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Abstract Multiblock component methods are applied to data sets for which several
blocks of variables are measured on a same set of observations with the goal to analyze
the relationships between these blocks of variables. In this article, we focus on multi-
block component methods that integrate the information found in several blocks of
explanatory variables in order to describe and explain one set of dependent variables. In
the following, multiblock PLS and multiblock redundancy analysis are chosen, as par-
ticular cases of multiblock component methods when one set of variables is explained
by a set of predictor variables that is organized into blocks. Because these multiblock
techniques assume that the observations come from a homogeneous population they
will provide suboptimal results when the observations actually come from different
populations. A strategy to palliate this problem—presented in this article—is to use a
technique such as clusterwise regression in order to identify homogeneous clusters of
observations. This approach creates two new methods that provide clusters that have
their own sets of regression coefficients. This combination of clustering and regres-
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sion improves the overall quality of the prediction and facilitates the interpretation. 
In addition, the minimization of a well-defined criterion—by means of a sequential 
algorithm—ensures that the algorithm converges monotonously. Finally, the proposed 
method is distribution-free and can be used when the explanatory variables outnum-
ber the observations within clusters. The proposed clusterwise multiblock methods 
are illustrated with of a simulation study and a (simulated) example from marketing.

Keywords Multiblock component method · Clusterwise regression · Typological 
regression · Cluster analysis · Dimension reduction

Mathematics Subject Classification 62H30 · 62H25 · 91C20

1 Introduction

A common problem in the analysis of large data sets is to explore the relationships 
between several blocks of variables—measured on the same observations—connected 
according to a relevant (sometimes complex) user-defined arrow diagram. This prob-
lem is typically handled with multiblock component methods such as PLS Path 
Modeling (PLS-PM) (Wold 1985; Lohmoller 1989), Generalized Structured Compo-
nent Analysis (GSCA) (Hwang and Takane 2004), Regularized Generalized Canonical 
Correlation Analysis (RGCCA) (Tenenhaus and Tenenhaus 2011) or THEmatic Model 
Exploration (THEME) (Bry et al. 2012). In this paper, we address a more restrictive 
problem—called the (K + 1) problem—often encountered in practice, where one set 
of (dependent) variables is explained by an another set of (explanatory) variables that 
is organized into K blocks. This (K + 1) problem can be handled (among other tech-
niques, see (Vivien 2002) for a review) with two component-based techniques such as:
(1) Multiblock Partial Least Squares (MBPLS) and (2) Multiblock Redundancy Anal-
ysis (MBRA). Multiblock Partial Least Squares (Wold 1984)—a covariance based 
technique—seeks linear combinations of the variables of the K blocks with maxi-
mal covariance with the variables in the (K + 1)-th block. By contrast, multiblock 
Redundancy Analysis—a regression based technique—seeks linear combinations of 
the variables in the K blocks that best predict the variables in the (K + 1)-th block 
(of “dependent variables”). These two methods can be viewed as particular cases of 
the multiblock component methods previously cited.

These multiblock techniques—that are used in a variety of fields such as chemomet-
rics, sensometrics, or process monitoring among others—assume that the observations 
come from a homogeneous population. However, it often happens that—unbeknownst 
to the analyst—the observations originate from different populations, and, in this case, 
the statistical model computed on the whole set of observations may be of poor qual-
ity. A way to palliate this problem is to identify sub-populations (i.e., clusters) of 
observations and compute one component-based model per cluster of observations. 
A standard approach to obtain clusters within a regression framework is clusterwise 
regression (a.k.a. typological regression, see, e.g., (DeSarbo and Cron 1988; Spath 
1979)). Clusterwise regression assumes that there is an underlying group structure of 
the observations and that each cluster can be revealed by the fit of a specific regres-
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sion model. In a more formal way, clusterwise regression simultaneously looks for
a partition of the observations into clusters and minimizes the sum of squared error
computed over all the clusters.

In this article, we combine MBPLS and MBRA with a clusterwise approach to
create two new methods that can find the underlying structure of the observations and
provide each cluster of observations with its own set of regression coefficients. This
combination of clustering and regression improves the fit of the regression, facilitates
interpretation, and is particularly well tailored for prediction (i.e., rather than, e.g., for
modeling). The remainder of the paper is organized in three sections. In themethod sec-
tion, multiblock component methods (i.e., MBPLS and MBRA) are briefly reviewed
(and detailed in Appendices 1 and 2), the proposed new methodology is presented
and a solution for the prediction of new observations is exposed and discussed. In the
applications section, clusterwise multiblock methods and their properties are illus-
trated with both a simulation study and the analysis of a (simulated) example from
marketing and consumer satisfaction. Finally, conclusions and directions for future
work are given.

2 Methods

2.1 Notations

Matrices are denoted by bold upper-case letters (e.g., X) and column vectors by bold
lower-case letters (e.g., x). The symbol T (e.g., xT) denotes the matrix transpose oper-
ation. The identity matrix is denoted I.

The data describe a sample of N observations and comprise one N by Q matrix
of dependent variables denoted Y = (y1, . . . , yQ) and a set of K matrices (also
called blocks) of explanatory variables each of order N by J k and each denoted
Xk = (xk1 , . . . , x

k
Jk

). The orthogonal projector of RN onto the column space of Xk ,

denoted Pk , is defined as

Pk = Xk
((

Xk
)T

Xk
)−1 (

Xk
)T

. (1)

The K matrices Xk are stored in the matrix X = (X1, . . . , XK ) of order N by
J (i.e., J = ∑K

k=1 J
k). For convenience (but without loss of generality), matrices

Y and X are assumed to be column centered and normalized (i.e., for each variable
(column), the sum over all N observations is zero and its norm is one). However,
variables (within a given block of variables) could also be weighted (e.g., to handle
differences between block sizes) according to the number of variables of their block
(Westerhuis and Coenegracht 1997) or to block inertia (Bougeard and Cardinal 2014).
Specifically, blocks could be weighted according to their inertia by replacing Xk and
Y respectively with
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X̃k = Xk√
K trace((Xk )TXk )

N−1

and Ỹ = Y√
trace(YTY)

N−1

.

In the following (i.e., simulation study in Sect. 3.1), block weighting is considered as
a factor of interest.

