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Abstract: The classical functional linear regression model (FLM) and its extensions,

which are based on the assumption that all individuals are mutually independent, have

been well studied and are used by many researchers. This independence assumption

is sometimes violated in practice, especially when data with a network structure are

collected in scientific disciplines including marketing, sociology and spatial economics.

However, relatively few studies have examined the applications of FLM to data with

network structures. We propose a novel spatial functional linear model (SFLM), that

incorporates a spatial autoregressive parameter and a spatial weight matrix into FLM

to accommodate spatial dependencies among individuals. The proposed model is rela-

tively flexible as it takes advantage of FLM in handling high-dimensional covariates and
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spatial autoregressive (SAR) model in capturing network dependencies. We develop

an estimation method based on functional principal component analysis (FPCA) and

maximum likelihood estimation. Simulation studies show that our method performs as

well as the FPCA-based method used with FLM when no network structure is present,

and outperforms the latter when network structure is present. A real weather data is

also employed to demonstrate the utility of the SFLM.

Key words: FPCA; Functional linear model; Maximum likelihood estimation; Net-

work structure; Spatial autoregressive model

1 INTRODUCTION

With the rapid development of electronic technology, huge amounts of data can be

collected and stored cheaply. In particular, some types of data that are recorded at

high frequencies can be regarded as almost continuously observed. Examples include

trajectory data, weather data and stock data. These types of data are called functional

data, which are inherently infinite-dimensional and are rich in information. Hence,

functional data analysis (FDA) has been applied in many subject areas, such as biology,

the medical sciences, meteorology, econometrics, finance, chemometrics and geophysics.

For examples, see Ramsay and Silverman (2002) and Horváth and Kokoszka (2012).

Functional regression is one of the most important tools in FDA. Classical functional

linear regression model (FLM) represents the simplest form of functional regression

(an overview is given in Paganoni and Sangalli (2017)), and receives much attention in

FDA. Studies related to FLM include Cai and Hall (2006); Hall and Horowitz (2007);

Ferraty et al. (2013); Zhou et al. (2013); Brockhaus et al. (2015), and reference therein.

FLM has become increasingly popular because they can be applied to problems that

are difficult to address in the framework of scalar and vector observations.

Generally, let Y be a scalar response variable, and let X(t) be a second-order stochastic
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process on a compact interval Γ. Moreover, we assume that X(t) is square integrable

with zero mean and E(
∫

Γ
X2(t)dt) <∞. Formally, a FLM can be written as

Y = α +

∫
Γ

X(t)β(t)dt+ ε, (1.1)

where α is the intercept, β(t) is the unknown slope function, and ε is the random error

term. This term is independent of X(t) and has zero mean and finite variance.

During the past few years, extensions of the FLM (1.1) have been studied to address

specific problems. For example, James (2002) proposed functional logistic regression

and functional censored regression to address cases in which the responses of FLM is

binary and right censoring, respectively. Subsequently, Escabias et al. (2004) presented

some alternative methods for estimating the parameter function in functional logistic

regression model based on principal components. Aneiros-Pérez and Vieu (2006) con-

structed a semi-functional partial linear model that combines the advantages of semi-

linear model and nonparametric statistics for functional data. Ferraty et al. (2013)

generalized the FLM to functional projection pursuit regression, which allows for more

interpretability. Liu et al. (2017) presented a functional linear mixed model to investi-

gate the scalar and functional covariate effects of both individuals and population.

All of the methods mentioned above assume that all the individuals are mutually

independent. However, given the rapid advances in information technology, relation

information among individuals can easily be collected. Network-structured data, which

represent one common form of relation information, are becoming increasingly avail-

able. In such data, the realizations of the dependent variable are correlated with each

other. If we use FLM or its aforementioned variations of FLM to model this kind of

data, the information contained in the data may not be fully exploited; moreover, the

inferences obtained when network effects are ignored may be misleading. These obser-

vations motivate us to develop a novel statistical model for application to functional

data with network structures.

