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The increasing richness of data encourages a comprehensive understanding of economic
and financial activities, where variables of interest may include not only scalar (point-like)
indicators, but also functional (curve-like) and compositional (pie-like) ones. In many
research topics, the variables are also chronologically collected across individuals, which
falls into the paradigm of longitudinal analysis. The complicated nature of data, however,
increases the difficulty of modeling these variables under the classic longitudinal frame-
work. In this study, we investigate the linear mixed-effects model (LMM) for such complex
data. Different types of variables are first consistently represented using the corresponding
basis expansions so that the classic LMM can then be conducted on them, which gener-
alizes the theoretical framework of LMM to complex data analysis. A number of simulation
studies indicate the feasibility and effectiveness of the proposed model. We further
illustrate its practical utility in a real data study on Chinese stock market and show that the
proposed method can enhance the performance and interpretability of the regression for
complex data with diversified characteristics.

© 2019 China Science Publishing & Media Ltd. Publishing Services by Elsevier B.V. on
behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-

ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The development of sensors, information storage and data mining makes it possible to collect data from a large number of
sources with different characteristics, such as the familiar single points, curves and pie charts. Multiple types of data, referred
to as complex data, greatly enlarge the traditional category of variables and provide researchers with an opportunity to
understand the behavior of activities more comprehensively than ever before. For example, the public online sentiments
measured from social media and intraday stock returns are improving the accuracy and interpretation of predicting trends in
Chinese stock market (Wang et al., 2019a), which will be revisited in the real data analysis. Here, the return series are
considered as the continuous functions from opening to closing and the investors’ sentiments are measured as the com-
positions constituted by five types of specific sentiments. How to jointly analyze these emerging indicators with functional
and compositional features and efficiently conduct models for complex data, such as regression considered in this paper, has
been a serious challenge for economical modeling.
Management, Beihang University, Beijing, China.
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Complex data analysis involves various types of data, ranging from the classic nominal, ordinal and ratio scalar variables to
curve- and pie-like functional and compositional variables and even the text data. In this study, we focus on two novel types,
namely the functional and compositional data. Specifically, in functional data analysis (FDA), a data unit is assumed to be a
square-integrable function determined by its observations at various times (Ramsay, 1982). The intrinsic property of func-
tions, namely the infinite dimension, causes great difficulty for functional modeling in both theory and implementation. To
describe functions over a bounded closed set (e.g., an interval), some equivalent representations such as the basis function
expansion and reproducing kernel methods are thus necessary (H€ardle et al., 2012). On the contrary, compositional data
analysis (CDA) discusses the intrinsic structure of a whole, such as the proportions or percentages that carry only the relative
information (Aitchison, 1982, 1986). The defining features of compositions include the strictly positive and constant-sum
constraints of all the components inside (e.g., 1 for proportions and 100 for percentages), which would be problematic for
most traditional statistical approaches. To eliminate these strong constraints, a family of logratio transformations have been
proposed, such as the additive logratio, centered logratio (Aitchison, 1986) and isometric logratio (Egozcue et al., 2003)
transformations. For further details on FDA and CDA, see Ramsay and Silverman (2005, 2007), and Pawlowsky-Glahn et al.
(2015) and Filzmoser et al. (2018), respectively.

Numerous works have investigated the regression for the functional/compositional covariate against a scaler response.
Ramsay and Silverman (2005, 2007) systematically proposed the theoretical framework of functional linear regression, and
Müller and Stadtmüller (2005) then expanded it to the generalized linear case. More recent studies of functional regression
employ the additive model (Fan et al., 2015), mixture of linear models (Wang et al., 2016) and truncated linear model (Hall &
Hooker, 2016). Meanwhile, Aitchison and Bacon-Shone (1984) initially proposed the linear regression for compositional
covariates, Marzio et al. (2015) presented the kernel-based compositional regression, and Bruno, Greco, and Ventrucci (2014,
2016) investigated the spatio-temporal model and another nonparametric regression with Bayesian P-splines, respectively.

The aforementioned approaches focus on a specific type of complex data, and relatively few studies examine the multi-
type situation. Wang et al. (2015) preliminarily developed the linear regression for multiple types of complex data. Wang
et al. (2019a) then extended the computational framework to generalized linear regression including scalar, functional and
compositional covariates. Their methods are based on the independent and identically distributed (IID) assumption on errors,
namely that all the samples of complex data, regarded as cross-sectional data, are assumed to be independently collected
from an identical population. However, this IID assumption is problematic in some cases; these complex data may also show
typical longitudinal features, whichwe call longitudinal complex data. For example, as discussed in Section 5, the closing prices
of Chinese stock market were collected from hundreds of stocks over several months. The price-limiting mechanism of the
market results in a high correlation among the observations of the same stock. Directly applying existing statistical models to
complex datawithout incorporating the correlation structuremight yield biased and confusing results. Similar problems have
been discussed separately for FDA (Chen & Cao, 2017; Gertheiss et al., 2013; Goldsmith et al., 2012) and CDA (Qiu et al., 2010;
Wang et al., 2019b; Zhang et al., 2009), but few of the related solutions show the potential to integrate multiple types of
complex data together. Thus, developing a unified framework of modeling longitudinal complex data with diversified
characteristics is worthy of study.

As a fundamental longitudinal technique, the linear mixed-effects model (LMM) proposed by Laird and Ware (1982) has
been extended to numerous applications (Fitzmaurice et al., 2011; Hsiao, 2014), but most studies are concerned only with
scalar variables. In this study, we investigate LMM for complex data with diversified characteristics (CompLMM hereafter) to
deal with longitudinal features. Specifically, we assume that the data are collected from N individuals along with ni mea-
surements for the i-th individual (i ¼ 1;2;…;N); then, CompLMM is formulated as

yij ¼
Xpx

k¼1

xijkak þ
Xqz
k¼1

zijkaik þ
Xpm

k¼1

Z
mijkbk þ

Xqn
k¼1

Z
nijkbik þ

Xpc

k¼1

�
cijk;gk

�
a
þ
Xqw
k¼1

�
wijk; rik

�
a
þ εij (1)

for the j-th sample (j ¼ 1;2;…;ni), where ð,; ,Þa denotes the Aitchison inner product in CDA to be introduced in Section 2.2.
Take the stock market for example, in Model (1), the scalar response yij may refer to the closing price; the scalar, functional
and compositional covariates, namely xijk (zijk), mijk (nijk) and cijk (wijk), may refer to the classic indicators like the daily volume,
curve-like intraday stock pricing, and pie-like proportions of investors' sentiments, with the dimensions of px (qz), pm (qn) and
pc (qw), respectively; ak (aik), bk (bik) and gk (rik) denote the regression coefficients with the corresponding characteristics;
and εij is the random scalar error. Moreover, the functional covariates may also include yearly/monthly micro-indexes in
economics and high-frequency transaction data in finance, and the compositional ones can be used for portfolio weights.

In the paradigm of LMM, the terms containing ak, bk and gk in Model (1) comprise the fixed effects shared by all in-
dividuals, whereas those containing aik, nik and rik comprise the random effects unique to the specific individual. Particularly,
when there are no random effects, Model (1) is categorized as the computational framework of complex data in Wang et al.
(2019a) and reduces to the IID-based linear model (Wang et al., 2015), called CompLM, as

yij ¼
Xpx

k¼1

xijkak þ
Xpm

k¼1

Z
mijkbk þ

Xpc

k¼1

�
cijk;gk

�
a
þ εij:
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Compared with CompLM, the introduction of the random effects in CompLMM makes it possible to capture the subject-
specific information of each individual on the basis of the common regression characteristics in the population. From the
regression error perspective, it extracts the variability caused by different individuals, namely

Pqz
k¼1zijkaik þ

Pqn
k¼1

R
nijkbik þPqw

k¼1ðwijk; rikÞa, from the OLS-estimated errors. That is, εij is further decomposed into the random effects explained by in-
dividuals and the normally distributed noise. Therefore, the proposed CompLMM distinguishes the between- and within-
subject variability of the responses, which improves the performance of the linear regression on longitudinal complex data.

In this study, we aim at estimating the parameters for Model (1). Following the diversified characteristics of covariates,
both fixed and random effects show the corresponding characteristics. This brings the theoretical challenge in understanding
the relationship between the scalar error and multiple types of fixed/random effects. To consistently represent the complex
data with diversified characteristics, we first transform the functions and compositions using the related basis expansions
such that they are described equivalently or approximately equivalently to numeric coordinates. Specifically, the principle
component analysis (PCA) for functional data is introduced to generate a group of orthonormal basis functions according to
the observations. The transformed data are available to conduct LMM and obtain the intermediate results that can be
reconstructed tomatch the original features. Moreover, we investigate the statistical inferences on the coefficients of the fixed
effects. The necessary theoretical properties for the proposed longitudinal framework are developed accordingly. To further
measure the variability of different types of variables across individuals, we adopt the point-wise variance function and total
variance for a random function and composition, respectively. The proposed CompLMM improves the regression of complex
data with diversified characteristics and enhances its interpretability, which may provide an instructive unified framework
for modeling longitudinal complex data.