In multiblock analysis, the important information from each matrix Y and X =
(X1, . . . , XK ) is expressed by a component (or factor) that results as a linear com-
bination of the columns of Y and X, respectively, and will be denoted by u and tk

computed as
u = Yv and tk = Xkwk for k = 1, . . . , K , (2)

where the coefficient vectors v and wk are called the vectors of loadings of, respec-
tively, the Y and Xk matrices. The global component that sums up all the explanatory
variables, denoted t, is computed as

t = Xw . (3)

As relationships between datasets are rarely unidimensional, higher order components
are often needed. These higher order components are denoted with the superscript
(h); so, for example, the hth component for the whole X matrix is denoted t(h) with
h = (1, . . . , H), H being the maximum number of dimensions kept for the analysis.

The N vectors of observations are assumed to be clustered intoG unknown clusters
denoted {C1, . . . ,CG}, with Ng denoting the number of observations of the gth cluster
(and so N = G

g=1 Ng). The matrices Yg and Xk
g denote the data matrices of the

gth group of 

∑
(respectively) the dependent variables (i.e., Y) and the kth block of explanatory ones (i.e., Xk ). More precisely, the matrix Yg is of size (Ng × Q) and 

the matrix Xg of size (Ng × J k ). Figure 1 illustrates the main notations used in this 
article.

2.2 Standard multiblock component methods

As mentioned earlier, we focus on multiblock component methods that integrate the 
information in several explanatory blocks in order to explain or predict a (single) 
matrix of dependent variables. Two of the most well-known of these methods (for 
reviews see (Vivien 2002; Kissita 2003)) are multiblock PLS for the case of a single 
dependent dataset (MBPLS) and multiblock redundancy analysis (MBRA). Inciden-
tally, both methods can be viewed as special cases of regularized generalized canonical 
correlation analysis (RGCCA) and, to a lesser extent, of PLS-PM, when choosing spe-
cific normalization constraints on explanatory and dependent components. These two 
methods can also be viewed as particular cases of THEME when relationships between 
explanatory and dependent components are studied block by block. These methods 
are component-based analyses for which each dataset (i.e., Y and (X1, . . . , XK )), 
is represented by a (optimum) component denoted (respectively) u = and tk for 
k = (1, . . . ,  K ) for the first-order solution. In addition, a global component, denoted
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Fig. 1 Graphical display of clusterwise and multiblock data. In this Figure, the observations are (for
convenience) listed clusterwise but this arrangement is not genuine (i.e., does not reflect an unknown
ground-truth); it could be obtained after a suitable permutations of the rows of matrix X (as obtained, e.g.,
from one of the algorithms described in this paper). In this Figure, (K = 3) blocks are illustrated but it
could be extended to a general K

t, represents the whole set of explanatory variables. Because these methods use com-
ponents, they can handle multicollinear datasets and therefore can be used when the
explanatory variables outnumber the observations. The details of the methods is given
in Appendix 1 for MBPLS and Appendix 2 for MBRA.

2.3 Existing clusterwise methods

Existing clusterwisemethods seek clusterswithin a regression frameworkwhile simul-
taneously minimizing the sum of squared error computed over all the clusters. These
methods can be viewed as extensions of the K -means algorithm to the problem of
prediction for which the sum of square of prediction errors is minimized instead of
the within-inertia. As in standard regression, ordinary least squares or maximum like-
lihood estimations can be used to assess regression coefficients. Bock (1969), Diday
(1976) and Spath (1979) proposed K -means like algorithms based on a least square
error criterionwhileDeSarbo andCron (1988) proposed amethod based on conditional
mixture likelihood. In the same vein, a multivariate regression for heterogeneous data
which takes account of both the between- and the within-cluster variability has also
been proposed (Vicari and Vichi 2013). Extensions to principal component regression
(PCR) (Charles 1977) and partial least square regression (PLS) (Vinzi et al. 2005;
Preda and Saporta 2005) have also been proposed to deal with multicollinearity, small
sample size, or large number of variables.

In the framework of component-based path-modeling methods, several clusterwise
methods have been applied in the marketing field (for an early review, refer to Sarstedt
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2008). Among these methods, some interesting and recent ones can be singled out: (1) 
the widely-used finite-mixture PLS (FIMIX-PLS)—although it assumes multivariate 
normally distributed data (Hahn et al. 2002)—(2) fuzzy clusterwise generalized struc-
tured component analysis (FCGSCA) (Hwang et al. 2007)—which minimizes the sum 
of all residuals computed over all the clusters—(3) REBUS-PLS—which is based on 
the hierarchical clustering based on a closeness measure defined from the residuals 
coming from the same models (Vinzi et al. 2009)—and 4) PLS-IRRS which identifies 
homogeneous clusters that have similar residual values (Schlittgen et al. 2016).

In the field of multigroup analysis—where the groups of observations are known 
a priori—clusterwise simultaneous component analysis (CW-SCA) seeks clusters 
among groups of observations rather than among observations (De Roover et al. 2012)
(variables are considered to belong to a single block). It is worth noting that methods 
based on likelihood are relevant for data exploration or modeling but do not focus on 
prediction as dependent values are needed to compute the likelihood.

2.4 Proposed clusterwise multiblock regression models

Clusterwise multiblock regression methods extend the domain of application of stan-
dard multiblock regression methods by assuming that the N vectors of observations 
(i.e., rows of X) originate from G different unknown clusters and that each cluster 
has a specific regression model. Here, we propose two methods derived, respectively, 
from MBPLS and MBRA: clusterwise MBPLS (CW.MBPLS) and clusterwise MBRA 
(CW.MBRA). Both methods look for clusters of observations and compute for each 
cluster a set of regression coefficients.

2.4.1 Properties

Table 1 summarizes seven properties of the two proposed clusterwise multiblock 
regression methods.

It can be seen that they share three common properties but each method has some 
specific properties (see details in Table 1). Some related methods have already been 
proposed in the fields of clusterwise principal component regression (PCR), ridge 
regression, or even plain PLS regression (Charles 1977; Vinzi et al. 2005; Preda and 
Saporta 2005), but these methods do not fulfil Properties 4 (block data), 2 (decreasing 
monotonicity), or 3 (prediction).