To better illustrate our motivation for carrying out this study and its significance, we
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show a motivating example. We collected weather data from the China Meteorological

Yearbook covering the period between 2005 and 2007. These data record monthly

temperatures and precipitation in 34 major cities in China. Our aim is to investigate

the effect of temperature on precipitation over these three years. The scalar response is

the logarithm of the mean annual precipitation, and the functional covariate is the mean

monthly temperature. In a preliminary analysis, we employ the Moran’s I statistic to

test whether spatial autocorrelation exists among the responses. Unfortunately, the

value of the Moran’s I statistic is 0.7, and the P value is smaller than 0.001, which

indicates that there is a significant correlation among these responses. After we apply

the FLM directly to the weather data, the spatial dependence among the residuals of

the FLM persists; the Moran I statistic is 0.5, and its P value is smaller than 0.001.

We also display the Moran’s I scatterplot of the response Y and the residuals of the

FLM in Figure 1.

Figure 1: Moran’s I scatterplot of Y (left) and the residuals of the FLM (right),
respectively

Figure 1 shows that the responses and the residuals of FLM display a significance

spatial autocorrelation. Thus, FLM may not be appropriate for such data. This result

motivates the incorporation of spatial correlation in analyses of spatially correlated

functional data. A detailed analysis of this weather data can be found in Section 5.

Fortunately, when the predictor is scalar, instead of functional, spatial autoregressive

(SAR) model is frequently used model to accommodate the dependencies introduced

by network structures. SAR model has been applied to social interactions, strategic
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interactions and geostatistics. Studies that apply SAR model include Case (1991), Topa

(2001), and Olubusoye et al. (2016), among others. Moreover, estimation methods for

SAR model are described in Ord (1975), Lee (2004), Kelejian and Prucha (1999),

Lee (2007) and Lesage and Pace (2009). In a SAR model, a spatial weight matrix is

employed to denote adjacent relations among the observations, and an unknown spatial

autoregressive parameter is used to reflect the strength of neighbouring effects. By

borrowing concepts from SAR model, it is straightforward to incorporate the network

structures into FLM model using a spatial autocorrelation parameter and a weight

matrix. The proposed model is here named the spatial functional linear model (SFLM).

The new SFLM displays powerful capabilities in addressing the functional covariate in

the model, together with the spatial dependencies between the outcomes of adjacent

units. To obtain estimates of the unknown parameters, we develop an easily imple-

mented estimation method that employs the FPCA method to handle functional data;

moreover, maximum likelihood estimator for SAR model (Ord (1975), Lee (2004)) is

used to handle the spatial parameters. The simulation results show that our estimation

method performs well. In particular, the new method behaves as well as the FPCA-

based method used with FLM when the spatial autocorrelation parameter equals zero,

in which case the SFLM degenerates into an FLM; moreover, the new method displays

better performance than the latter when network dependencies are present. A real

dataset is employed to illustrate the practical utility of the proposed model.

We also note that Pinedaros and Giraldo (2016) proposed a model that combines a spa-

tial error model (SEM) with an FLM to accommodate network structure in functional

data. The most important difference between our model and his is that the spatial

dependencies in our model are contained in the response, whereas they are contained

in the disturbances in the existing model. Pinedar also used maximum likelihood esti-

mation method to estimate the parameters of his model; however, he did not provide

a practical implementation method. Moreover, our methods, which were developed for

use with SFLM, can be easily extended to his functional SAR model and other spatial

regression models. Note that our model handles scalar responses. This feature differs
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strongly from those of Aguilera-Morillo et al. (2016) and Ramn et al. (2017), which

consider functional responses in spatial functional data.

We organise this article as follows. In Section 2, we formulate the new model. The

proposed estimation method is constructed based on FPCA and the MLE in Section

3. The finite-sample performance of the proposed estimators is evaluated through

simulation studies and is compared with the finite-sample performance of the FLM in

Section 4. Finally, in Section 5, we use real data to document the usefulness of this

methodology. We conclude the article with a discussion in Section 6.

