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50 years of data analysis: from exploratory data analysis to predictive 
modelling and machine learning 

 
 Gilbert Saporta 

CEDRIC-CNAM, France  

 

In 1962, J.W.Tukey wrote his famous paper “The future of data analysis” and promoted 
Exploratory Data Analysis (EDA), a set of simple techniques conceived to let the data speak, without 
prespecified generative models. In the same spirit J.P.Benzécri and many others developed 
multivariate descriptive analysis tools. Since that time, many generalizations  occurred, but the basic 
methods (SVD, k-means, …) are still incredibly efficient in the Big Data era. 

On the other hand, algorithmic modelling or machine learning are successful in predictive 
modelling, the goal being accuracy and not interpretability. Supervised learning proves in many 
applications that it is not necessary to understand, when one needs only predictions.  

However, considering some failures and flaws, we advocate that a better understanding may 
improve prediction. Causal inference for Big Data is probably the challenge of the coming years. 
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It is a little presumptuous to want to make a panorama of 50 years of data analysis while 

David Donoho (2017) has just published a paper entitled “50 Years of Data Science”. But 1968 is the 

year when I began my studies as a statistician and I would very much like to talk about the debates of 

the time and the digital revolution that profoundly transformed statistics and which I witnessed. The 

terminology followed this evolution-revolution:  from Data Analysis to Data Mining and then to Data 

Science while we went from a time when the asymptotics began to 30 observations with a few 

variables, in the era of Big Data and high dimension.  

1.The revolt against mathematical statistics 

Since the 1960s, the availability of data has led to an international movement back to the 

sources of statistics "let the data speak" and to sometimes fierce criticisms of an abusive 

formalization. In addition to John Tukey cited above,  here is a portrait gallery of some notorious 

protagonists in USA, France, Japan, the Netherlands, Italy. 

   
John Wilder Tukey (1915-2000) Jean-Paul Benzécri (1932-) Chikio Hayashi  (1918-2002) 

 

 



   
Jan de Leeuw (1945-) J. Douglas Carroll (1939-2011) Carlo Lauro (1943-) 

 

And an anthology of quotes: 

• “He (Tukey) seems to identify statistics with the grotesque phenomenon generally known as 

mathematical statistics and find it necessary to replace statistics by data analysis” 

(Anscombe, 1967).  

• “ Statistics is not probability, under the name of mathematical statistics was built a pompous 

discipline based on theoretical assumptions that are rarely met in practice” (Benzécri, 1972) 

• “The models should follow the data, not vice versa”  (Benzécri, 1972) 

• “Use the computer implies the abandonment of all the techniques designed before of 

computing”   (Benzécri, 1972) 

• “ Statistics is intimately connected with science and technology, and few mathematicians 
have experience or understand of methods of either. This I believe is what lies behind the 
grotesque emphasis on significance tests in statistics courses of all kinds; a mathematical 
apparatus has been erected with the notions of power, uniformly most powerful tests, 
uniformly most powerful unbiased tests, etc. etc., and this is taught to people, who, if they 
come away with no other notion, will remember that statistics is about significant differences 
(…). The apparatus on which their statistics course has been constructed is often worse than 
irrelevant---it is misleading about what is important in examining data and making inferences 
“ (Nelder, 1985) 

Data analysis was basically descriptive, non-probabilistic in the sense that no reference was made to 

the data generating mechanism. Data analysis favors algebraic and geometrical tools of 

representation and visualization. 

This movement has resulted in conferences especially in Europe. E.Diday and L.Lebart initiated in 

1977 a series entitled Data Analysis and Informatics, J.Janssen was in 1981 at the origin of biennial 

ASMDA conferences (Applied Stochastic Models and Data Analysis) which are still continuing. 