2.4.2 Optimality criteria

Just like for standard clusterwise methods, the criterion to minimize is the sum of the 
squared error computed over all the clusters using local multiblock models applied to 

each cluster. Let Yg and Xg = 
(

X1
g, . . . , Xk

g, . . . , Xg
K 
) 
be the data matrices corre-

sponding to cluster Cg for (respectively) the dependent and the explanatory variables. 
Depending upon the methods, multiblock PLS regression or multiblock redundancy 
analysis will then be applied to each cluster and so each method minimizes a specific 
criterion.
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Table 1 Clusterwise multiblock properties

Property Description CW.MBPLS CW.MBRA

1 Distribution-free x x

2 Is based on a goodness of fit criterion that decreases
monotonically at each iteration

x x

3 Allows the prediction of new observations x x

4 Takes into account the block organization of the
explanatory variables

x

5 Can be used when the explanatory variables per
block outnumber the observations within each
cluster (Jk >> Ng)

x

6 Can be used when the explanatory variables
outnumber the observations within each cluster
(J >> Ng)

x

7 Deals with multicollinearity within the explanatory
dataset X

x

Clusterwise multiblock PLSWhen the multiblock PLS regression model is applied to
each cluster, optimality criteria (10) and (18) of MBPLS (given in Appendix 1) are
generalized to the clusterwise context, and so the criterion for clusterwiseMBPLS for
an optimal number O of components to be included in the model is

argmin
(c1,...,cG )

G∑
g=1

∥∥∥∥∥Yg −
O∑

h=1

t(h)
g

(
c(h)
g

)T∥∥∥∥∥
2

with

t(h)
g = Xgw(h)

g
∗

and w(h)
g

∗ =
h−1∏
l=1

⎡
⎢⎣I −

w(l)
g

(
t(l)g

)T
‖t(l)g ‖2

⎤
⎥⎦ w(h)

g (4)

(cf. Eqs. (18) and (19) for standard MBPLS).

Clusterwisemultiblock redundancy analysisWhen themultiblock redundancy analysis
model is applied to each cluster, optimality criteria (24) and (28) of standard MBRA
(given in Appendix 2) are generalized to the clusterwise context, and so the criterion
for clusterwiseMBRA, for an optimal number O of components to be included in the
model is

argmin
(c1,...,cG )

G∑
g=1

∥∥∥∥∥Yg −
O∑

h=1

K∑
k=1

ak(h)
g tk(h)

g

(
c(h)
g

)T∥∥∥∥∥
2

with

tk(h)
g = Xk

g
(h−1)

wk(h)
g (5)
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where Xk
g
(h−1)

is the residual of the prediction of Xk
g from the components

(t(1)g , . . . , t(h−1)
g ) for (k = 1, . . . , K ) and for (g = 1, . . . ,G) (cf. Eq. (28) for standard

MBRA).

2.4.3 Algorithm

The clusterwise multiblock regression algorithm searches an optimal partition of the
N vectors of observations into G clusters as well as the corresponding set of regres-
sion coefficient matrices (B1, . . . , BG) that minimize the overall error respectively
described in Eq. (4) for CW.MBPLS and Eq. (5) for CW.MBRA. To ensure that the
error decreases monotonically at each iteration of the algorithm, we use a sequential
algorithm (Spath 1979) rather than a standard batch algorithm (Charles 1977; Preda
and Saporta 2005; Vinzi et al. 2005). So, each vector of observation is assigned to its
optimal cluster and the overall error is updated whenever one observation switches
cluster. To eliminate a potential effect of the order in which the observations enter
the algorithm, the observations are randomly sorted prior to each run. This sequential
algorithm iterates the following steps for a given number of clusters G and for factor
dimensionality H :

Step 1 Choose some initial partition of the N vectors of observations into G clusters
{C1, . . . ,CG} and a starting observation denoted n.

Step 2 Forn ∈ Cg examinewhether there is a clusterCg′ with g′ �= g such that shifting
observation n from Cg to Cg′ reduces the overall error given (respectively) in
Eq. (4) for CW.MBPLS or (5) for CW.MBRA.

a. Choose the cluster Cg′ that gives the maximal reduction of the overall error.
Then, remove observation n from cluster Cg and assign it to cluster Cg′

b. Otherwise, go to Step 3
Step 3 Repeat Step 2 for all the observations n = (1, . . . , N ); doing so guarantees

that the overall error decreases monotonically at each change in assignation.
Step 4 Get the final assignation of observations into G clusters {C1, . . . ,CG} and the

associated regression coefficient matrices
(

B(H)
1 , . . . , B(H)

G

)
.

2.4.4 Parameter selection

For both methods, the optimal numbers of clusters and dimensions are unknown and 
must therefore be determined. Because our methods do not refer to a specific prob-
ability model, penalized parametric criteria such as BIC or AIC (DeSarbo and Cron 
1988) cannot be used. Other penalized criteria such as those proposed by (Shao and 
Wu 2005)—while theoretically distribution-free—do not work well in practice when 
the distributions are not multivariate normal. Following references (Charles 1977; 
Preda and Saporta 2005) and, because the proposed clusterwise multiblock methods 
can be used to explicitly predict new vectors of observations, we propose to select the 
unknown parameters on the basis of a ten-fold cross-validation procedure where the 
optimal G and O parameters are selected to minimize the average root mean square 
error (RMSE) of prediction (computed with Eq. (23)). The prediction for a new obser-
vation is performed as a two-step process: First, predict the cluster of the observation



Clusterwise analysis for multiblock component methods

(based on theXk matrices) and second predictY by applying to the observation the pre-
dictive model of its assigned cluster. The first step can be achieved by any appropriate
supervised classification method, the categorical variable (to predict) coming from the
clusterwise algorithm. For coherence with the properties of the proposed clusterwise
multiblock analyses [i.e., Property 1 (distribution-free), Properties 5–6 (J >> Ng),
and Property 7 (multicollinearity)], we decided to use the non-parametric K -nearest
neighbors method (as implemented in the kknn R package).