2 MODEL SPECIFICATION

Following Qu and Lee (2015), we consider the spatial processes located on an unevenly

spaced lattice D ⊆ Rd, d ≥ 1. We observe {(xi(t), yi)}ni=1 from n spatial units on

D. Here, xi(t) represents independent and identically distributed (i.i.d.) samples from

X(t), where X(t) is a square integrable second-order stochastic process defined on a

compact set Γ with E(X(t)) = 0 and E(
∫

Γ
X2(t)dt) < ∞. Without loss of generality,

we presume Γ is the unit, i.e. t ∈ [0, 1].

We denote x(t) =
(
x1(t), x2(t), · · · , xn(t)

)′
and y = (y1, y2, · · · , yn)′. We then formu-

late the SFLM as

y = ατn + ρWy +

∫ 1

0

x(t)β(t)dt+ ε, (2.1)

where ατn is the intercept. Here τn represents an n-dimensional vector of ones; α

denotes a scalar parameter; ρ is the unknown spatial autocorrelation parameter that

takes values within the range of [0, 1); W = (wii′)n×n is a pre-specified spatial weight

matrix, in which wii′ represents the weight between units i and i′; β(t) is a square

integrable coefficient function defined on [0, 1]; and ε is the noise term, which is inde-

pendent of x(t). We assume that ε follows a multivariate normal distribution with

zero mean and a constant diagonal covariance matrix σ2In, where In is a n×n identity
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matrix.

In the model presented in (2.1), the spatial weight matrixW is exogenous. This matrix

is constructed according to the distances between the units on D in different contexts.

For the case of geographic locations, W is formed based on adjacency relations or the

nearest k neighbours, as measured in terms of the Euclidean distance or another appro-

priate metric. In social networks, W is established on the basis of friend relationships

among individuals. In other practical settings, such as economics, W can also be built

using economic factors such as GDP. In general, the spatial matrix W is standardized

to be a row-normalized matrix; in this matrix, the summation of the row elements is

unity, and the entries on the diagonal are zeros.

In addition, ρ is a scale parameter that reflects the impact of the neighbours. Greater

values of ρ indicate that yi is more strongly affected by its neighbours. The SFLM

clearly reduces to the classical FLM when ρ = 0 and the SAR model when x(t)

is a constant covariate that does not depend on t. Thus, the proposed SFLM is a

more flexible model, given its incorporation of both functional covariates and network

structures.

To provide better insight into the new model, we divide right-hand side of equation

(2) into two parts. The first part is ρWy, which represents the neighbour effects. In

real cases, such effects may arise due to competition, spillover or shared sources. The

second part,
∫ 1

0
x(t)β(t)dt, indicates the effects of exogenous functional variables. The

outcome of unit i is affected by the outcomes of its neighbours’ i′ (i′ 6= i) as well as its

individual-specific covariate xi(t).

Morover, we can reformulate equation (2.1) as the following equivalent expression,

y = (In − ρW )−1ατn + (In − ρW )−1

∫ 1

0

x(t)β(t)dt+ (In − ρW )−1ε, (2.2)

which shows how y is generated. yi is clearly influenced by its neighbours’ covariates

xi′(t)s, as is i′ 6= i. The error terms in equation (2.2) are no longer independent. Given

that this dependency violates the Gauss-Markov assumption, the ordinary least-squares
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(OLS) estimator is not adequate to estimate the parameters in (2.1).

3 ESTIMATION METHOD

We estimate the intercept α, the spatial autocorrelation parameter ρ, the slope function

β(t), and the variance of the error term σ2 in the SFLM (2.1) using the maximum

likelihood approach combined with a basis expansion in terms of the FPCA, as shown

follows.

3.1 Basis expansion based on FPCA

Note that, before estimating the parameters of our model, data representation methods,

such as smoothing and interpolation, should be used to convert discretely recorded data

xi(ti) to a curve xi(t).

Let K(s, t) denote the covariance function for X(t), i.e. K(s, t) = Cov(X(t), X(s)).