The remainder of this paper is organized as follows. In Section 2, we review some fundamental knowledge on FDA and
CDA. In Section 3, we investigate CompLMM and propose its computational algorithm. A series of simulation studies are then
conducted to assess the performance of the proposed method, with the results presented in Section 4. Section 5 reports a real
data study on Chinese stock market to illustrate the effectiveness of the proposed method. Finally, some conclusions and
prospects are given in Section 6.
2. Preliminaries

We briefly introduce the basic ideas andmathematical techniques for FDA and CDA, including the basis function expansion
for functional data, and the Aitchison geometry, centered logratio (clr) and isometric logratio (ilr) transformations for
compositional data. These provide the theoretical and computational foundation for the proposed method. For simplicity, we
use commas and semicolons in the matrix expressions to indicate that the adjacent blocks in a matrix are organized by
column and row, respectively.
2.1. FDA

In FDA, a series of discrete data are considered to be collected from a potential single entity (i.e., the function) over a
continuous index such as time and space.

The basis function expansion is one of the most practical methods for describing the continuous characteristics of a
function (Ramsay & Silverman, 2005). That is, a function is expressed as a linear combination of a given group of basis
functions, which can be estimated using the ordinary least squares (OLS), penalized OLS or regularized principal component
method (Hall & Horowitz, 2007). Two popular basis function systems in FDA are the Fourier and B-spline basis systems. A
series of Fourier basis functions with different periods are more appropriate for expanding periodic functions and describing
the periodic features. By contrast, B-spline functions are usedmore frequently for those non-periodic functions since they can
be flexibly identified by many parameters such as the number and locations of the inner knots. Without loss of generality, we
adopt the B-spline basis functions and simple OLS-based estimation.

Specifically, given a group of basis functions ffjg∞j¼1 over the interval I , any square-integrable function, say m2 L 2, can be
formulated as m ¼P

j
ujfj with an infinite series of expansion coefficients uj’s. When n samples, say oi at time ti2 I (i ¼ 1;2;

…;n), are observed from m, they are assumed to follow oi ¼ mðtiÞ þ εi with the white noise εi. Then, the expansion of m leads to
o ¼ Fuþ ε, where o ¼ ðo1; o2;…; onÞ0 and ε ¼ ðε1; ε2;…; εnÞ0 in Rn, F ¼ ðfðt1Þ;fðt2Þ;…;fðtnÞÞ0 with fðtiÞ ¼ ðf1ðtiÞ;f2ðtiÞ;…;

fKðtiÞÞ0, and u ¼ ðu1;u2;…;uKÞ0. In practice, the number of basis functions and related expansion coefficients K are restricted to
be smaller than n because of the finite size of observations. Thus, the OLS estimation yields the truncated expansion co-
efficients of m, namely

u¼ðF0FÞ�1F0o: (2)
Using the truncated expansion coefficients, the curve of m can be drawn numerically in a point-wise manner as
mðtÞ¼
XK
j¼1

ujfjðtÞ ¼ u0fðtÞ ðt2I Þ; (3)
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where m is determined by u given the basis functions f ¼ ðf1;f2;…;fKÞ0; the variance function for m, denoted byK m, can also
be formulated as

K mðtÞ¼VarðmðtÞÞ ¼ f0ðtÞVarðuÞfðtÞ ðt2I Þ; (4)

where Varð ,Þ denotes the covariance matrix of a random vector. Moreover, the integral of the product of two functions, say m
and b with the expansion coefficients u and l, can be written asZ
mðtÞbðtÞdt¼u0Wl with W ¼

Z
fðtÞf0ðtÞdt: (5)
The similar expression for the squared distance between two functions follow

d2L2 ðb; bbÞ¼ Z
ðbðtÞ � bbðtÞÞ2dt¼ðl� blÞ0Wðl� blÞ (6)

for bb2L2 with its expansion coefficients bl under f.
From the aforementioned properties, the truncated expansion coefficients greatly concentrate the main features of the

original infinite-dimensional functional data. However, the elimination on the other basis functions can unavoidably lead to
the extra approximation bias in the error. Intuitively, a larger group of basis functions would provide a more detailed
description on the observed functional data; therefore, the approximately bias could get reasonably close to zero if the
numbers of the observations and basis functions are large enough. For the practical purpose, we may empirically choose the
basis function system or perform the dimension reduction procedure to realize the efficient smoothing for functions with
little loss of information. Finally, we conclude that the basis function expansion for functional data makes it possible to
approximately equivalently represent the infinite-dimensional functions as relatively few numeric variables.

2.2. CDA

In CDA, the focus is on the relative magnitude of all components within a multivariate vector, rather than the absolute
value. Mathematically, any composition with D inner parts can be expressed as a vector c ¼ ½c1; c2;…; cD�0 with the positive
and featuring constant-sum constraints, namely

0 < ci <1 ði¼1;2;…;DÞ and
XD
i¼1

ci ¼ 1:
All such D-part compositions consist of the D-dimensional simplex space denoted by SD. To highlight the element in the
simplex space, we use the square bracket for compositional data throughout this paper.

Due to these constraints, the classic Euclidean algebraic system is not appropriate for the simplex space. For example, the
components of the sum of two compositions may exceed the range between 0 and 1. To construct the linear space for
compositional data, Aitchison (1982) developed the Aitchison geometry. Two main operations in the Aitchison geometry are
the perturbation and powering, and for g ¼ ½g1;g2;…;gD�02SD and k2R, they are respectively

c4g¼Cðc1g1; c2g2;…; cDgDÞ and k1 c¼C
�
ck1; c

k
2;…; ckD

�
;

where Cð ,Þ denotes the closure operation that scales a vector with all positive components proportionally such that it
conforms to the constant-sum constraint. The zero element is nD ¼ Cð1DÞ with 1D ¼ ð1;1;…; 1Þ02RD. The related inner
product for two compositions are then defined as

ðc;gÞa ¼
XD
i¼1

log
ci

gmðcÞ
log

gi
gmðgÞ

; (7)

where gmð ,Þ denotes the geometric mean of all parts in a composition.
The Aitchison inner product enjoys nice properties for the simplex space but lacks an intuitive expression. To simplify the

formula, Aitchison (1986) proposed the clr transformation, namely

clrðcÞ¼ ðclr1ðcÞ; clr2ðcÞ;…; clrDðcÞÞ0 ¼
�
log

c1
gmðcÞ

; log
c2

gmðcÞ
;…; log

cD
gmðcÞ

�0
;

Such that (7) can be rewritten in the Euclidean form as ðc;gÞa ¼ clrðcÞ0clrðgÞ. By comparing each component with the
geometric mean, the clr-transformed vector describes the relative magnitude of the corresponding part in the original
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composition. Specifically, clriðcÞ>0 for some i (i ¼ 1;2;…;D) indicates that the proportion of the i-th part in c is above the
average level of all parts, and vise versa.

The clr transformation simplifies the expression of Aitchison geometry but remains constrained still, namely
PD

i¼1ilriðcÞ ¼
1. To represent compositional data with no constraints simultaneously, Egozcue et al. (2003) further proposed the ilr
transformation via the simplicial orthonormal basis. In this study, we follow Egozcue and Pawlowsky-Glahn (2005) and
transform the composition to the specified ilr coordinates as ilrðcÞ ¼ c* ¼ ðc*1;c*2;…;c*D�1Þ0, where

c*i ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðD� iþ 1ÞðD� iÞp XD�i

j¼1

log cj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D� i

D� iþ 1

r
log cD�iþ1 ði¼1;2;…;D�1Þ: (8)
These coordinates contain all the information on c, and they can reconstruct the original composition. That is, c ¼
ilr�1ðc*Þ ¼ CðexpðuÞÞ, where expðuÞ ¼ ðexp u1;exp u2;…;exp uDÞ0,

ui ¼
XD�i

j¼0

c*jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðD� jþ 1ÞðD� jÞp �
ffiffiffiffiffiffiffiffiffiffi
i� 1
i

r
c*D�iþ1 ði¼1;2;…;DÞ (9)

and c*0 ¼ c*D ¼ 0. Using the contrast matrix, denoted by J2RðD�1Þ�D, the ilr transformation and its inverse can be respec-
tively expressed as ilrðcÞ ¼ J logðcÞ and ilr�1ðc*Þ ¼ C ðexpðJ0c*ÞÞ, where logðcÞ ¼ ðlog c1; log c2;…; log cDÞ0. Specifically, J
associated with (8) and (9) is constituted by the elements jij as jij ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
D�i

D�iþ1

q
rij for i ¼ 1;2;…;N and j ¼ 1;2;…;ni, where rij ¼

ðD� iÞ�1 when j<D� iþ 1, rij ¼ �1 when j ¼ D� iþ 1, and rij ¼ 0 otherwise.
As an isometry between the simplex and Euclidean spaces, the ilr transformation facilitates the computation of the

Aitchison geometry. Using the ilr coordinates, the Aitchison inner product in (7) can then be expressed in the familiar
Euclidean form as

ðc;gÞa ¼ ilrðcÞ0ilrðgÞ¼ ðc*Þ0g*: (10)
The related norm and distance then follow respectively as

kgk2a ¼ðg;gÞa ¼ðg*Þ0g* and d2aðg; bgÞ¼ ðg* � bg*Þ0ðg* � bg*Þ

with bg2SD and its ilr coordinates bg*. Since J0J is identically equal to ID � 1D1D
0=D, where ID denotes the D-dimensional

identical matrix (Pawlowsky-Glahn et al., 2015), the specified ilr transformation here does not affect those results above.
Moreover, taking values in RD�1 freely, c* and g* become the representations of c and g with no constraints involved. From
these properties of the ilr transformation, we can substitute the ilr coordinates for the compositional covariates in most
statistical models.