2.4.5 In practice

Variable interpretationWhen clusterwise multiblock methods are applied to datasets
with a large number J or J k of explanatory variables, the regression coefficients are
often uninformative because they often provide information that is too vague for inves-
tigating the relationships between variables. In these cases, it is more informative to
sort the explanatory variables by order of importance with regard to the whole Y pre-
diction. To do so,multiblock tools—such as variable importance, denotedVarImp (i.e.,
the explanatory variable importance for the dependent block)—are used (Bougeard
et al. 2011b). In the clusterwise framework, the vector (denotedVarImp) of theVarImp
indices is computed for a cluster Cg and dimension h as

VarImp(h) =
(
a(h) � a(h)

) �
(

w(h)∗ � w(h)∗
)

∥∥(
a(h) � a(h)

) � (
w(h)∗ � w(h)∗)∥∥ for h = 1, . . . , O (6)

where � denotes the Hadamard element-wise product and the vector a of length J in
which each scalar (a1, . . . , aK ) is respectively repeated (J 1, . . . , J K ) times. For the
case of a model with O dimensions to be taken into account, this index is weighted
according to the relative importance of each dimension (i.e., the eigenvalue λ(h)) as

VarImp(O) =

O∑
h=1

λ(h)VarImp(h)

O∑
h=1

λ(h)

. (7)

Block interpretation In the same vein as theVariable Importance, theBlock Importance
index (denoted BlockImp) represents the explanatory block importance for the depen-
dent variables (Bougeard et al. 2011b). In the clusterwise framework, the Block Imp
index can be processed within each cluster for a given dimension h such as

Block Impk(h) = (ak(h))2 for k = 1, . . . , K and h = 1, . . . , O . (8)

For the case of a model with several dimensions O , this index is weighted according
to the relative importance of each dimension (i.e., the eigenvalue λ(h) of the matrix
YTXXTY for MBPLS and (25) for MBRA) as
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Block Impk(O) =

O∑
h=1

λ(h)Block Impk(h)

O∑
h=1

λ(h)

for k = 1, . . . , K . (9)

Algorithm Because each iteration of the algorithm decreases the criterion that is to be 
minimized (see Eq. (4) for  CW.MBPLS and Eq. (5) for  CW.MBRA), the algorithm 
is guaranteed to converge, but it is, however, not guaranteed to converge to a global 
minimum. To avoid local optima, several initializations are used and the iteration that 
minimizes the overall error is kept. According to the literature (Spath 1979; DeSarbo 
and Cron 1988), and from our experience, using twenty random starts should suffice 
to give stable results. As detailed in Sect. 2.4.3, the number of steps of the algorithm is 
equal to the number of observations and from our experience, this number is adequate 
to achieve convergence. Note that the computational complexity of the algorithm 
depends on the number of initializations, of observations N , of clusters  G, and of the 
dimension H because these parameters directly affect the number of computations. 
Examples of time processing are given in Appendix 3. In practice, there is no restriction 
imposed on the proposed clusterwise multiblock algorithm in terms of data structure, 
block structure and cluster structure. The results described in Appendix 3, show that 
the processing time increases sharply when a large number of explanatory variables 
is combined with a large number of dimensions.

Package availability The clusterwise multiblock methods described in this article 
are implemented in the R (Team 2015) package mbclusterwise available from 
CRAN. In its current implementation, mbclusterwise uses parallel computing to 
simultaneously compute the random initializations but processing speed still needs to 
be improved for large numbers of observations and variables.

3 Application

In this section we: (1) assess the performance of clusterwise multiblock methods with 
a simulation study, and (2) illustrate the proposed clusterwise multiblock methods 
with a (simulated) example from marketing and consumer satisfaction.

3.1 Simulation study

3.1.1 Problem

A simulation study was conducted to investigate the performance of the two methods 
under study (CW.MBPLS, CW.MBRA). Thereby we evaluated how the two proposed 
methods are influenced by ten factors (selected for their theoretical and practical 
importance): (1) the number of dependent variables, (2) the number of explanatory 
variables, (3) the number of observations, (4) the number of blocks, (5) the proportion 
of variables per block, (6) the block weighting scheme when the blocks of variables
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have different sizes, (7) the within-block correlation, (8) the number of clusters, (9) the
proportion of observations per cluster, and (10) the separation between clusters. The
performance of the methods was evaluated with: (1) the Root Mean Square Error of
prediction evaluated from a ten-fold cross-validation procedure (compared to the error
for the single-cluster case), (2) the adjusted Rand index (Hubert and Arabie 1985), (3)
the model complexity (i.e., the number of components included in the model used as a
measure of parsimony rather than an estimation of the unknown true dimensionality),
(4) the regression coefficients, and (5) the cluster sizes.

3.1.2 Design

The clusterwise method performances were evaluated by 21 case studies described in
Table 2.

Explanatory variables were generated from normal mixture models whose param-
eters (proportions, means and covariances) are (p1, . . . , pG ,μ1, . . . ,μG ,�1, . . . ,

�G). The proportion of observations (p1, . . . , pG) in each cluster was chosen as indi-
cated by the vector Cluster.si ze given in Table 2. The centres of the clusters were
either well- or mild-separated as specified by the Cluster.sep parameter: in case of
well-separation, each variable in Cluster C1 comes from a normal distribution with
zero mean (μ1 = 0, a vector of size J ) and each variable in Cluster C2 comes from
a normal distribution with mean equal to 4 (μ2 = 4, a vector of size J ), whereas in
case of mild-separation, each variable in Cluster C1 is simulated as before (μ1 = 0)
and each variable in Cluster C2 comes from a normal distribution with mean equal
to 2 (μ2 = 2). The covariance matrices of order J are chosen to be identical for all
clusters Cg (�g = �). It was defined from the block structure and built in such a
way that the J explanatory variables were correlated within their block (Within.cor
= .9 or .7) and mildly correlated with the other block variables (Between.cor = .5).
Explanatory variables were positively correlated with the dependent variables for the
first cluster and negatively correlated with the last cluster (i.e., B1 = 1 and B2 = −1
for two clusters; B1 = 1, B2 = 0 and B3 = −1 for three clusters). Dependent vari-
ables were computed from the explanatory variables (using the regression coefficients
of the model) and weakly perturbed with the addition of a N (0, 0.05) error compo-
nent applied to the cluster regression coefficients along with the addition of a random
normal error (i.e., N (0, 0.1)) residual.

Clusterwise methods were compared in 21 situations depending on the general
structure and the block structure (case studies 1–7) as well as the cluster structure
(case studies a–c), all details being given in Table 2. Several number of components
to be included in the model were selected (following the Dim factor values reported
in Table 2); the one that minimized the Root Mean Square Error of prediction was
kept (as the Dim.opt values reported in Table 3). For each of the 21 case studies, 20
datasets were simulated.