By Mercer’s theorem, the spectral decomposition of K(s, t) is then

K(s, t) =
∞∑
j=1

kjϕj(s)ϕj(t)

, where k1 > k2 > · · · > 0 are eigenvalues and {ϕj(t)}∞j=1 are the corresponding

orthogonal eigenfunctions. According to the Karhunen-Loève expansion, X(t) can be

expanded as

X(t) =
∞∑
j=1

ajϕj(t),

where the ajs are uncorrelated random variables with mean zero and variance E(a2
j) =

kj with aj =
∫ 1

0
X(t)ϕj(t)dt.

For an observation {yi, xi(t)}ni=1, the empirical version of K(s, t) is

K̂(s, t) =
1

n

n∑
i=1

xi(s)xi(t)− x̄(s)x̄(t),
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where x̄(t) = 1
n

∑n
i=1 xi(t). Moreover, it can be shown that

K̂(s, t) =
n∑
j=1

k̂jϕ̂j(s)ϕ̂j(t),

where k̂j and ϕ̂j(t) are the estimators of ϕj(t) and kj, respectively. For the ith obser-

vation xi(t), the estimator of aij is then âij =
∫ 1

0
xi(t)ϕ̂j(t), and xi(t) can be written

as xi(t) =
∑∞

j=1 âijϕ̂j(t).

Similarly, based on the estimated orthonormal functional basis {ϕ̂j(t)}∞j=1, β(t) has the

expression β(t) =
∑∞

j=1 bjϕ̂j(t), with bj =
∫ 1

0
β(t)ϕ̂j(t)dt. Therefore, SFLM has the

equivalent expression

y = ατn + ρWy +
n∑
j=1

âjbj + ε, (3.1)

where âj = (â1j, â2j, · · · , ânj)′.

In reality, the first few principal components (PCs), as ranked by their eigenvalues,

often provide an adequate approximation of xi(t). Here, we choose the first m PCs

and ignore the truncation error. The truncated SFLM of (3.1) takes the form of

y ≈ ατn + ρWy +
m∑
j=1

âjbj + ε. (3.2)

3.2 Maximum Likelihood Estimation for the Truncated SFLM

Here we focus on (3.2) and adopt the popular MLE approach to estimate the unknown

parameters.

Defining A = (âij)n×m, b = (b1, b2, · · · , bm)′, Z = (τn,A) and δ = (α, b′)′, we can

write the truncated equation (5) as

y ≈ ρWy +Zδ + ε. (3.3)

Based on the assumption that the error term in (2.1) follows a multivariate normal
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distribution, the log-likelihood function for y is

lnL(ρ, δ, σ2) = −n
2

ln(2πσ2) + ln |In − ρW | −
e′e

2σ2
, (3.4)

where e = y − ρWy −Zδ. Given ρ, the maximum likelihood estimate of δ and σ2 is

δ̂(ρ) = (Z ′Z)−1Z ′(In − ρW )y, (3.5)

σ̂2(ρ) =
1

n
(y − ρWy −Zδ̂)′(y − ρWy −Zδ̂(ρ)). (3.6)

Substituting δ̂(ρ) and σ̂2(ρ) into (3.4) and dropping the constant term yields the fol-

lowing profile log-likelihood function

lnL(ρ) = −n
2

ln(σ̂2(ρ)) + ln |In − ρW |, (3.7)

The optimization of the maximum log-likelihood function (3.7) then reduces to a uni-

variate optimization problem. That is, the estimator of ρ can be obtained via the

maximization of (3.7), i.e.

ρ̂ = arg max
ρ

lnL(ρ). (3.8)

Replacing ρ with ρ̂ in (3.5) and (3.6) yields the estimators of δ and σ2, respectively.

The estimator β̂(t) for β(t) can be reconstructed by

β̂(t) =
m∑
j=1

b̂jϕ̂j(t). (3.9)

where b̂j is obtained from δ̂ in (3.5).