The principles of data analysis inspired those of Data Mining, which developed in the 1990s on the 

border between databases, information technology and statistics. Fayaad (1995) is said to have the 

following definition: “Data Mining is the nontrivial process of identifying valid, novel, potentially 

useful, and ultimately understandable patterns in data” . David Hand et al. precised in 2000 “ I shall 

define Data Mining as the discovery of interesting, unexpected, or valuable structures in large data 

sets” 

The metaphor of Data Mining means that there are treasures (or nuggets) hidden under mountains 

of data, which may be discovered  by specific tools. Data Mining is generally concerned with data 

which were collected for another purpose: it is a  secondary analysis of data bases that are collected 

Not Primarily For Analysis, but for the management of individual cases. Data Mining is not concerned 

with efficient methods for collecting data such as surveys and experimental designs (Hand, 2000) 



  



2. EDA and unsupervised methods for dimension reduction 

Essentially, exploratory methods of data analysis are dimension reduction methods: 

unsupervised classification or clustering methods operate on the number of statistical units, whereas 

factorial methods reduce the number of variables by searching for linear combinations associated 

with new axes of the space of individuals. 

2.1 The time of syntheses 

It was quickly realized that all the methods looking for eigenvalues and eigenvectors of matrices 

related to the dispersion of a cloud (total or intra) or of correlation matrices could be expressed as 

special cases of certain techniques.  

Correspondence analyzes (single and multiple), canonical discriminant analysis, are particular 

principal component analyzes. It suffices to extend the classical PCA by weighting the units and 

introducing metrics. The duality scheme introduced by Cailliez and Pagès (1976) is an abstract way of 

representing the relationships between arrays, matrices and associated spaces. The paper by De la 

Cruz, O. & Holmes, S.P. (2011) brought it back to light.  

From an other point of view (Bouroche & Saporta, 1983) the main factorial methods PCA, MCA , as 

well as multiple regression are particular cases of canonical correlation analysis.  

An other synthesis comes from the generalization of canonical correlation analysis to several groups 

of variables introduced by J.D.Carroll (1968). Given p blocks of variables jX one looks for 

components z  maximizing the following criterium :  2
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association lead to the maximum association principle M.Tenenhaus (1977), J.F. Marcotorchino 

(1986), G.Saporta (1988) which also includes the case of k-means partitioning 

 

Table 1 : Various cases of the maximum association principle 

PLS approach to structural equation modelling also provides a global framework for many linear 

methods as has been shown by  Tenenhaus (1999) and Tenenhaus & Tenenhaus (2011). 

 

  



2.2 The time of clusterwise methods 

The search for partitions in k classes of a set of units belonging to a Euclidean space is most 

often done using the k-means algorithm: this method converges very quickly, even for large sets of 

data, but not necessarily towards the global optimum. Under the name of dynamic clustering, 

E.Diday (1971) has proposed multiple extensions, where for example the representatives of classes 

can be groups of points, varieties etc. The simultaneous search for k classes and local models by 

alternating k-means and modeling is a geometric and non-probabilistic way of addressing mixture 

problems. Clusterwise regression is the best known case: in each class a regression model is fitted 

and the assignment to the classes is done according to the best model. Clusterwise methods allow 

for non-observable heterogeneity and are particularly useful for large data sets where the relevance 

of a simple and global model is questionable. In the 1970s, E. Diday and his collaborators developed 

"typological" approaches for most linear techniques: PCA, regression (Charles, 1977), discrimination. 

These methods are again the subject of numerous publications, in association with functional data 

(Preda & Saporta, 2005), symbolic data (de Carvalho et al., 2010), and in multiblock cases (De Roover 

et al., 2012, Bougeard et al., 2017). 

 

2.3 Extensions to new types of data 

 2.3.1 Functional data 

Jean-Claude Deville (1974) showed that the Karhunen-Loève decomposition was nothing else 

than the PCA of the trajectories of a process,  opening the way to  functional data analysis (Ramsay & 

Silverman, 1997). The number of variables being infinitely not countable, the notion of linear 

combination to define a principal component, is extended to the integral 
0

( )
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being an eigenfunction of the covariance operator 
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Deville & Saporta (1980) then extended functional PCA to correspondence analysis of trajectories of 

a categorical process.  