3.1.3 Results

The results of the simulations are given in Tables 3 and 4.
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Clusterwise analysis for multiblock component methods

The first performance criterion is the Root Mean Square Error of prediction as
evaluated with a ten-fold cross-validation procedure (Table 3). Not surprisingly, clus-
terwisemultiblock analyses always improve the RootMean Square Error of prediction
while taking into account the cluster structure of observations. This effect is particu-
larly clear for the simplest simulation cases (cases 1–5 combined with a and b) with an
average ratio between the two errors (i.e., RMSEp1 / RMSEp) of 5.96. This effect is
also clear for the more complex cases (6, 7, and c) with an average ratio of 1.92. Then,
MBRA and MBPLS have comparable prediction performances for the single-cluster
cases with an average ratio (i.e., RMSEp(MBPLS) / RMSEp(MBRA)) of 0.90 slightly in
favor of MBPLS. To a lesser extent, this effect can also be seen for the more complex
cases (cases 6, 7, and c) with an average ratio of 0.83. Note that CW.MBPLS performs
far better than CW.MBRA for the simplest cases (cases 1–5 combined with a and b)
with an average ratio of 0.40. In such cases, CW.MBRA suffers from its strong block
constraints whereas it correctly performs for the cases of different block sizes (cases
6 and 7).

The second performance criterion—i.e., the adjusted Rand index—measures how
well the actual clusters are recovered (see Table 3). Values of the Rand index close
to 1 indicate that the clusterwise multiblock analyses succeeded in recovering the
actual clusters, and values close to 0 indicate that the methods failed to recover the
actual clusters. Not surprisingly, best performance was achieved for the case a (well-
separated clusters of equal sizes) with an average adjusted Rand of .81 and slightly
decreased for the case b (well-separated clusters of different sizes) with an average
adjusted Rand of .77 and for the case c (mild-separated clusters of equal sizes) with
an average Adjusted Rand of .73. Clusterwise analyses always performed to recover
well-separated clusters of equal sizes. They also performed to recover well-separated
clusters of different cluster sizes. But they may encounter difficulties in finding mild-
separated clusters. ThemethodCW.MBPLS performed better thanCW.MBRA for the
cases 1–5 with an average ratio (i.e., AdjRd(MBPLS) / AdjRd(MBRA)) of 1.36 whereas
the opposite was true for the cases 6 and 7 with an average ratio of 0.69. Whatever the
cluster structure, CW.MBRA performed better when the blocks have different sizes
in recovering the actual clusters although its prediction error was slightly lower than
the prediction error of CW.MBPLS— an effect likely due to difficulties in recovering
the actual regression coefficients.

The third performance criterion was the model complexity (used here as a measure
of parsimony), as measured by the number of components included in the model
(Table 3). A higher average number of components was needed for the cases b (1.54)
and c (1.75) than for the simpler case a (1.29). The method CW.MBRA always
needed a higher number of components than CW.MBPLS with an average ratio (i.e.,
Dim(MBPLS) / Dim(MBRA)) of 0.88. The number of components included in the model
was, in general, around 1 but higher-order dimensions were needed for higher numbers
of clusters (case 3) and to a lesser extent in the case of lower within-block correlations
(case 5).

The last two performance criteria evaluated how well the actual regression coeffi-
cients and the cluster sizes were recovered (Table 4). The regression coefficients were,
most of the time, correctly recovered (cases 1–5) but differed slightly from the actual
values when the block sizes differed (cases 6 and 7) and—but to a lesser extent—
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when block sizes varied (case c); these effect being stronger for CW.MBRA. Cluster  
sizes were correctly recovered by clusterwise multiblock methods even when sizes 
were clearly unbalanced (case b).

To conclude, clusterwise multiblock analyses always improved the prediction when 
the observations displayed a cluster structure. The overall performance, except in 
terms of model complexity, was not really affected by the number of dependent and 
explanatory variables, the number of observations, the block size, the block weighting 
scheme, the within-block correlation, the number of clusters, or the proportion of 
observations per cluster. However, performance was affected by the cluster separation 
and by the proportion of variables within blocks. For the latter case, CW.MBRA better 
recovered the clusters but had some difficulties to find the actual regression coefficient 
values. For the simplest cases, CW.MBPLS performed better than CW.MBRA.

3.2 Application to consumer satisfaction data

3.2.1 Data and aim

We illustrate clusterwise multiblock analysis with a (simulated) example from mar-
keting and consumer satisfaction. This data set is available from the plspmR package 
(simdata), and is discussed and described in more details in Trinchera (2007) and 
Vinzi et al. (2007). These data were generated to mimic the structure of a survey related 
to consumer satisfaction when consumers are clustered in two clearly different groups 
of equivalent size. Specifically, the price fairness cluster of consumers is characterized 
by a strong relationship between product price and satisfaction and a weak relationship 
between product quality and satisfaction whereas the opposite is true for the quality 
oriented cluster of consumers.

In this data set, consumer satisfaction as well as price fairness and product quality 
are given for (N = 400) consumers. The satisfaction construct to be explained (Y) 
is described by (Q = 3) quantitative variables. The (J = 10) explanatory variables 
(stored in X) are organized in (K = 2) thematic blocks related to the price fairness 
(X1 dataset, 5 variables) and to the product quality (X2 dataset, 5 variables). The three 
dependent variables are highly correlated with each other (≈ .99 on average); the 
explanatory variables are correlated within a block (≈ .70 on average), but are not 
correlated between blocks (≈ .03 on average); dependent and explanatory variables are 
mildly correlated (≈ .30 on average). Note that, these data simulated highly correlated 
dependent variables, a case which is sometimes albeit rarely encountered in practice. 
Such a pattern corresponds to explaining a single variable and affects the clusterwise 
component-based analysis performance (i.e., lower prediction error than for the case 
of several non-correlated dependent variables) but does not affect the capacity of the 
method to explain several variables. Our aim in this example was to identify clusters 
of consumers that correspond to different predictive models.
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3.2.2 Parameter selection

A ten-fold cross-validation procedure was applied to identify two main parameters of
interest: (1) the number of clusters (i.e.,G), and (2) the resulting optimal dimension for
the model (i.e., the optimum O). These parameters were estimated by minimizing the
error of prediction which expresses the predictive power of the model. The Root Mean
Square Error (RMSE) values for prediction are shown in Figure 2 for CW.MBRA and
CW.MBPLS.