Finally, the moments of a random composition are different from those of a scalar random variable due to the lack of the
multiplication operation on the simplex space. Pawlowsky-Glahn et al. (2015) defined the total variance and center of a
random composition as

totVar½c� ¼min
u2SD

fVar½c;u�g and cen½c� ¼ arg min
u2SD

fVar½c;u�g;
Respectively, where Var½c;u� ¼ E½d2aðx;uÞ� and E½ ,� denotes the expectation of a random variable. The center and total
variance of a random composition serve as the mean and variance of a scalar random variable, and they can be respectively
formulated as

cen½c� ¼ ilr�1ðE½ilrðcÞ�Þ and totVar½c� ¼
XD�1

i¼1

Var
�
c*i
�

via the ilr transformation.

3. LMM for complex data

In this section, we investigate LMM for longitudinal complex data with diversified characteristics. The approaches to
aggregating multiple types of complex data, along with their properties, and some issues in implementation are also
discussed.
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3.1. Model

To consistently represent multiple types of complex data, we apply the B-spline function expansion and ilr transformation
to Model (1). Thus, the model can be formulated using (5) and (10) as

yij ¼ x0ijaþ z0ijai þ
Xpm

k¼1

u0
ijkWlk þ

Xqn
k¼1

v0ijkWqik þ
Xpc

k¼1

�
c*ijk
�0
g*
k þ

Xqw
k¼1

�
w*

ijk

�0
r*ik þ εij;

where xij ¼ ðxij1; xij2;…; xij;px
Þ0 and zij ¼ ðzij1; zij2;…; zij;qz Þ0 along with a ¼ ða1;a2;…;apx Þ0 and ai ¼ ðai1;ai2;…;ai;qz Þ0; uijk, vijk,

lk and qik denote the expansion coefficients for mijk, nijk, bk and bik, respectively; and c*ijk, g
*
k, w

*
ijk and r*ik denote the ilr co-

ordinates of the related compositions. To simplify, we further reformulate it as

yij ¼ x0ijaþ z0ijai þu0
ijWpm

lþ v0ijWqnqi þ
�
c*ij
�0
g* þ

�
w*

ij

�0
r*i þ εij; (11)

where uij ¼ ðuij1;uij2;…;uij;pm
Þ and vij ¼ ðvij1; vij2;…; vij;qn Þ along with l ¼ ðl1; l2;…; lpm Þ and qi ¼ ðqi1; qi2;…;qi;qm Þ; Wpm

(Wqn ) denotes the blocked diagonal matrix consisting of pm (qn) matrices W; and c*ij ¼ ðc*ij1; c*ij2;…; c*ij;pc
Þ and w*

ij ¼ ðw*
ij1;w

*
ij2;

…;w*
ij;qw

Þ along with g* ¼ ðg*
1;g

*
2;…;g*

pc
Þ and r*i ¼ ðr*i1; r*i2;…; r*i;qw Þ, respectively. Note that the dimensions of related

expansion coefficients (e.g., uijk for k ¼ 1;2;…;pm) may differ in functional variables as we can use different basis functions
with different numbers (K) and even types to represent the functional data to better describe their potentially diversified
features.

Jointly considering all samples from the same individual, say the i-th one, we pile up the related ni samples by row. Finally,
Model (11) can be rewritten as

yi ¼ xiaþ uiWpm
lþ c*i g

* þ ziai þ viWqnqi þw*
i r

*
i þ εi ði¼1;2;…;NÞ; (12)

where yi ¼ ðyi1; yi2;…; yi;ni
Þ0 and εi ¼ ðεi1; εi2;…; εi;ni

Þ0. Specifically, in Model (12), the fixed effects involve xi ¼ ðxi1; xi2;…;

xi;ni
Þ0, ui ¼ ðui1;ui2;…;ui;ni

Þ0 and c*i ¼ ðc*i1;c*i2;…;c*i;ni
Þ0, and the random effects involve zi ¼ ðzi1;zi2;…;zi;ni

Þ0, vi ¼ ðvi1; vi2;…
; vi;ni

Þ0 and w*
i ¼ ðw*

i1;w
*
i2;…;w*

i;ni
Þ0. To coincide with the paradigm of LMM in Model (12), the total coefficients for the fixed

and random effects refer to 6 ¼ ða; l;g*Þ and pi ¼ ðai; qi; r*i Þ, with dimensions p and q, respectively. Moreover, εi is assumed
to be normally distributed in Rni , namely εi � N ð0ni ; s

2Ini Þ, where 0ni is constituted by 0 in Rni , and pi is assumed to be
independent of εi and normally distributed as pi � N ð0q;GÞ, where G is positive definite and constant for all the individuals.
Thus, the parameters to be estimated in Model (12) include Q ¼ f6;G;s2g.

Under the aforementioned assumptions, the estimate of Q, denoted by cQ ¼ fb6; bG; bs2g, can be derived using the
expectation maximum (EM) algorithm (Laird & Ware, 1982). Then, the fitted response, for example, byij in Model (11), can be
expressed as

byij ¼ x0ijbaþ z0ijbai þu0
ijWpm

blþ v0ijWqn
bqi þ�c*ij�0bg* þ

�
w*

ij

�0br*i ;
or byij ¼ x0ijba þ u0

ijWpm
bl þ ðc*ijÞ

0bg* for the reduced CompLM, where bai, bqi and br*i can be obtained from cQ.
The assumptions on multiple types of complex data are based on the consistent numeric representations in the classic

framework of LMM. Actually, the multivariate normal distribution for these original complex data is not the same as that for
the classic multivariate case. Since different types of complex data involved, the relationship inside the random effects is not
limited to the classic case for multivariate variables. Directly defining the joint distribution on the random effects with
diversified characteristics would be difficult, as it may contain complicate covariance structures such as the correlation be-
tween a composition and a function. Before we develop the estimation procedure, we discuss the relationship between the
original and transformed models, namely Models (1) and (12), in the following remarks.

Remark 1. The assumption of the independence of the coefficients for random effects and the error is important in the
theory of LMM. We put this assumption on the represented numeric variables, namely qi and r*i , in Model (12), which also
implies the independence of the original coefficients with diversified characteristics (e.g., bik and rik) and the scalar error in
Model (1). For example, the covariance matrix between bik with functional characteristics and εij is defined in a point-wise
manner, namely CovðbikðtÞ; εijÞ for any t2I . Under the given group of basis functions f, the expectations of the related
expansion coefficients are equal to zero; then, we have

Cov
�
bikðtÞ; εij

�¼ qik
0
E
	
fðtÞεij


¼f0ðtÞCov�qik; εij�: (13)
From (13), the independence assumption on the expansion coefficients, namely Covðqik;εijÞ ¼ 0K , is sufficient to that on
the original overall function. Meanwhile, the covariance between rik with the compositional characteristics and εij is directly
defined using the ilr coordinates, namely Covðr*ik; εijÞ, and the independence assumption holds for any specified ilr trans-
formation (Wang et al., 2019).
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Remark 2. The most fundamental distribution, namely the multivariate normal distribution, for the consistent numeric
representation of random effects is considered in this paper. The zero-mean assumption on the expansion coefficients for
functional data and ilr coordinates for compositional data actually implies the related forms on the original random effects
with diversified characteristics. Specifically, the center of rik will be the zero element in SD since

cen½rik� ¼ ilr�1�
E
	
r*ik

�¼ ilr�1ð0DÞ¼nD;
and the expectation of bik will also be the constant-zero function in a point-wise manner, namely

E½bikðtÞ�¼f0ðtÞE½qik� ¼ 0
for any t2I.
Remark 3. Another issue for the theory of LMM follows the covariance matrix of the random effects coefficients. For
functional variables, this refers to the covariance function, say K bik;bik0 ðs; tÞ for bik and bik0 with the expansion coefficients qik
and qik0 at s and t. Similar to (4), it can be formulated as