The dimension reduction offered by PCA makes possible to give solutions to the problem of 

regression on trajectories, a problem that is ill posed since the number of observations is smaller 

than the infinite number of variables. PLS regression, however, is better adapted in the latter case 

and makes it possible to deal with supervised classification problems (Costanzo & al., 2006) 

2.3.2 Symbolic data analysis 

E.Diday is at the origin of many works that have made it possible to extend almost all 

methods of data analysis to new types of data, called symbolic data. This is the case for example 

when the cell i, j of a data table is no longer a number, but an interval or a distribution. Here is an 

example of a table of symbolic data  (from Billard & Diday, 2006): 

 

Table 2 An example of interval data 



 

2.3.3 Textual data 

Correspondence analysis and classification methods were very early applied to the analysis of 

document-term and open-text tables. Refer to Lebart & al., (1998) for a full presentation. Text 

analysis is now part of the vast field of text mining or text analytics. 

2.4 Non linear data analysis 

Dauxois and Pousse (1976) extended principal component analysis and canonical analysis to 

Hilbert spaces. By simplifying their approach, instead of looking for linear combinations of maximum 

variance like in PCA 
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  which is once again an illustration of the maximum 

association principle. 

With a finite number of observations n, this is a ill-posed problem, and one needs to restrict the set 

of transformations j to finite dimension spaces. A classical choice is to use spline functions as in 

Besse (1988). 

The search for optimal transformations has been the subject of work by the Dutch school synthesized 

in the book published under the collective name of Gifi (1999). 

Separate transformations are called semi-linear. A different attempt to obtain “truly” nonlinear 

transformations is the kernelization:  

In line with the work of V. Vapnik, Schölkopf et al. (1998) defined a non-linear PCA in the 
following manner where the entire vector x=(x1,x2,…xp) is transformed. Each point of the space of the 

individuals E is transformed into a point in a space (E) called extended space (or feature space) 

provided with a dot product. The dimension of (E)  can be very large and the notion of variable is 
lost. A metric multidimensional scaling is then performed on the transformed points according to the 

Torgerson method which is equivalent to the PCA in (E). Everything rests on the choice of the scalar 

product in (E): if we take a scalar product which is easily expressed according to the scalar product 

of E, it is no longer necessary to know the transformation   which is then implicit. All calculations 
are done in dimension n. This is the "kernel trick". 

Let  ( , )k x y  be a dot product in (E) and , x y  the dot product of E. One has just to 

replace the usual Torgerson’s matrix  W by a matrix where each element is ( , )k x y  , then to doubly 

center W in rows and columns : its eigenvectors are the principal components in (E). 
 
Once defined the kernel-PCA, many works followed "kernelizing" various methods, let us quote: 

Fisher discriminant analysis by Baudat & Anouar (2000) found independently under the name of LS-

SVM by Suykens & Vandewalle (1999), the PLS regression of Rosipal & Trejo (2001), the unsupervised 

classification with kernels k-means already proposed by Schölkopf et al., canonical analysis (Fyfe & 

Lai., 2001). It is interesting to note that most of these developments come not from statisticians but 

from researchers in Artificial Intelligence or Machine Learning. 

  



2.5 The time of sparse methods 

When the number of dimensions (or variables) is very large, PCA MCA and other factorial 

methods lead to results that are difficult to interpret: how to make sense of a linear combination of 

several hundred or even thousands of variables? The search for so-called "sparse" combinations 

limited to a small number of variables, that is to say with a large number of zero coefficients, has 

been the subject of the attention of researchers for some fifteen years. The first attempts requiring 

that the coefficients be equal to -1, 0 or 1, for example, lead to non-convex algorithms that are 

difficult to use. 

The transposition to PCA of the LASSO regression de Tibshirani (1996) allowed to give exact and 

elegant solutions. Recall that the LASSO consists in performing a regression with a L1 penalty on the 

coefficients, which makes it possible to easily manage the multicollinearity and the high dimension.