The difference between the values of the RMSE of prediction for (G = 1) and
(G > 1) reflects the improvement of the prediction achieved by clusterwise multi-
block models compared to the non-clusterwise models. For example, considering
CW.MBRA, the average RMSEp moves from 1.18 to .92 when the model moves
from one (G = 1) to two (G = 2) clusters for the observations. The best solution is
achieved for a two cluster model (whichmatches the generative model). Theminimum
values of the prediction errors from CW.MBRA and CW.MBPLS are comparable and
slightly in favour of CW.MBPLS: RMSEp = .901 for CW.MBRA (H = 5 com-
ponents, G = 2 clusters) and RMSEp = .888 for CW.MBPLS (H = 1 component,
G = 2 clusters). However, as explained inAppendix 1,MBPLS, for the case of a single
dependent block Y, is not a true multiblock method because its results do not depend
upon the partition of the explanatory variables in blocks. As the explanatory variables
have a strong multiblock structure (see 3.2.1), we choose to apply CW.MBRA to ana-
lyze the differences between consumers in how satisfaction is related to the variables
measuring satisfaction.

As for CW.MBRA, the best solution (with two clusters) is achieved by using (H =
5) components (RMSEp = .901). However using (H = 5) components rather than
(H = 1) slightly improved the prediction error (RMSEp = .901 for 5 components and
RMSEp = .9222 for 1 component). In practice, according to the parsimony principle
and since the regression coefficients are similar, a model with a single component is
chosen to be interpreted. This solution assigns 204 consumers to ClusterC1 and 196 to
ClusterC2. The actual clusters being known, the adjusted Rand index can be computed
as well as the percentage of correct classification which are equal respectively to
.44 and 83% (confusion matrix in Table 5). Despite the good percentage of correct
classification, the adjusted-Rand index may seem disappointing but this index takes
into account its expected value (under the generalized hypergeometric distribution
assumption for randomness).

3.2.3 Cluster interpretation

As previously stated, one component was needed for best prediction. Not surprisingly
in the Redundancy Analysis framework, because the dependent variables are highly
correlated, the inertia of the dependent variables (i.e., matrix Y) is mainly explained
by the first component for both clusters (99.0% for Cluster C1 and 99.2% for Cluster
C2). The inertia of the explanatory variables (i.e., matrix X) explained by the first
component are comparable: 37.5% for Cluster C1 and 33.7% for Cluster C2. But
block inertia clearly depends on clusters: the inertia of X1 (Price block) explained by
the first component is equal to 68.9% for Cluster C1 and 3.1% for Cluster C2 whereas



S. Bougeard et al.

a

b

Fig. 2 Consumer satisfaction data: Mean value of the ten-fold Root Mean Square Error for prediction
(RMSEp) for  CW.MBRA (Fig. 2a) and CW.MBPLS (Fig. 2b) as a function of the number of clusters 
(G = 1, . . . ,  6) and the number of components in the model (H = 1, . . . ,  6). Whatever the method and the 
model dimension, the solution with two clusters is optimal and therefore the model always finds the correct 
number of clusters
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Table 5 Confusion matrix of the method CW.MBRA for the model with a single component

CW.MBRA Cluster C1 CW.MBRA Cluster C2 Sum

Actual cluster C1 168 32 200

Actual cluster C2 36 164 200

Sum 204 196

the inertia ofX2 (Quality block) is equal to 1.94% for ClusterC1 and 72.4% for Cluster
C2.

To evaluate the stability of the main parameters, we used the randboot function
(from the R package ade4) to generate 500 bootstrap samples that were then used
to get standard deviations and confidence intervals for the regression coefficients and
the variable importances for each cluster. Results of CW.MBRA are given in Table 6.

Table 6 shows that each cluster has a specific regressionmodel: for ClusterC1 (N =
204) the five measures of consumer satisfaction are associated with price (Price.1 to
Price.5) but also with one element of quality (Quali t y.3), this cluster corresponds
to price oriented customers. By contrast, Cluster C2 (N = 196) is associated with
quality (Quali t y.1 to Quali t y.5). Note that in this example, the dependent variables
are highly correlated and therefore, within a block, the regression coefficients have
very similar values.

Finally, the block importance indices also facilitate the interpretation because they
quantify the contributions of the explanatory blocks (X1, X2) to the overall consumer
satisfaction (Y). Results of CW.MBRA are given in Table 7.

It turns out that the influence of the explanatory blocks on consumer satisfaction dif-
fers depending upon the clusters. The ’price’ block (X1) has a much larger importance
for Cluster C1 (Block Imp1 = 92.8%) than for Cluster C2. Conversely, the ’quality’
block (X2) mainly influences Cluster C2 (Block Imp2 = 96.2%). This means that
these blocks and these clusters should be given specific attention in order to increase
consumer satisfaction.

4 Discussion

4.1 Multiblock component methods

Even though MBRA and therefore CW.MBRA have real multiblock constraints in
comparison to MBPLS and CW.MBPLS, it is, however, not obvious—as seen from
the simulation study—that the prediction performance of CW.MBRA is poorer than
CW.MBPLS. From our experience, we recommend to use CW.MBRA rather than
CW.MBPLS when the data have a multiblock structure to be taken into account and
when the explanatory blocks are not ill-conditioned. As a matter of fact, in our simu-
lation study, CW.MBPLS performed better than CW.MBRA but CW.MBRA better
recovered the clusters when the variable proportions differed in their blocks. In our
example, the results for CW.MBRA and CW.MBPLS are similar with regard to the
number of clusters, their sizes, their assignation (79% of observations are in the same
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Table 7 Consumer satisfaction data: block importance (Block Imp) of CW.MBRA for the (G = 2) clusters
for models involving (O = 1) component

Cluster C1 (N = 204) Cluster C2 (N = 196)

X1: price 92.8% 3.8%

X2: quality 7.3% 96.2%

cluster in terms of interpretation) and their main conclusions (i.e., satisfaction is either
related to price or to quality depending on the cluster).

4.2 Prediction

In the clusterwise framework, the prediction of new observations has only received
scan attention although it is an important feature for clusterwise multiblock methods.
In fact, in some cases—such as clusterwise methods based on finite mixture model—it
is de facto a “non-issue” because likelihood cannot be determined without knowing
the true value of y. For techniques amenable to prediction, though, the prediction
procedure proposed here also can be used and adapted. We choose the K -nearest
neighbor technique to assign (new)observations to a given cluster.However, depending
on data features, several other supervised classification methods could also be applied.

4.3 Cluster numbers

From our experience, the selection of the optimal cluster number based on the pre-
diction error works well when clusters are well-separated. For more subtle cluster
differences, a relevant penalized prediction error could also be proposed.