In summary, the estimators ρ̂, α̂ and σ̂2 of SFLM are obtained from the MLE of the

truncated SFLM; on the other hand, the estimator β̂(t) of the SFLM is constructed

using the functional principal component basis presented in Section 3.1 and the coef-

ficient estimator given in Section 3.2. For convenience, we here summarize the main

steps of the estimation procedure in Algorithm 1.
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Algorithm 1 Main steps of the estimation procedure

1: Represent the functional predictor and slope function using the functional principal
component basis. The estimation procedure is then simplified, as the remaining
process is similar to the problem of estimating a SAR model. In this step, after an
appropriate truncation parameter is given, the SFLM approximates a SAR model
whose covariates are the principal component scores of xi(t)s, as shown in (3.3).

2: Determine the estimators of the unknown parameters of the truncated SFLM ob-
tained in Step 1. The maximum likelihood estimation method is used to obtain
the spatial autocorrelation parameter ρ in (3.8), the estimators of the coefficients
b, the intercept α and the variance of the error term σ2, as shown in (3.5)-(3.6).

3: Determine the estimator of β(t) in the SFLM. The slope function is constructed
using the FPC basis mentioned in Step 1 and the coefficients estimated in Step 2,
as shown in (3.9). The other estimators are obtained directly from Step 2.

3.3 Choosing the truncation parameter for the SFLM

There are two ways to determine the truncation parameter. The first method is the

percentage of variance explained (PVE) for predictors, which uses eigenvalues to choose

the number of PCs. The second method is derived from a Markov chain Monte Carlo

model composition methodology labeled MC3.

To compare the new SFLM with the FLM in numerical experiments, we use the first

method to determine the values of this parameter. In this case, if we choose the PVE to

be 80%, the truncation parameter m is subject to min
l
{(
∑l

j=1 k̂j)/(
∑∞

j=1 k̂j) ≥ 80%}.

The second method specifies the covariates in (3.3) according to the posterior model

probability. We adopt this technique to handle the weather data in Section 5. In

this Bayesian methodology, prior distributions are assigned to the parameters in the

truncated SFLM. Specifically, σ2 follows an inverse gamma distribution, π(σ2) ∼

IG(a, b); b′ follows a multivariate normal distribution conditional on σ2, i.e. π(b′|σ2) ∼

N [b′0, σ
2(gA′A)−1]; and ρ follows a Beta prior distribution, π(ρ) ∼ 1

Beta(d,d)
(1+ρ)d−1(1−ρ)d−1

22d−1 .

We set a = 0, b = 0, g = 1
n
, d = 1.01 for use with the weather data. Note that A must

be scaled during preprocessing. Details of this procedure are given in Lesage and Parent

(2007).
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4 SIMULATION STUDY

We conduct several simulation studies to evaluate the finite-sample performance of the

proposed estimators of ρ and β(t). All of the computations were carried out in the

R environment, and we use existing functions in the R packages ‘spdep’, ‘fda’ and

‘fda.usc’ to implement the proposed procedure.

Because spatial networks are of interest in this study, we compare the proposed SFLM

with the existing FLM in terms of the behaviour of the estimators of β(t). In particular,

the SFLM is estimated using the proposed method, whereas the FLM employs an

FPCA-based estimation approach. To make these two estimation methods comparable,

we set the truncation parameter of FPCA to be identical to the PVE, which equals

70%. Different degrees of spatial effects are considered; the spatial parameter ρ is set

to 0, 0.5, and 0.8. Note that, when ρ = 0, the SFLM reduces to the FLM.

As for the spatial scenario, we adopt the rook matrix by randomly apportioning n

agents on a regular square grid of cells; each agent is located on a cell. In this context,

if the grid has R rows and T columns, then the sample size n = R × T . Units that

share an edge are neighbours. This definition ensures the units in the inner field of the

grid have four neighbours, the units in the corners have two neighbours, and the units

along the boarders have three neighbours. Therefore, the spatial matrix is an adjacent

matrix with each entry wii′ = 1 if units i and i′ are neighbours and wii′ = 0 otherwise.

We set n = {10× 30, 20× 25, 30× 30} in the simulation. The spatial weight matrix is

row-normalized in all cases.