Kbik ;bik0 ðs; tÞ¼CovðbikðsÞ; bik0 ðtÞÞ¼f0ðsÞCovðqik; qik0 ÞfðtÞ:
Specifically, it reduces to Kbik ðs; tÞ ¼ f0ðsÞVarðqikÞfðtÞ when k ¼ k0. For compositional variables, the covariance matrix can
be naturally defined as Covðrik; rik0 Þ ¼ Covðr*ik; r*ik0 Þ for rik and rik0 with the ilr coordinates rik and r*ik0 . If we adopt another
distribution on the simplex, such as the Dirichlet one, the covariance structure for the original compositional data could be
singular due to the constant-sum constraint of a composition. It would also be difficult to define the independence between a
composition and the scalar error; by contrast, employing the ilr coordinates can explicitly avoid these troubles. For example,
the covariance structure for the clr-transformed vector of rik can be easily derived as F0

SF. Next, the covariance matrix for
the two types of variables can be defined consistently. For example, we express the covariance function for bik and rik at time t,
denoted by Kbik ;rik ðtÞ, as

Kbik ;rik ðtÞ¼Cov
�
bikðtÞ; r*ik

�¼f0ðtÞCov�qik; r*ik�:

In those cases, the different patterns inside the covariance matrix for the original model are described by the elements of

G, including Covðqik;qik0 Þ, VarðqikÞ, Covðr*ik; r*ik0 Þ and Covðqik; r*ikÞ. Thus, G in the transformed model contains the covariance
structure of the original complex data.
3.2. Parameter estimation

When there are no random effects in Model (12), as considered in CompLM (Wang et al., 2015; 2019a), the OLS-based
estimates of 6 and s2, denoted by b6ols and bs2

ols, have the explicit solutions:

b6ols ¼
 X

i¼1

N

Xi
0Xi

!�1 X
i¼1

N

Xi
0yi

!
; (14)

bs2
ols ¼M�1

X
i¼1

N

ðyi �Xi b6olsÞ0ðyi �Xi b6olsÞ; (15)

where Xi ¼ ðxi;uiWm; c*i Þ for i ¼ 1;2;…;N and M ¼PN
i¼1ni.

Under the normality assumption, the estimation procedure for the consistent numeric representations of complex data in
Model (12) can be obtained within the multivariate framework of LMM. Laird et al. (1987) considered the full-sample like-
lihood function with respect to y and pi (i ¼ 1;2;…;N) and derived the maximum likelihood (ML) estimates through the EM
algorithm. Specifically, given a pair of estimates bGðuÞ

and ðbsðuÞÞ2, where the superscript u indicates the iteration and u ¼ 0
denotes the initial values, b6ðuÞ is formulated as

b6ðuÞ ¼
 XN

i¼1

Xi
0
�bSðuÞ

yi

��1
Xi

!�bSðuÞ
yi

��bSðuÞ
yi

��1
Xi

��1
 XN

i¼1

Xi
0
�bSðuÞ

yi

��1
yi

!
(16)

with
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bSðuÞ
yi

¼Zi
bGðuÞ

Zi
0 þ ðbsðuÞÞ2Ini (17)

and Zi ¼ ðzi; viWqn ;w
*
i Þ for i ¼ 1;2;…;N. On the contrary, when b6ðuÞ is available, bGðuÞ

and the others can be updated from
ðbsðuÞÞ2, that is,

bGðuþ1Þ ¼N�1
X
i¼1

N bpðuÞ
i
bpðuÞ
i

�0 þ bGðuÞ � bGðuÞ
Zi

0
�bSðuÞ

yi

��1
Zi
bGðuÞ

!
; (18)

�bsðuþ1Þ�2 ¼M�1
X
i¼1

N ��beðuÞi

�0beðuÞi þðbsðuÞÞ2tr
�
Ini �ðbsðuÞÞ2

�bSðuÞ
yi

��1��
; (19)

where

bpðuÞ
i ¼ bGðuÞ

Zi
0
�bSðuÞ

yi

��1
ðyi �Xi b6ðuÞÞ; (20)

beðuÞi ¼ yi �Xi b6ðuÞ � Zi bpðuÞ
i (21)

and trð ,Þ denotes the trace of a matrix. Such bGðuþ1Þ
and ðbsðuþ1ÞÞ2 result in the update b6ðuþ1Þ from (16), which finishes an

iteration.
Within the framework of the EM algorithm, the proposed procedure is always convergent due to the quadratic convex

optimization involved. The convergence criterion is that themaximum difference between the present estimated parameters,
say b6ðuÞ and ðbsðuÞÞ2, and the previous ones, say b6ðu�1Þ and ðbsðu�1ÞÞ2, falls into a given threshold, say ε ¼ 0:01, hat is,

max
n���jb6ðuÞ � b6ðu�1Þj

���
∞
;
���ðbsðuÞÞ2 �

�bsðu�1Þ�2���o< ε; (22)

where k ,k denotes the maximum norm of a vector. Meanwhile, the algorithm also stops if it exceeds the iteration limit, say
∞
l ¼ 100. As suggested by Laird et al. (1987), the initial value of b6, denoted by b6ð0Þ, is set to be b6ols, and those of the other
parameters can then be computed from b6ð0Þ as

bGð0Þ ¼N�1
X
i¼1

N �bpð0Þ
i

�bpð0Þ
i

�0 ��bsð0Þ�2ðZi
0ZiÞ�1

�
; (23)

� �2 XN � �0� �
bsð0Þ ¼ L�1

i¼1

yi �Zi bpð0Þ
i yi �Xi b6ð0Þ ; (24)

where L ¼ M � ðN�1Þq� p and bpð0Þ ¼ ðZ 0Z Þ�1Z 0ðy � X b6ð0ÞÞ. The aforementioned initialization for the estimation pro-
i i i i i
cedure begins with the reduced OLS-based linear regression, and further abstracts the subject-specific information from the
covariance structure of errors.

Remark 4. The proposed parameter estimation for CompLMM through the EM algorithm is consistent with the existing
solutions for CompLM in (14) and (15) proposed by Wang et al. (2015, 2019a). Actually, when there are no random effect,

namely no zijk, nijk andwijk inModel (1), bSðuÞ
yi

reduces to be proportional to Ini with no Zi involved in (17), implying that b6ðuÞ in

(16) identically equals b6ols in (14) for any u. A similar conclusion can also be drawn on (19), namely ðbsðuþ1ÞÞ2≡bs2
ols, sincebeðuÞi ¼ yi �Xi b6ðuÞ and ðbsðuÞÞ2ðbSðuÞ

yi
Þ
�1

¼ Ini . We conclude from these results that CompLM works exactly as the pooled
method for longitudinal complex data.

As a result of the ML estimation, the aforementioned estimates for these transformed data enjoy the properties of
consistence and asymptotic normality. Since the truncated expansion coefficients and ilr coordinates represent the original
compositional and functional data equivalently or approximately equivalently, the properties for their ML estimates may also
indicate those for the original complex data with diversified characteristics. Actually, as discussed in Remarks 1e3, the
distributions on multiple types of complex data are defined via their representations; therefore, the ML estimation procedure
on the represented data in Model (12) can be exactly regarded as on the original complex datawith diversified characteristics
in Model (1). In summary, we present the computational procedure of the proposed method for longitudinal complex data in
Algorithm 1.
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Algorithm 1. Computational procedure for CompLMM
3.3. Some issues

In this subsection, we discuss some other issues in both theory and implementation for the proposed CompLMM.
First, when the basis functions used are not orthonormal, such as the B-spline functions, the related metric matrixW will

not be the identical matrix. To compute it numerically, one may first uniformly take T samples, say ft1;t2;…;tTg, from I , and
then approximate it as

W ¼ T�1
XT
i¼1

fðtiÞf0ðtiÞ:
By contrast, one may also generate a new group of orthonormal basis functions from those previously given such that the
related metric matrix will naturally be identical. In this study, we perform the functional PCA (FPCA) procedure, as it is a
popular method for conducting the orthonormal basis function system in FDA (Ramsay & Silverman, 2005).

Specifically, suppose that we have M groups of expansion coefficients uij ¼ ðuij1;uij2;…;uij;ni
Þ0 for mij (i ¼ 1;2;…;N; j ¼

1;2;…;ni) under the given basis function system f, we wish to generate K orthonormal basis functions from f, say x ¼ ðx1;x2;
…;xKÞ0. Let U ¼ ðu11;u12;…;u21;…;uN;nN

Þ0 and L denote the Cholesky decomposition of W such that W ¼ LL0, we consider
the SVD problem M�1U 0UWb ¼ lb subject to b0Wb ¼ 1, or equivalently the PCA problem with b* ¼ L0b:
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M�1L0U 0ULb* ¼ lb* (25)

* 0 * *
Subject to ðb Þ b ¼ 1. Therefore, the orthonormal basis functions and related expansion coefficients for mij, denoted as uij,
can be expressed as

xk ¼bk
0
f ðk¼1;2;…;KÞ and u*

ij ¼ B0Wuij;
Respectively, where bk corresponds to the eigenvector with the k-th largest eigenvalue from (25) and B ¼ ðb1;b2;…;bKÞ.
For more theoretical details of FPCA, see Ramsay and Silverman (2005).