5 Conclusion and perspectives

We proposed two new component-basedmethods that extend clusterwise regression to
multiblock data and to model the relationships between one block of dependent vari-
ables and several blocks of explanatory variables, when these relations vary across
clusters of observations. The proposed methods simultaneously provide local regres-
sion models and identify associated clusters with underlying dimensions on which
these clusters are based. In addition, the minimization of a well defined criterion
by means of a sequential algorithm guarantees convergence. The number of compo-
nents to be included in the model and the number of clusters are defined so as to
minimize the prediction error on the basis of a ten-fold cross-validation. Finally, the
proposed methods are distribution-free. The application shows that the proposed clus-
terwise multiblock regression methods are useful tools that can be used to analyze
complex data as found, for example. in marketing, biology, or any field dealing with
population mixtures. The clusterwise procedures proposed are oriented both towards
modeling and prediction and can be applied to any other multiblock component
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methods such as PLS-PM, GSCA, RGCCA, or THEME provided that regression 
models are given. Specifically, PLS-PM, GSCA, and RGCCA are relevant methods 
for explanatory issues but present some limitations for prediction. One of their 
limitation is to fail to take into account more than one component in a model, because 
modeling is processed dimension by dimension without component selection rules. 
Then, relationships between block components in PLS-PM and RGCCA are 
symmetrical as they are based on global correlation or covariance measures and 
highlight what is common among the blocks (for details, refer to Dolce et al. 
2016); by contrast, THEME is based on partial correlation measures which are the 
basis of regression (Bry et al. 2012). Therefore, THEME being the method most 
oriented toward prediction may be the most suitable to be extended to the clusterwise 
purpose.

However, the proposed clusterwise approaches present some limitations and fur-
ther investigations needs to be undertaken to handle some specific data. The method 
parameters—namely the number of clusters and the number of components—are 
assumed to be the same for all blocks of explanatory variables. For future work, 
one can extend the proposed methods to the case of different numbers of clusters of 
observations as well as to components varying across blocks. This cannot be achieved 
through the current multiblock regression in which Y is explained using all the explana-
tory blocks at the same time. However, this can be obtained through block regressions 
where Y is alternatively explained by each explanatory block, these regressions being 
then associated with block deflations to ensure block component orthogonality. For 
the case of a larger number of observations and in a smaller number of variables, the 
proposed algorithm should be accelerated. In particular, the search of the unknown 
parameters G and H is based on (G × H) ten-fold cross-validations and is conse-
quently quite time consuming. For the case of a large number of observations, this 
time could be reduced by splitting the data into three subsets: the first subset would be 
used to estimate the regression coefficients with (1, . . . ,  H) components, the second 
subset would be used to select the optimal dimension H , and the last subset would be 
used to compute the prediction error to select the optimal cluster number G (refer to 
Martella et al. 2015 in another context).

Acknowledgements The authors are grateful to two anonymous reviewers for their valuable suggestions 
that greatly improved the clarity and the relevance of this article.

Appendix 1: multiblock PLS

In standard multiblock PLS for the case of a single dataset Y to explain, the relationship 
between Y and the K matrices Xk (stored in X) is first modeled by computing a pair 
of linear combinations u and t—called components—of the columns of, respectively 
Y and X such that these components have maximal covariance (see, e.g., Qin et al. 
2001; Abdi and Williams 2012). After this first step—equivalent to a standard PLS 
model (Qin et al. 2001)—specific components are computed to relate each Xk to Y. 
Formally, MBPLS first implements the following optimization problem
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δ = argmax
v,w

(cov(u, t)) with u = Yv, and t = Xw

under the constraints that

‖w‖2 = ‖v‖2 = 1. (10)

The solution of this problem is obtained by taking v and w (called, respectively, the
Y- and X-loadings) as (respectively) the first left and right singular vectors of matrix
YTX (and the first singular value δ gives the thought after maximum of Expression
(10)). In a second step, the dependent dataset Y is predicted (with a standard linear
regression) from the component t as

Ŷ = ttT

‖t‖2 Y = tcT with c = YTt
‖t‖2 . (11)

The matrix Ŷ therefore corresponds to the orthogonal projection of Y onto the compo-
nent t. InMBPLS, after the components and loadings have been found, block loadings
(also called partial loadings) are computed (see, e.g., Qin et al. 2001, and Equations
(3) and (4) for details) as

wk = (Xk)Tu∥∥uTXk
∥∥ , tk = Xkwk and ak = uTtk√√√√ K∑

k=1

(
uTtk

)2
. (12)

This way of computing the block loading vectors ensures that the global component
vector can be obtained as a weighted average of the block vectors, namely

t =
K∑

k=1

aktk with
K∑

k=1

(ak)2 = 1 and ‖wk‖2 = 1 . (13)

The partial loadings wk can be seen as normalized sub-vectors of w, and this implies
that MBPLS can naturally cope with multicollinearity in Xk or Y and will, therefore,
provide stable solutions.

As our regression problem is to get a good prediction of Y, this dataset is explained
with all the variables in (X1, . . . , XK ) (Westerhuis and Smilde 2001). As a conse-
quence, the component-based regression is derived from the global component t rather
than on block components tk . Thereafter, plugging Eq. (13) into Eq. (11) shows that
matrix Y can also be predicted from the partial components as

Ŷ = tcT =
K∑

k=1

aktkcT . (14)

Note that when—as it is the case here—the matrix Y does not include blocks, the Xk

block loadings are computed after the global loadings have been estimated, and so the
block loadings do not depend upon the partition of the explanatory variables in blocks;
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thereforeMBPLS, for the case of a single dependent block Y, is not a true multiblock
method (Westerhuis et al. 1998; Qin et al. 2001; Vivien 2002).