For the functional part of equation (2), we emply the same form as the functions in

the FLM by Hall and Horowitz (2007). Specifically, we generate the simulation data

y = (y1, y2, · · · , yn)′ using

y = (In − ρW )−1
(∫ 1

0

x(t)β(t)dt+ 0.5ε
)
, εi ∼ N [0, 1],

where the spatial parameter ρ is assigned values of 0, 0.5, and 0.8, respectively. The
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functional predictor x(t) = (x1(t), x2(t), · · · , xn(t))′ is produced with values of xi(t)

that are independently generated as

xi(t) =
50∑
j=1

ajZjϕj(t),

where aj = (−1)j+1j−γ/2 with γ = 1.1 and 2, respectively; Zj ∼ U [−
√

3,
√

3] and

ϕj(t) =
√

2 cos(jπt). Similarly, the coefficient function β(t) is generated according to

β(t) =
50∑
j=1

bjϕj(t),

where b1 = 0.3 and bj = 4(−1)j+1j−2, j ≥ 2.

Note that the eigenvalues of the covariance function K̂(u, v) play a vital role in deter-

mining the estimation accuracy of β(t). We consider two cases. In case 1, γ = 1.1; thus

the eigenvalues are well spaced and the slope function can be accurately estimated. In

case 2, γ = 2, and the closely spaced eigenvalues can cause the estimator β̂(t) to display

poor performance.

The experiment is repeated 500 times in each setting. We assess the performance of

the estimator ρ̂ in terms of the mean bias and standard derivation; on the other hand,

we evaluate the performance of the estimator of β(t) in terms of the mean square error

(MSE) evaluated at 100 equispaced points on [0, 1], {ti}100
i=1; i.e.,

MSE =
1

100

100∑
i=1

(
β̂(ti)− β(ti)

)2
,

where β̂(ti) is the estimator of β(ti) evaluated at ti, which is obtained via the SFLM

or the FLM. We summarize these results in Table 1.

Examination of Table 1 leads to the following conclusions.

1) When ρ = 0, ρ̂ is very small (almost zero), the estimators of β(t) based on

the proposed method and the FPCA-based method for FLM perform equally
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Table 1: The empirical average biases and standard deviations (in brackets) of the
estimator of ρ, denoted bias(sd), and the empirical average MSE and its standard
deviations (in brackets) of β(t) obtained via SFLM and FLM, denoted MSE1(sd) and
MSE2(sd), respectively.

γ = 1.1 γ = 2

ρ n bias(sd) MSE1(sd) MSE2(sd) bias(sd) MSE1(sd) MSE2(sd)

0 300 −0.0051
(0.0495)

0.0203
(0.0072)

0.0203
(0.0072)

−0.0086
(0.0628)

0.1171
(0.0239)

0.1171
(0.0239)

500 −0.0003
(0.0428)

0.0087
(0.0030)

0.0087
(0.0029)

−0.0020
(0.0459)

0.0691
(0.0109)

0.0691
(0.0109)

900 −0.0024
(0.0294)

0.0034
(0.0011)

0.0034
(0.0011)

0.0006
(0.0369)

0.0378
(0.0044)

0.0378
(0.0044)

0.5 300 −0.0062
(0.0457)

0.0201
(0.0071)

0.0267
(0.0101)

−0.0068
(0.0524)

0.1173
(0.0226)

0.1198
(0.0227)

500 −0.0016
(0.0343)

0.0085
(0.0027)

0.0114
(0.0036)

−0.0037
(0.0400)

0.0689
(0.0101)

0.0702
(0.0102)

900 −0.0034
(0.0241)

0.0034
(0.0010)

0.0047
(0.0013)

−0.0046
(0.0292)

0.0380
(0.0045)

0.0386
(0.0046)

0.8 300 −0.0062
(0.0261)

0.0202
(0.0069)

0.0836
(0.0361)

−0.0094
(0.0330)

0.1173
(0.0228)

0.1504
(0.0332)

500 −0.0027
(0.0202)

0.0087
(0.0028)

0.0405
(0.0152)

−0.0057
(0.0245)

0.0689
(0.0110)

0.0876
(0.0161)

900 −0.0024
(0.0149)

0.0033
(0.0011)

0.0190
(0.0058)

−0.0040
(0.0189)

0.0382
(0.0044)

0.0479
(0.0060)

well. This result is consistent with our expectations, as the SFLM reduces to the

classical FLM when ρ = 0.