In practice, given no information on the proper basis function system, we shall first expand the observations under a
relatively large number, say K0 >K, of basis functions, and then perform the FPCA procedure to summarize them into K
orthonormal basis functions. Meanwhile, through the PCA-based estimation in FPCA, we shall introduce the cumulative
contribution rate (CCR) of variance to determine the dimension of the orthonormal basis function system, namely K. Let lk for
k ¼ 1;2;…;K0 be the descending-ordered eigenvalues from (25), we set K to be theminimumvalue that reaches the threshold
of CCR denoted by d, namely

K ¼min

(
K :
XK
k¼1

lk

,XK0

k¼1

lk � d

)
:

Empirically, d � 0:85would lead to a reasonable orthonormal basis function system that preserves most of the informative
variation of the observations. As indicated by the simulation results, the orthonormal basis functions along with the related
expansion coefficients through the FPCA procedure efficiently support the proposed method.

Then, we consider the statistical inferences on the estimated coefficients of the fixed effects with diversified character-
istics. Under the normality assumption on the error, the covariance matrix of b6 in Model (12) can be derived as

Covðb6Þ¼
 XN

i¼1

Xi
0 bS�1

yi
Xi

!�1

; (26)

where the diagonal elements correspond to the estimated variances of the consistent numeric representations of complex
data. From (26), the statistical inferences on the scalar covariates can be directly built up. Specifically, for bak and its variancebs2ðakÞ (k ¼ 1;2;…; px), cak=bsðakÞ would asymptotically satisfy the standard normal distribution when the null hypothesis
holds, namely H0 : ak ¼ 0. Similar conclusions can be drawn on the estimated results for functional and compositional
covariates, however, the significance of the estimated expansion coefficients and ilr coordinates are meaningless, since we
focus on the functional and compositional structures instead of their numeric representations. Thus, we shall develop the
statistical inferences on the original function in a point-wise manner and the clr-transformed composition.

For the estimated functional coefficient bbk (k ¼ 1;2;…;pm), the related estimate of the variance function can be expressed
as

bKbk
ðtÞ¼ x0ðtÞCovðblkÞxðtÞ ¼ f0ðtÞBCovðblkÞB0fðtÞ ðt2T Þ;

where x ¼ ðx1; x2;…; xKÞ0 comprises the orthonormal basis functions generated from f, and blk is the expansion coefficients ofbbk under x. Therefore, we shall obtain the confidence band of bbk in a point-wise manner as�bbkðtÞþ Zð9=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffibKbk

ðtÞ
q

; bbkðtÞþ Zð1�9=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficK bk

ðtÞ
q �

ðt2T Þ;

where Zð9=2Þ and Zð1�9=2Þ denote the 9=2 and 1� 9=2 quantiles of the standard normal distribution, respectively, for a given
significance level 9. For the estimated compositional coefficient bgk, the direct statistical inferences on the compositional
structure would be difficult due to the uncertain magnitude of scale in the closure operation. An alternative solution is to
derive the statistical inferences on the clr-transformed composition as they also carry the relative information of the parts in
the original composition. Since clrðbgkÞ ¼ J0ilrðbgkÞ (k ¼ 1;2;…; pc), the estimate of the covariance matrix is expressed as
CovðclrðbgkÞÞ ¼J0CovðilrðbgkÞÞJ. Thus, for clriðbgkÞ (i ¼ 1;2;…;D) and related variance VarðclriðbgkÞÞ, we shall compare it with
0 through clriðbgkÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðclriðbgkÞÞ

p
to evaluate whether the i-th part in the composition is significantly above/below the

average level among all the parts under the significance level 9. Similarly, the statistical inferences for the reduced CompLM
can be derive from Covðb6Þ ¼ ðPN

i¼1Xi
0XiÞ

�1
.

Next, we exemplify the proposed framework for longitudinal complex data using three types of covariates, and this
framework is available for more types of complex data with diversified characteristics. For example, introducing dummy
variables is common for processing categorical, nominal and ordinal variables in longitudinal analysis (Hsiao, 2014). We can
represent these as groups of dummy variables and conduct compLMM for these multiple scalar covariates. For unstructured
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text data, we can summary these into a series of compositions associated with the frequencies of topics/positions, similar to
the measure of investors’ sentiments by Zhou et al. (2018), and therefore analyze text data under the proposed framework.

The key technique for formulating CompLMM is to find the suitable representation for a specific type of complex data and
suitable algebraic system, such as the basis function expansion with the l2 norm for the Hilbert function space in FDA, and ilr
transformation with the Aitchison inner product for the simplex in CDA. Following this idea, more diversified types of var-
iables could be jointed into the proposed framework. For example, in the context of symbolic data analysis (SDA), the interval-
valued variable has special binary representations such as ‘‘Lower-Upper” and ‘‘Center-Radius” (Billard & Diday, 2003; Sun
et al., 2018). Linear regression can then be conducted on these binary numeric variables (Wei et al., 2017), with the
random effects incorporated analogously. Similarly, we can also formulate the regressions on the other symbolic variables in
SDA, namely histograms and distribution functions, withmore complicated characteristics based on theWasserstein distance
(Irpino & Verde, 2015), and consider related random effects to extend them to the proposed framework.

Finally, the introduction of random effects promotes the performance of linear regression for longitudinal complex data,
while the complexity of random effects may also lead to an extra cost of computation and a loss of degrees of freedom. Thus,
the trade-off between the improvement in fitting accuracy and complexity of random effects is worthy of consideration,
which falls into the selection of random effects. As an important issue for LMM,many statistical solutions for traditional scalar
covariates have been proposed, such as the Bayesian information criteria selector (Fitzmaurice et al., 2011) and joint selection
(Bondell et al., 2010). Furthermore, we can determine the constitution of the random effects from the practical and empirical
perspectives (e.g., some financial knowledge in the real data study). We can also conduct a series of alternative CompLMM
associated with all the possible constitutions of the random effects, including CompLM, and select the balanced one that
approximates the best improvement with relatively few random effects.

4. Simulation studies

In this section, we report the simulation results to evaluate the performance of the proposed parameter estimation for
CompLMM. Three measures are introduced: the squared ratio error (SRE) for scalar responses, integral squared error (ISE) for
functions, and absolute ratio error (ARE) for compositions. These are respectively defined in Model (1) as

SRE¼
X
i¼1

N X
j¼1

ni �
yij � byij�2

,X
i¼1

N X
j¼1

ni

y2ij;

ISEðbbkÞ¼ d2L2 ðbk; bbkÞ ðk¼1;2;…; pmÞ;

AREðbgkÞ¼ daðgk; bgkÞ= k gkka ðk¼1;2;…; pcÞ;

where byij, bmijk and bc ijk denote the related fitted values. A lower value of SRE, ISE or ARE indicates amore accurate fitting for the
specific response, function or composition, respectively.

We generate the data from the following model:

yij ¼2þa1xij1 þ
Z1
0

b1mij1 þ
Z1
0

b2mij2 þ
�
g1; cij1

�
a þ

�
g2; cij2

�
a þ ai0 þ

Z1
0

bi1nij1 þ
�
ri1;wij1

�
a þ εij;

where seven cubic B-spline basis functions defined by four equally spaced inner knots over ½0;1�, say f ¼ ff1;f2;…;f7g, and
the ilr coordinates from (8) and (9) are adopted.

The detailed settings of the other parameters are introduced as follows.
a) In the fixed effects, xij1 is independently generated from the standard normal distribution, with a1 ¼ 5; b1 and b2 are

linearly combined by f, with the symmetric combination coefficients. That is, for any t2½0;1�,

b1ðtÞ¼
X7
j¼1

ð4� jÞfjðtÞ and b2ðtÞ¼
X7
j¼1

ðj�4ÞfjðtÞ;
Respectively; mij1 and mij2 are described as n ¼ 200 samples observed at times ft1; t2;…; tng from the linear combinations
of f with measurement errors, that is,

mijkðtlÞ¼uijk
0fðtlÞ þ εijkl ðk¼1;2; l¼1;2;…; nÞ;
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where the expansion coefficients of two functions are sampled fromNð07;I7Þ, and the errors are generated from N ð0;0:12Þ;
cij1 and cij2 are separately generated from the simplicial normal distribution N Sð02; I2Þ (Mateu-Figueras et al., 2013), with the
compositional coefficients g1 ¼ ½0:6;0:2;0:2�0 and g2 ¼ ½0:25;0:25;0:5�0 in S3, respectively.

b) In the random effects, the covariates are constituted by the intercept ai0 and the first function and composition, namely
nij1 ¼ mij1 andwij1 ¼ cij1; bi1 and ri1 are represented by the expansion coefficients under f and ilr coordinates, say qi1 and r*i1,
respectively. The parameters, namely pi ¼ ðai0;qi1; r*i1Þ, are then jointly generated from Nð010;GÞ, where G is blocked di-
agonal as G ¼ diagð9;G

q
* ;0:5I4;GrÞ with

G
q
* ¼
0@ 9 4:8 0:6

4:8 4 1
0:6 1 1

1A and Gr ¼
�

9 4:8
4:8 4

�
:

2
c) εij is independently generated from Nð0;s Þ, where s takes a value of 0.5, 1 and 1.5 to reflect the signal-to-noise ratio
(SNR) from strong to weak.