2

1

ˆ arg min
p

lasso j

j

 


 
   

 


β

β y Xβ  

Zou et al. (2006) proposed to modify one of the  many criteria defining the PCA of a table X: principal 

components z are such that: 
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The first constraint in L2 norm only implies that the loadings have to be normalized ; the second 

constraint in L1 norm tunes the sparsity when the Lagrange multiplier 1  varies. Computationally, one 

gets the solution by alternating a SVD β  being fixed fixé, to get the components z and an elastic-net 

to find β  when  z is fixed, until convergence. 

The positions of the null coefficients are not the same for the different components. The selection of 

the variables is therefore dimension by dimension. If the interpretability increases, the counterpart is 

the loss of characteristic properties of PCA such as the orthogonality of the principal components and 

/ or the loadings. Since then, sparse variants of many methods have been developed, such as sparse-

PLS by Chun & Keleş (2009),  sparse discriminant analysis by Clemmensen et al. (2011),  sparse 

canonical analysis by Witten et al. (2009) and sparse multiple correspondence analysis by Bernard et 

al. (2012).  

 

3. Predictive modelling 

A narrow view would limit data analysis to unsupervised methods to use current 

terminology. Predictive or supervised modeling has evolved in many ways into a conceptual 

revolution comparable to that of the unsupervised. We have moved from a model-driven approach 

to a data driven approach where the models come from the exploration of the data and not from a 

theory of the mechanism generating observations, thus reaffirming the second principle of Benzécri: 

“the models should follow the data, not vice versa” . 

The difference between these two cultures: generative models versus algorithmic models, or 

models to understand versus models to predict has been theorized by Breiman (2001), Saporta 

(2008), Shmueli (2010) and taken up by Donoho (2015). The meaning of the word model has evolved: 

from that of a parsimonious and understandable representation centered on the fit to observations 

(predict the past) one has moved to black box type algorithms whose objective is to forecast the 

most precisely possible new data (predict the future). The success of machine learning and especially 



the renewal of neural networks with deep learning have been made possible by the increase in 

computing power, but also and above all by the availability of huge learning bases. 

3.1 Paradigms and paradoxes 

When we ask ourselves what is a good model, we quickly arrive at paradoxes.  

A generative model that fits well with collective data can provide poor forecasts when trying to 

predict individual behaviors. The case is common in epidemiology. On the other hand, good 

predictions can be obtained with uninterpretable models: targetting customers, or approving loans, 

are not needing a consumer theory.  Breiman remarked that simplicity is not always a quality: 

“ Occam’s Razor, long admired, is usually interpreted to mean that simpler is better. Unfortunately in 

prediction, accuracy and simplicity (interpretability) are in conflict “. 

“Modern statistical thinking makes a clear distinction between the statistical model and the world. 

The actual mechanisms underlying the data are considered unknown. The statistical models do not 

need to reproduce these mechanisms to emulate the observable data” (Breiman, 2001).  

Other quotes illustrate these paradoxes: 

“Better models are sometimes obtained by deliberately avoiding to reproduce the true mechanisms” 

(Vapnik, 2006). 

“Statistical significance plays a minor or no role in assessing predictive performance. In fact, it is 

sometimes the case that removing inputs with small coefficients, even if they are statistically 

significant, results in improved prediction accuracy” (Shmueli, 2010) 

In a Big Data world, estimation and tests become useless, because everything is significant! For 

instance a correlation coefficient equal to 0,002 when the number of observations is 106 is  

significantly different from 0, but without any interest. Usual distributional models are rejected since 

small discrepancies  between model and data are significant. Confidence intervals have zero length 

etc. etc. One should keep in mind the famous sentence of George Box: “All models are wrong, some 

are useful “. 