Because one component rarely completely explain the dependent variables, higher
order components are often needed. These higher order components are obtained
by first removing from the raw data the previous-order solution (a procedure called
“deflation”) and then re-iterating the optimization procedure on the deflated data.
Because this procedure ensures orthogonality of the components further used in the
component-based regression, we choose to deflate the raw data from the global com-
ponent t rather than from the block components tk . Also, as deflating X or Y leads
to the same prediction (Westerhuis and Smilde 2001), we choose to regress out the
effect of the first-order global component from X. Formally, in our deflation step, X
is replaced by X(2) computed as

X(2) =
(

I − ttT

‖t‖2
)

X . (15)

To improve the prediction, X is replaced in Eq. (10) by its residual defined in
Eq. (15). The process can then be re-iterated to obtain subsequent components. We
denote by O the optimal number of components to keep in the model (with O ≤ J )—
O is in general estimated by a cross-validation approach. This deflation step ensures
that components (i.e., the vectors t) obtained at different steps are orthogonal to each
other. Therefore, the predicted dependent dataset can bewritten according to the global
components or according to the block ones

Ŷ(O) =
O∑

h=1

t(h)(c(h))T =
O∑

h=1

K∑
k=1

ak(h)tk(h)
(

c(h)
)T

(16)

with

c(h) = YTt(h)

‖t(h)‖2 (17)

being the vector of the regression coefficients of Y on t(h). This last regression step
corresponds to the following optimization problem

argmin
c

∥∥∥∥∥Y −
O∑

h=1

t(h)(c(h))T

∥∥∥∥∥
2

with t(h) = X(h−1)w(h) (18)

where X(h−1) is the residual of the prediction of X from the h −1 previous components 
(t(1), . . . , t(h−1)). Because these components are orthogonal, Expression

t(h) = X(h−1)w(h)

is equivalent to

t(h) = Xw(h)∗
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with w(h)∗ defined as

w(h)∗ =
h−1∏
l=1

[
I − w(l)(t(l))T

‖t(l)‖2
]

w(h) (19)

(for proofs see, e.g., Tenenhaus 1998; Wold et al. 1983).
If we define

W(O)∗ =
[
w(1)∗, . . . , w(h)∗, . . . , w(O)∗] and C(O) =

[
c(1), . . . , c(h), . . . , c(O)

]
,

(20)

the optimal prediction of Y, denoted Ŷ(O), can be obtained, in a way analogous to
standard multiple linear regression, as

Ŷ(O) = XB(O) with B(O) = W(O)∗(C(O))T . (21)

Interestingly, rewriting Eq. (21) shows that it can also be obtained as the solution of
the following minimization problem

argmin
c

∥∥∥∥∥Y −
O∑

h=1

t(h)(c(h))T

∥∥∥∥∥
2

⇐⇒ argmin
Ŷ(O)

∥∥∥Y − Ŷ(O)
∥∥∥2 . (22)

This expression corresponds to a standard least square estimation problem and this
indicates, therefore, that the quality of the PLS model can be evaluated like a standard
linear regression model using the well-known Root Mean Square Error

RMSE = 1√
Q

∥∥∥Y − Ŷ(O)
∥∥∥ . (23)

Appendix 2: multiblock redundancy analysis

MBRA can be expressed as the solution of the following optimization problem (24)

δ = argmax
v,tk ,ak

(
cov2(u, t)

)
with u = Yv, t =

K∑
k=1

aktk, tk = Xkwk

under the constraints that
K∑

k=1

(ak)2 = 1 and ‖tk‖2 = ‖v‖2 = 1 . (24)

It can be shown that the solution of this problem is obtained by taking v as the first
eigenvector of the matrix
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K∑
k=1

YTPkY (25)

(see, e.g., Bougeard et al. 2007, 2011a for proofs and details).
InMBRA, block components come from the normalized projections of u onto each

subspace spanned by the variables of Xk and are computed as

tk = Pku
‖Pku‖ with ak = uTtk√√√√ K∑

k=1

(
uTtk

)2
. (26)

In MBRA, the global component is obtained as the weighted sum of the block
components, namely

t =
K∑

k=1

aktk with
K∑

k=1

(ak)2 = 1 and ‖tk‖2 = 1 . (27)

It can be noticed that global as well as block components of MBRA take into
account the partition of the explanatory variables in blocks. Furthermore—compared
toMBPLS—MBRA is more oriented towards the explanation ofY but will be less sta-
ble in case of multicollinearity within explanatory blocks because it requires matrix

inversions
(
i.e.,

(
(Xk)TXk

)−1
)
as indicated in Eqs. (25) and (26) see, for details,

Bougeard et al. (2011a).
As for MBPLS, the effect of the component t is regressed out of X through the

deflation of X upon this global component following Eq. (15). Subsequent compo-
nents are then obtained by replacing matrix X in Eq. (24) by its successive residual
matrices.

In a second step, the dependent dataset Y is predicted using the successive
components (t(1), . . . , t(H)) and Eqs. (16) and (17) for O—the optimal num-
ber of components in the model (in general obtained through a cross-validation
procedure).

As for MBPLS, the regression step of MBRA can be interpreted as the solution to
the following optimization problem

argmin
c

∥∥∥∥∥Y −
O∑

h=1

ak(h)tk(h)(c(h))T

∥∥∥∥∥
2

with tk(h) = Xk(h−1)wk(h) (28)

where Xk(h−1) is the residual of the prediction of Xk from the h − 1 previous compo-
nents (t(1), . . . , t(h−1)).
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Appendix 3: computation times for some representative case studies

See Table 8.

Table 8 Computation times of the clusterwise multiblock algorithm depending on the number of observa-
tions N , of explanatory variables J , of components included in the model H , and of clusters G

Parameter values High-performance computer Standard computer

N J O G (32 processing cores, 192 Go RAM) (4 processing cores, 8 Go RAM)

100 20 1 2 17.0 s 44.8 s

100 20 1 5 28.2 s 1.72 min

100 20 10 2 34.9 s 2.24 min

100 20 10 5 1.43 min 4.57 min

100 100 1 2 32.2 s 2.04 min

100 100 1 5 57.1 s 4.22 min

100 100 10 2 9.48 min 42.6 min

100 100 10 5 23.4 min 1.79 h

500 20 1 2 1.26 min 5.33 min

500 20 1 5 2.12 min 9.57 min

500 20 10 2 5.55 min 26.1 min

500 20 10 5 7.06 min 32.3 min

500 100 1 2 3.43 min 16.6 min

500 100 1 5 6.05 min 29.6 min

500 100 10 2 20.8 min 1.76 h

500 100 10 5 43.3 min 2.92 h

Computation times were compared on two computers with a high-level or a standard performance. Parallel
computing was used to handle the 20 iterations of the algorithm. Some parameters were fixed because they
turned out to have little influence on the computation time—namely CW.MBRA with no block weighting,
(K = 2) blocks of equal sizes where the within-block correlation was equal to .70 and the between-block
correlation was equal to .50, clusters were of equal sizes with a cluster separation of 2 units
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