Three combinations of the number of individuals N and sample size for each individual ni are considered: ðN; niÞ ¼
ð100;30Þ, ð100;60Þ and ð300;60Þ. For each case, we independently replicate the simulation 500 times and conduct the
proposed CompLMM aswell as the baseline CompLM for comparison. Specifically, tomimic the lack of information in practice
on the oracle basis function system, we perform the FPCA procedure to determine the basis functions. Specifically, the
previously given basis function system is set to consist of the cubic B-spline functions generated by 17 equally spaced inner
knots over ½0;1�, namely K0 ¼ 20. The numbers of the orthonormal basis functions for two functional covariates through the
FPCA procedure are determined by the CCR-based criteria with d ¼ 0:9. Table 1 reports the estimated results for the fixed
effects of scalar and compositional covariates, Table 2 summarizes the performance of the regression model, and Fig. 1 then
visualizes the curves of the estimated coefficients of the fixed effects for two functional covariates in some replications
selected randomly.

As shown in Table 1, the estimated coefficients of the fixed effects for the scalar covariates obtained from both CompLMM
and CompLM approximate the related ideal values on average, while those from CompLMM are more stable with lower
Table 1
Means and standard derivations (in brackets) of the estimated coefficients for the fixed effects of scalar and compositional covariates. The row ‘‘True”
denotes the related true values.

ðN;niÞ Model Scalar Compositional

Intercept ba1 bc11 bc12 bc13 bc21 bc22 bc23
s ¼ 0:5
(100, 30) CompLMM 1:986

ð0:379Þ
5

ð0:017Þ
0:598
ð0:09Þ

0:197
ð0:027Þ

0:205
ð0:071Þ

0:25
ð0:002Þ

0:25
ð0:002Þ

0:5
ð0:003Þ

CompLM 1:982
ð0:381Þ

5:004
ð0:173Þ

0:596
ð0:095Þ

0:197
ð0:033Þ

0:206
ð0:074Þ

0:25
ð0:021Þ

0:251
ð0:023Þ

0:499
ð0:029Þ

(100, 60) CompLMM 1:99
ð0:397Þ

5
ð0:012Þ

0:6
ð0:085Þ

0:197
ð0:026Þ

0:202
ð0:067Þ

0:25
ð0:002Þ

0:25
ð0:002Þ

0:5
ð0:002Þ

CompLM 1:987
ð0:401Þ

5:001
ð0:117Þ

0:599
ð0:087Þ

0:197
ð0:029Þ

0:203
ð0:069Þ

0:249
ð0:016Þ

0:251
ð0:017Þ

0:5
ð0:021Þ

(300, 60) CompLMM 1:978
ð0:242Þ

5
ð0:007Þ

0:597
ð0:051Þ

0:2
ð0:016Þ

0:203
ð0:04Þ

0:25
ð0:001Þ

0:25
ð0:001Þ

0:5
ð0:001Þ

CompLM 1:979
ð0:242Þ

4:993
ð0:069Þ

0:598
ð0:053Þ

0:2
ð0:019Þ

0:203
ð0:04Þ

0:25
ð0:01Þ

0:25
ð0:009Þ

0:499
ð0:012Þ

s ¼ 1
(100, 30) CompLMM 1:986

ð0:378Þ
5

ð0:034Þ
0:598
ð0:09Þ

0:197
ð0:027Þ

0:205
ð0:072Þ

0:25
ð0:005Þ

0:25
ð0:005Þ

0:5
ð0:006Þ

CompLM 1:982
ð0:38Þ

5:003
ð0:175Þ

0:596
ð0:095Þ

0:198
ð0:033Þ

0:206
ð0:075Þ

0:25
ð0:021Þ

0:25
ð0:023Þ

0:5
ð0:029Þ

(100, 60) CompLMM 1:99
ð0:397Þ

5
ð0:024Þ

0:601
ð0:085Þ

0:197
ð0:027Þ

0:202
ð0:067Þ

0:25
ð0:003Þ

0:25
ð0:003Þ

0:5
ð0:004Þ

CompLM 1:987
ð0:402Þ

5:001
ð0:12Þ

0:599
ð0:087Þ

0:197
ð0:029Þ

0:203
ð:069Þ

0:249
ð0:016Þ

0:251
ð0:017Þ

0:5
ð0:021Þ

(300, 60) CompLMM 1:978
ð0:242Þ

5
ð0:014Þ

0:597
ð0:052Þ

0:2
ð0:016Þ

0:203
ð0:04Þ

0:25
ð0:002Þ

0:25
ð0:002Þ

0:5
ð0:002Þ

CompLM 1:979
ð0:242Þ

4:993
ð0:07Þ

0:598
ð0:053Þ

0:2
ð0:02Þ

0:203
ð0:004Þ

0:251
ð0:01Þ

0:25
ð0:009Þ

0:499
ð0:012Þ

s ¼ 1:5
(100, 60) CompLMM 1:987

ð0:378Þ
5

ð0:051Þ
0:597
ð0:091Þ

0:197
ð0:027Þ

0:205
ð0:072Þ

0:25
ð0:007Þ

0:25
ð0:007Þ

0:5
ð0:009Þ

CompLM 1:982
ð0:38Þ

5:003
ð0:178Þ

0:596
ð0:095Þ

0:198
ð0:033Þ

0:206
ð0:075Þ

0:25
ð0:022Þ

0:25
ð0:024Þ

0:5
ð0:03Þ

(100, 60) CompLMM 1:99
ð0:398Þ

5
ð0:036Þ

0:601
ð0:085Þ

0:197
ð0:027Þ

0:202
ð0:067Þ

0:25
ð0:005Þ

0:25
ð0:005Þ

0:5
ð0:006Þ

CompLM 1:987
ð0:402Þ

5:001
ð0:123Þ

0:599
ð:087Þ

0:198
ð0:029Þ

0:203
ð0:069Þ

0:249
ð0:016Þ

0:251
ð0:017Þ

0:5
ð0:022Þ

(300, 60) CompLMM 1:978
ð0:242Þ

5
ð0:02Þ

0:597
ð0:052Þ

0:2
ð0:017Þ

0:203
ð0:04Þ

0:25
ð0:003Þ

0:25
ð0:003Þ

0:5
ð0:004Þ

CompLM 1:979
ð0:242Þ

4:993
ð0:072Þ

0:598
ð0:053Þ

0:2
ð0:02Þ

0:203
ð0:04Þ

0:251
ð0:01Þ

0:25
ð0:01Þ

0:499
ð0:012Þ

True 2 5 0.6 0.2 0.2 0.25 0.25 0.5



Table 2
Means and standard derivations (in brackets) of bs2 and three measures SRE, ISE and ARE.

