intend to preserve faint signal
details under a situation of strong noise.
In the experiments, dictionaries usedDs of size 64×256

(K = 256 atoms), designed to handle image patches xm of
size N = 64 = 8 × 8 pixels.

4.3 Image denoising
A noisy Lena imageX = S+Vwith an additive zero-mean
white Gaussian noise V is used. The standard deviation of
noise is σ = 35. A comparison is made between the 3SD
method and the K-SVD method [6] which is one of the
best denoising methods reported in the recent literatures.
From the results shown in Fig. 5, the 3SD method out-

performs the K-SVD method by about 1 dB in PSNR and
by about 1% in SSIM (depending on how much details in
the images and how faint the details). In terms of subjec-
tive visual quality, we can see that the corner of the mouth
and the nasolabial fold with weak intensities are much
better recovered by the 3SD method.

4.4 SAR image despeckling
In the second experiment, a simulated SAR image with
speckle noise is used. Speckle is often modeled as mul-
tiplicative noise as x(i, j) = s(i, j)v(i, j) where x, s, and
v correspond to the contaminated intensity, the original
intensity, and the noise level, respectively.
Figure 6 shows the despeckling results of a simulated

one-look SAR scenario with a fragment of the Barbara
image. A comparison is made with 3SD method and a
probabilistic patch-based (PPB) filter based on nonlocal
means approach [7] which can cope with non-Gaussian
noise. We can see that PPB can well remove speckle noise.
However, it also removes the low-intensity details. The
3SD method shows advantages at preserving fine details
and at suppressing strong noise.

4.5 Comparison with BM3Dmethod
With a spatial complicated image scene, we make a com-
parison of the 3SD-based denoising method with the
BM3D algorithm [8], one of the best methods especially
for image denoising reported in many recent literatures.
The effectiveness of any signal analysis method depends

on the different conditions in different applications. For
the image denoising application, the signals involved
should be homogeneous. Therefore, a procedure of group-
ing is generally adopted to select homogeneous pixels. In
the BM3D method, a block-matching grouping is taken
before filtering. We adopt the same grouping technique
and then filter each homogeneous group by the proposed
3SD method.
Firstly, we take a 256× 256 Barbara image (Fig. 7a) with

a strong additive zero-mean white Gaussian noise where
σ = 70 (Fig. 7b). The denoising result by the BM3D
algorithm is shown in Fig. 7c. It displays a quite high per-
formance. The denoising result by the 3SD-based method
is shown in Fig. 7d. It demonstrates a higher PSNR and a
higher SSIM and a better subjective visual quality over the
BM3D algorithm.
Secondly, we take a simulated one-look SAR image with

this 256 × 256 Barbara image (Fig. 8a) where PSNR =
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Fig. 5 Image denoising comparing the proposed 3SD method with the K-SVD method

−0.1042. Figure 8b shows the despeckling result by the
PPB method [7], in which grouping is realized based on
nonlocal similarity and filtering is implemented by aver-
aging each homogeneous group. The despeckled image
is too smooth due to average filtering. Figure 8c shows
the despeckling result by the BM3D-based method [9],
in which grouping is realized based on similar 2-D frag-
ments and filtering is implemented by Wiener shrinkage

coefficients from the energy of the 3-D transform coeffi-
cients. The despeckled image is much better in PSNR and
in SSIM, but it seems a little noisy still due to the used
energy criterion which is not effective enough to sepa-
rate noise elements from the principal elements. Figure 8d
shows the despeckling result by the proposed 3SD-based
method, in which grouping is realized based on non-
local similarity [7] and filtering is implemented by the

Fig. 6 SAR image despeckling comparing the proposed 3SD method with the PPB method
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Fig. 7 Denoising for spatial complicated image scene comparing BM3Dmethod with 3SD-based method. a Original: Barbara (a fragment) 256 ∗ 256.
b Noisy: σ = 70; PSNR = 11.22; SSIM = 0.142. c BM3D denoising: PSNR = 24.08; SSIM = 0.7026. d 3SD denoising: PSNR = 24.21; SSIM = 0.765

proposed sparse subspace decomposition. The despeckled
image demonstrates some advantages of the 3SD method
at preserving fine details and at suppressing speckle noise,
attributed to the principal subspace decomposition.

5 Conclusions
We proposed a method of sparse signal subspace decom-
position (3SD). The central idea of the proposed 3SD
is to identify principal atoms from an adaptive over-
complete dictionary relying on the occurrence frequency
of atoms over the data set (Eq. (8)). The atom frequency
is measured by zero pseudo-norms of weight vectors of
atoms (Eqs. (6) and (8)). The principal subspace is spanned
by the maximum frequency atoms (Eq. (12)).

The 3SD method combines the variance criterion, the
sparsity criterion, and the component’s frequency crite-
rion into a uniform framework. As a result, it can iden-
tify more effectively the principal atoms with the three
important signal features. On the contrary, PCA uses
only variance criterion and sparse coding method uses
the variance and the sparsity criterions. In those ways,
it is more difficult to distinguish weak information from
strong noise.
Another interesting asset of the 3SD method is that

it takes benefits from using an over-complete dictionary
which reserves details of information and from subspace
decomposition which rejects strong noise. On the con-
trary, some undercomplete dictionary methods [10] and

Fig. 8 Despeckling for spatial complicated SAR image scene. a Noisy: 1-look; PSNR = −0.1042; SSIM = 0.21. b PPB despeckling: PSNR = 7.8943;
SSIM = 0.63. c SAR-BM3D despeckling: PSNR = 9.9312; SSIM = 0.73. d 3SD-based despeckling: PSNR = 10.3316; SSIM = 0.74
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some sparse shrinkage methods [11, 12] might lose weak
information when suppressing noise.
Moreover, the 3SD method is very simple with a lin-

ear retrieval operation (Eq. (13)). It does not require any
prior knowledge on distribution or parameter to deter-
mine a threshold (Eq. (14)). On the contrary, some sparse
shrinkage methods, such as [11], necessitate non-linear
processing with some prior distributions of signals.
The proposed 3SD could be interpreted as a PCA in

sparse decomposition, so it admits straightforward exten-
sion to applications of feature extraction, inverse prob-
lems, or machine learning.
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