3.2 From statistical learning theory to empirical validation 

One of the major contributions of the theory of statistical learning developed by Vapnik and 

Cervonenkis was to give the conditions of generalizability of the predictive algorithms and to 

establish inequalities on the difference between the empirical error of adjustment of a model to 

observed data and the theoretical error when applying this model to future data from the same 

unknown distribution. If the theory is not easy to use, it has given rise to the systematization of the 

practice of dividing data into 3 subsets: learning, testing, validation (Hastie, Tibshirani, Friedman, 

2001).  

There had been warnings in the past, like that of Paul Horst 1941: “the usefulness of a prediction 

procedure is not established when it is found to predict adequately on the original sample; the 

necessary next step must be its application to at least a second group. Only if it predicts adequately 

on subsequent samples can the value of the procedure be regarded as established” and the finding of 

cross validation by Lachenbruch & Mickey, 1968 and Stone, 1974.  But it is only recently that the use 

of validation and test samples has become widespread and has become an essential step for any 

data scientist. However, there is still room for improvement if we go through the publications of 

certain areas where prediction is rarely checked on a hold-out sample. 

3.3 Challenges  



Supervised methods have become a real technology governed by the search for efficiency. 

There is now a wealth of methods, especially for  binary classification: SVM, random forests, gradient 

boosting, neural networks, to name a few. Ensemble methods are superimposed to combine them 

(see Noçairi et al., 2016). Feature engineering consists of constructing a large number of new 

variables functions of those observed and choosing the most relevant ones. While in some cases the 

gains over conventional methods are spectacular, this is not always the case as noted by Hand 

(2006). 

Software becomes more and more available: in 50 years we have moved from the era of 

large, expensive commercial systems (SAS, SPSS) to the distribution of free open source packages like 

R and ScikitLearn. The benefits are immense for the rapid dissemination of new methods but the 

user must be careful about the choice and often the lack of validation and quality control of many 

packages: it is not always clear if user written packages are really doing what they claim to be doing. 

Hornik (2012) was already wondering if there were not too many R packages 

10 years ago, in a resounding article C.Anderson had prophesied the end of theory since  “the 

data deluge makes the scientific method obsolete”. In a provocative manner he wrote “Petabytes 

allow us to say: "Correlation is enough." We can stop looking for models. We can analyze the data 

without hypotheses about what it might show. We can throw the numbers into the biggest 

computing clusters the world has ever seen and let statistical algorithms find patterns where science 

cannot.”  This was of course misleading and the setbacks of Google's epidemic influenza forecasting 

algorithm brought a denial (Lazer et al., 2014). Correlation is not causality and  drawing causal 

inference from observational data has always been a tricky problem. As Box et al. put it (1978), “To 

find out what happens when you change something, it is necessary to change it”. The best way to 

answer causal questions is usually to run an experiment. Drawing causal inference from Big Data is 

now a hot topic, cf Bottou et al. (2013) et Varian (2016). 

Quantity is not quality and massive data can be biased and lead to unfortunate decisions 

reproducing the a priori that led to their collection. Many examples have been discovered related to 

discrimination or presuppositions about gender or race. More generally, the treatment of masses of 

personal data raises ethical and privacy issues when consent has not been gathered, or has not been 

sufficiently explained. Books for the general public such as Keller and Neufeld (2014) and O'Neil 

(2016) have echoed this. 

5. Conclusion 

The past 50 years have been marked by dramatic changes in statistics. The ones that will 

follow will not be less formidable. The Royal Statistical Society is not afraid to write in its Data 

Manifesto “What steam was to the 19th century, and oil has been to the 20th, data is to the 21st.”  

Principles and methods of Data Analysis are still actual and exploratory (unsupervised) and predictive 

(supervised) analysis are the two sides of the same approach. But as correlation is not enough,  

causal inference could be the new frontier and could go beyond the paradox of predicting without 

understanding by going towards understanding to better predict, and act to change. 

If the job of statistician or data scientist will be ever more exciting, we believe that it will have to be 

accompanied by an awareness of its social responsibility.  
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