ðN;niÞ Model Functional Compositional bs2 SRE

ISEðbb1Þ ISEðbb2Þ AREðbc1Þ AREðbc2Þ
s ¼ 0:5
(100, 30) CompLMM 0:043

ð0:019Þ
0:029
ð0:008Þ

0:352
ð0:219Þ

0:022
ð0:012Þ

0:253
ð0:009Þ

0:17
ð0:013Þ

CompLM 0:882
ð0:667Þ

0:909
ð0:668Þ

0:38
ð0:23Þ

0:209
ð0:112Þ

29:031
ð2:872Þ

0:67
ð0:035Þ

(100, 60) CompLMM 0:037
ð0:016Þ

0:024
ð0:004Þ

0:336
ð0:222Þ

0:015
ð0:008Þ

0:251
ð0:005Þ

0:02
ð0:015Þ

CompLM 0:458
ð0:327Þ

0:474
ð0:368Þ

0:353
ð0:218Þ

0:152
ð0:083Þ

29:204
ð2:767Þ

0:672
ð0:034Þ

(300, 60) CompLMM 0:037
ð0:014Þ

0:033
ð0:012Þ

0:201
ð0:128Þ

0:025
ð0:013Þ

2:247
ð0:024Þ

0:05
ð0:005Þ

CompLM 0:174
ð0:112Þ

0:175
ð0:119Þ

0:207
ð0:126Þ

0:089
ð0:046Þ

29:339
ð1:629Þ

0:678
ð0:021Þ

s ¼ 1
(100, 30) CompLMM 0:07

ð0:036Þ
0:056
ð0:026Þ

0:355
ð0:22Þ

0:043
ð0:023Þ

1:005
ð0:054Þ

0:032
ð0:013Þ

CompLM 0:9
ð0:671Þ

0:933
ð:675Þ

0:382
ð0:231Þ

0:212
ð0:112Þ

29:783
ð2:877Þ

0:676
ð0:034Þ

(100, 60) CompLMM 0:049
ð0:021Þ

0:036
ð0:013Þ

0:337
ð0:222Þ

0:03
ð0:016Þ

0:999
ð0:02Þ

0:035
ð0:014Þ

CompLM 0:467
ð0:339Þ

0:49
ð0:379Þ

0:353
ð0:218Þ

0:154
ð0:084Þ

29:954
ð2:77Þ

0:678
ð0:033Þ

(300, 60) CompLMM 0:03
ð0:011Þ

0:026
ð0:009Þ

0:2
ð0:128Þ

0:017
ð0:009Þ

0:999
ð0:011Þ

0:025
ð0:004Þ

CompLM 0:179
ð0:116Þ

0:179
ð0:119Þ

0:208
ð0:126Þ

0:09
ð0:047Þ

30:089
ð1:627Þ

0:684
ð0:021Þ

s ¼ 1:5
(100, 30) CompLMM 0:115

ð0:073Þ
0:098
ð:057Þ

0:358
ð0:221Þ

0:065
ð0:034Þ

2:275
ð0:163Þ

0:057
ð0:014Þ

CompLM 0:931
ð0:687Þ

0:971
ð0:694Þ

0:385
ð0:232Þ

0:217
ð0:114Þ

31:032
ð2:885Þ

0:685
ð0:033Þ

(100, 60) CompLMM 0:068
ð0:034Þ

0:056
ð0:028Þ

0:337
ð0:222Þ

0:045
ð0:023Þ

2:246
ð0:044Þ

0:06
ð0:014Þ

CompLM 0:483
ð0:356Þ

0:514
ð0:396Þ

0:354
ð0:218Þ

0:157
ð0:085Þ

31:203
ð2:773Þ

0:687
ð0:032Þ

(300, 60) CompLMM 0:037
ð0:014Þ

0:033
ð0:012Þ

0:201
ð0:128Þ

0:025
ð:013Þ

2:247
ð0:024Þ

0:05
ð0:005Þ

CompLM 0:186
ð0:122Þ

0:185
ð0:121Þ

0:208
ð0:126Þ

0:092
ð0:048Þ

31:338
ð1:627Þ

0:693
ð0:02Þ
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standard deviations than the baseline, for example, 0.017 (CompLMM) vs. 0.173 (CompLM) for ba1 with ðN;niÞ ¼ ð100;30Þ and
s ¼ 0:5. As the sample size increased, the estimated results got stable, with decreasing standard deviations.

Then, for the functional covariates, as shown in Table 2, CompLMM sharply improves the estimation efficiency of two
overall functions, where the ISE values for two functional covariates extremely approach zero, with generally small standard
deviations. The result also indicates that the orthonormal basis function system and related expansion coefficients through
the FPCA procedure are reliable and the FPCA procedure can efficiently support the proposed CompLMM. By contrast,
CompLM performs relatively bad in estimating the functional covariates here. When the sample size is small, say ðN;niÞ ¼
ð100;30Þ, the ISE values for CompLM approach almost to 1, with large standard derivations. When the sample size gets larger,
say ðN; niÞ ¼ ð300;60Þ, the ISE values decrease gradually to 0.1 above, which is still multiple times larger than those for
CompLMM.

Next, for the compositional covariates, as reported in Tables 1 and 2, the twomethods perform almost the same, where the
estimates for most components of two compositional covariates and the ARE values for CompLMM are slightly more stable
than those for ComLM.

Finally, for the fitting performance of the regression summarized in Table 2, CompLMMwell estimates s for different levels
of SNR, whereas the estimates of CompLM far exceed the corresponding true values. Moreover, CompLM almost fails to fit the
responses, since the related SRE values are on average above 0.6; by contrast, for CompLMM, the average values of SRE are
significantly low and close to 0.

As exemplified in Fig. 1, the curves (in red) of the estimated functional coefficients of the fixed effects by CompLMM get
closer to the true settings (in grey) than those (in cyan) by CompLM. For both the increasing and decreasing cases for the
functional coefficients, CompLMM fits the functions well across the interval, whereas CompLM, although capturing the
general trends of the functions, involves relatively large periodic perturbations when the sample size is small, for example, ðN;
niÞ ¼ ð100;30Þ. Moreover, the estimated biases between the true and fitted curves from the two models are eliminated
gradually as the sample size increases to ðN;niÞ ¼ ð300;60Þ. Specifically, the estimated biases for the first function having the
random effects are relatively larger than those for the second one having no random effects.

In summary, the proposed CompLMM succeeds in addressing the longitudinal features within complex data with
diversified characteristics, especially those with functional characteristics.



Fig. 1. Curves of the estimated functional coefficients. The column panels from left to right denote the three levels of SNR from s ¼ 0:5 to s ¼ 1:5. The upper and
lower sub-rows indicate the first and second functional covariates, respectively.
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5. Application to Chinese stock market

In this section, we adopt the proposed CompLMM in the example of Chinese stock market to demonstrate its usefulness.
The existing approach to complex data modeling, namely CompLM (Wang et al., 2015; 2019a), is also used for comparison.
Here, we aim at the influence of the indirect information as well as the historical price trend on the stocks price. As exem-
plified by numerous studies, the macroeconomic indicators (Chen et al., 1986), public online sentiment (Ruan et al., 2018;
Zhou et al., 2018) and analysts’ recommendations (Duan et al., 2013) may improve the interpretability and accuracy of the
models for this problem.



Fig. 2. Curves of the first six orthonormal basis functions generated by the FPCA procedure. The panels from left to right and from top to bottom indicate the first to sixth basis functions, respectively.

Z.W
ang

et
al./

Journal
of

M
anagem

ent
Science

and
Engineering

5
(2020)

105
e
124

119



Z. Wang et al. / Journal of Management Science and Engineering 5 (2020) 105e124120
In this case, we regress the daily closing price (DCP) of stocks against the related daily volume (DV), intraday percentage
return (IPR) and online investors' sentiments (OIS) in the former session. Data on the constituent stocks in CSI300 from
January 8 to April 29, 2016 (75 trading days) are collected from the Wind service. The stocks with prices over 50 or active
trading days fewer than 40 are removed, and finally 256 stocks are left. Here, both DCP and DV are scalar, IPR recorded every
5min is described as a series of smoothing curves from opening to closing, and OIS is measured naturally as a compositional
structure associated with five types of sentiments labeled ‘‘Anger”, ‘‘Disgust”, ‘‘Joy”, ‘‘Sadness” and ‘‘Fear” (Zhou et al., 2018).
Thus, the regression model contains two scalar covariates (including the intercept), one functional covariate and one
compositional covariate.

In the FPCA procedure, the previously given basis system consists of ten cubic B-spline functions determined by seven
equally spaced inner knots over ½0;1�, where 0 and 1 indicate the opening (9:30 a.m.) and closing (15:00 p.m.) of the market,
respectively. The contribution rates of variance of the largest six generated basis functions are 0.641, 0.164, 0.073, 0.045, 0.026
and 0.021, reaching 0.971 in total. Fig. 2 depicts the shapes of these six orthonormal basis functions. As illustrated by Fig. 2, the
first three basis functions in the top panel show different patterns of volatility in IPR, while the next three in the bottom panel
just differ in periodicity.

Then, we conduct a series of CompLMM, where the random effects contain all the four covariates and IPR is represented by
the expansion coefficients for the first one to six orthonormal basis functions, as well as CompLM. Table 3 reports the related
estimated coefficients of the fixed effects, and the results show the consistence across different numbers of basis functions
used in both CompLMM and CompLM, but twomethods are remarkably different in the estimated results. Following the CCR-
based criteria on choosing the number of orthonormal basis functions, we get K ¼ 3, 4 and 5 for the threshold of CCR as d ¼
0:85, 0.9 and 0.95, respectively. To avoid the under- and over-fitting of the observed data from IPR, we choose d ¼ 0:9 along
with K ¼ 4 in the further discussion.

Next, we construct the theoretical confidence intervals/bands for the estimated results under the significance level of 9 ¼
0:05. We also carry out the bootstrap procedure to numerically evaluate the significance of the estimated results. Specifically,
in each sampling procedure, we randomly take with replacement 90% samples from the full data, and conduct models on
these data. The estimated coefficients for the ilr coordinates of OIS are transformed back to the original five sentiments, and
those for the expansion coefficients of IPR under the orthonormal basis functions are used to reconstruct the functional
coefficient in a point-wise manner. We independently replicate the aforementioned sampling procedure 1000 times, and
build up the bootstrap-based confidence intervals/bands bounded by the related 9=2 and 1� 9=2 quantiles. Table 4 reports
the estimated results using the full data for the scalar and clr-transformed compositional coefficients and related confidence
intervals obtained by both statistical inference and bootstrap methods, and Fig. 3 illustrates the curves and pie charts of the
estimate functional and compositional coefficients and related confidence bands by two methods.

As shown in Table 4, the contribution of DV to the stock price is contrasting in two methods: positive in CompLMM and
negative in CompLM. Two methods also differ in the estimated clr-transformed compositional coefficients for OIS, although
they both consider ‘‘Joy” and ‘‘Fear” as two important sentiments in explaining DCP. In CompLMM, as shown in the right panel
of Fig. 3, ‘‘Joy” has the largest positive influence on DCP, with ‘‘Fear” tied for the second; on the contrary, two sentiments
exchange the order in CompLM. Since the increase in an inner part of a composition implies a general decrease in the others, it
is hard to separately evaluate the influence of a specific part (Pawlowsky-Glahn et al., 2015). Moreover, the confidence in-
tervals obtained by both statistical inference and bootstrapmethods show consistent, and the range for the bootstrap method
is generally larger than that for the statistical inferences. Under 9 ¼ 0:05, the scalar covariate DV shows the significant
contribution to DCP in both models. In CompLMM, the marginal contributions of all the five sentiments in OIS pass the
significance test, while three of them fail in CompLM. And the large standard deviation of residuals for CompLM (reachingbs ¼ 12:464) indicates the bad fitting of CDP; by contrast, bs ¼ 1:553 shows the reasonable results by CompLMM.
Table 3
Estimated coefficients of the fixed effects based on the full data under different numbers of orthonormal basis functions used.

Model Intercept DV IPR OIS

x1 x2 x3 x4 x5 x6 Anger Disgust Joy Sadness Fear

CompLM 19.303 �0.097 �1.274 2.447 �1.219 �28.857 7.075 �15.45 0.026 0.227 0.219 0.104 0.425
19.429 �0.098 �1.269 2.438 �1.237 �28.838 7.077 ea 0.029 0.244 0.23 0.105 0.392
19.261 �0.098 �1.241 2.481 �1.265 �28.912 e e 0.027 0.251 0.25 0.096 0.376
20.285 �0.099 �1.391 2.357 �1.122 e e e 0.025 0.191 0.242 0.194 0.349
20.278 �0.099 �1.396 2.354 e e e e 0.025 0.185 0.241 0.195 0.354
20.314 �0.099 �1.411 e e e e e 0.029 0.178 0.231 0.193 0.369

CompLMM 13.837 0.056 �0.343 0.983 �0.965 �2.468 2.018 �0.261 0.041 0.076 0.585 0.055 0.243
13.984 0.052 �0.387 1.032 �0.924 �2.585 1.82 e 0.04 0.077 0.569 0.06 0.253
13.933 0.052 �0.399 1.038 �1.007 �2.477 e e 0.039 0.077 0.58 0.059 0.246
13.974 0.053 �0.405 1.032 �1.013 e e e 0.039 0.075 0.579 0.061 0.246
13.981 0.053 �0.42 1.085 e e e e 0.039 0.073 0.576 0.062 0.25
13.968 0.053 �0.408 e e e e e 0.042 0.072 0.568 0.061 0.257

a indicates that the corresponding variable is not used.



Table 4
Estimated results using the full data for DV and OIS and related confidence intervals under 9 ¼ 0:05.

Model Confidence interval Intercept DV OISa bs
Anger Disgust Joy Sadness Fear

CompLM Full-data 19.261 �0.098 �1.675 0.56 0.554 �0.4 0.961 12.464
Inference Upper 20.775 �0.094 �0.481 1.462 1.295 0.557 1.777 e

Lower 17.748 �0.101 �2.87 �0.342 �0.187 �1.356 0.15 e

Bootstrap Upper 20.842 �0.089 �0.418 1.541 1.358 0.62 1.826 e

Lower 17.591 �0.107 �2.942 �0.413 �0.175 �1.469 0.084 e

CompLMM Full-data 13.933 0.052 �1.133 �0.441 1.575 �0.718 0.718 1.553
Inference Upper 15.507 0.065 �0.917 �0.183 1.833 �0.421 0.972 e

Lower 12.36 0.039 �1.349 �0.699 1.316 �1.015 0.463 e

Bootstrap Upper 14.111 0.064 �0.849 �0.328 1.760 �0.659 0.814 e

Lower 13.521 0.046 �1.125 �0.602 1.516 �0.956 0.531 e

a denotes the clr-transformed results for OIS.
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As displayed in the left panel of Fig. 3, the curves of the estimated functional coefficient by two methods share almost the
same shape, where it is indicated that the returns near 10:00e10:30 a.m. and 14:00 p.m. show relatively high marginal
contributions to DCP. Two curves differ in scale, and the range of values in CompLM is 10 times larger than that in CompLMM,
which may account for the bad performance of CompLM to a great extent. Moreover, the confidence band has a narrower
Fig. 3. Curves and pie charts of the estimated functional and compositional coefficients for IPR and OIE, respectively. The red curve denotes the estimated result
for IPR using the full data, the blue dotted curves and grey region indicate the confidence bands obtained by the statistical inference and bootstrap methods,
respectively, and the vertical dotted line divides a trading day into the morning and afternoon.



Table 5
Estimated covariance matrix of the random effects for CompLMM in the real data study on Chinese stock market. The sub-columns xj (j ¼ 1;2;…;5) denote
the expansion coefficients under the orthonormal basis functions for IPR andw*

1k (k ¼ 1;2;…;4) indicate the ilr coordinates of the compositional coefficients
for OIE. The variances are highlighted in bold. The variance function and total covariance respectively for IPR and OIE are also plotted and reported.
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width by the statistical inferences than by the bootstrap method in CompLM; while in CompLMM, they have slightly dif-
ferences in the peaks and troughs of the curve, and the confidence band by the statistical inferences shows less volatility than
by the bootstrap method.

Finally, we focus on the estimated results for the random effects for CompLMM, as reported in Table 5. The large variance of
the intercept (i.e., 161.754) indicate that the stocks involved have great differences in prices. The variance of the DV is rela-
tively small (only 0.01), which implies that its influence has few changes across stocks; therefore, the DV could be regarded as
an inessential factor in the random effects in this case. To describe the overall variation of the functional coefficient, we plot
the variance function based on the covariance matrix of the expansion coefficients, where the point-wise variances during
most trading hours hover around 10 in general, and the curve contains two peaks that correspond to the time before 10:00
a.m. and after 14:30 p.m. This result verifies that the past trends of the return fromdifferent stocks, especially at the beginning
and ending time, have diversified influences on their prices in the future. Finally, we sum up the variances of the four ilr
coordinates and obtain the related total variance of the compositional coefficients for OIE as 17.294. This result verifies that
the indirect information such as OIE, although shared by all the stocks, could also enhance the performance of the regression
model for the stock price in various ways.

In conclusion, the real data study on Chinese stock market illustrates the potential of the proposed CompLMM for lon-
gitudinal complex data from an application perspective. Introducing the random effects containing the scalar, functional and
compositional covariates, our method measures the subject-specific characteristics of each stock and improves the perfor-
mance of the regression on diversified types of variables from different sources. However, there remains some problems to be
discussed from both theoretical and practical perspectives, such as a more exhaustive explanation of the functional or
compositional coefficients and the choice of the direct and indirect indicators for Chinese stock market. These issues need to
be addressed in future work.
6. Concluding remarks

This study investigates an LMM technique for longitudinal complex data named CompLMM, involving a scalar continuous
response and complex data covariates with diversified characteristics. Through the random effects that describe the differ-
ences across individuals, CompLMM can extract further information from the residuals obtained by the existing linear model
for complex data and then show a significant improvement in fitting responses. Following the linear framework of complex
data modeling, CompLMM first consistently represents different types of variables such that the classic LMM can then be
conducted to obtain the intermediate results and transform them back to have the related diversified features. This model
also encourages a more comprehensive interpretation for the regression on complex data. Moreover, some theoretical
properties are also presented that support the computational procedure of the parameter estimation. As illustrated by both
the simulation studies and real data analysis, the proposed CompLMM succeeds in dealing with longitudinal complex data
and efficiently estimating the parameters with more reliable response fitting.

We focus on the parameter estimation and general interpretation for the proposed CompLMM. Through the consistent
numeric representation for multiple types of complex data, the multivariate normality on the random effects is promising to
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be generalized to more flexible distributions such as the multivariate t distribution (Pinheiro et al., 2001) to realize a more
reliable and efficient estimation. The maximum likelihood estimation based on a new distribution and related EM algorithm
will be reconsidered and reformulated accordingly. Indeed, it is worthy of study in the future.

Next, the trade-off between the accuracy and interpretation of the proposed model also needs due consideration, towhich
many solutions for the traditional scalar covariates have been proposed. These statistical methods provide instructive stra-
tegies for selecting random effects with diversified characteristics, which faces great challenges in theory but deserves further
research. The practical and empirical ways of determining the random effects also demand investigation. Moreover, many
types of complex data, as discussed in Section 3.3, have the potential to be modeled under the proposed framework using
suitable representations. The processing of these variables has been adopted by many studies, but some of the theoretical
properties for this study need detailed checks in the future.

Finally, the statistical inferences on multiple types of complex data are also an important and challenging issue in
regression. In this study, we investigate the statistical inferences under the normality assumption, however, some problems
remain to be addressed. For example, the direct hypothesis test on the original compositional data faces great challenges due
to the uncertain magnitude of scale in the closure operation. Although some empirical methods such as the bootstrap could
partly offer the solutions to these problems, the theory of the related hypothesis tests for complex data should be developed.
Moreover, the truncation of the basis functions approximately represents the infinite-dimensional functions as few expansion
coefficients, but unavoidably leads to the extra bias in the error. The related asymptotic property for the truncated expansion
coefficients in the proposed method needs further study.
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