2) When ρ 6= 0, our proposed method produces better results than the FPCA-

based method, also consistent with our expectations. The MSE of the SFLM is

always smaller than the MSE of the FLM when the other settings are identical;

moreover, as ρ increases, the difference in the MSE between the SFLM and the

FLM also increases.

3) Regardless of the value of ρ, the MSE of β(t) obtained using the SFLM de-

creases as the sample size increases. The standard deviation of ρ̂ also displays a

decreasing pattern. Moreover, the bias of ρ̂ is small in all cases. Similar to the

numerical results presented in Lee (2004), the bias of ρ is negative at all settings.

4) As the case in Hall and Horowitz (2007), β(t) is more accurately estimated
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given γ = 1.1 than γ = 2 when the other simulation parameters are held equal.

The performance of the estimator ρ̂ is also influenced by α. In the case in which

γ = 1.1, the standard deviation of ρ̂ is smaller than that of γ = 2.

Figure 2: Estimators of β(t) vs the true β(t) when the sample size n = 300, 500, 900
and ρ = 0, 0.5, 0.8, respectively.

Moreover, to illustrate the performance of the estimator of β(t) intuitively, we randomly

select one result from 500 repetitions, and display the estimator β̂(t) vs. the true

value of β(t) in Figure 2 for both the SFLM and the FLM. Here, the sample size

n = 300, 500, 900 and ρ = 0, 0.5, 0.8, respectively, with γ = 1.1. From Figure 2, we can

obtain similar conclusions for β(t) as those derived from Table 1.

In summary, our proposed model and estimators perform as well as the classical FLM

when no spatial autocorrelation is present; on the other hand, our proposed methods
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outperforms the classical methods when spatial autocorrelation is present, and the

difference increases with the degree of spatial autocorrelation becoming stronger. Given

these results, our proposed model and estimation procedure provide a competitive

alternative for the existing methods in FDA.

5 REAL DATA ANALYSIS

In this section, we revisit the weather data presented in Section 1 to assess the ap-

plication of the SFLM. Specifically, we add a record that corresponds to the weather

data for 2008 derived from the China Meteorological Yearbook. Let the response y
i

and the predictor xi(t) be the logarithm of the mean annual precipitation and the

mean monthly temperature curve for the ith city between 2005 and 2007. We build

the SFLM model as

yi = ρ
∑
i 6=i′

wii′yi′ +

∫ 1

0

xi(t)β(t)dt+ εi, (5.1)

where wii′ is the weight between city i and i′. We also build the FLM as

yi =

∫ 1

0

xi(t)β(t)dt+ εi (5.2)

to enable comparison with the SFLM.

During preprocessing, we smooth the mean monthly temperatures over 3 years using

the Epanechnikov Kernel. Note that the spatial correlation between temperature curves

is beyond the scope of our article. Thus, we simply presume that these functional data

are independent. Moreover, the spatial weight matrix is formed using the nearest k

neighbours; each neighbour’s weight is equal to the reciprocal of the Euclidean distance

d(i, i′) between cities i and i′; i.e. wii′ = d(i, i′)−1. Because k can take many different

values, we set k = {2, 3, 4, 5, 6, 7, 8, 9} to enable the selection of the most appropriate

number. Moreover, we assume that, if the distance between two cities exceeds 15, then



Spatial Functional Linear Model 17

these two cities are not neighbours of each other; i.e. wii′ = 0. Figure 3 presents the

locations of 34 major cities in China. Because Urumchi is located far from the other

cities, we remove its record from the weather data. The matrix is row-normalized after

construction.

Figure 3: The locations of 34 major cities in China

Figure 4 (top-left) shows the eigenvalues of the sample covariance function. The eigen-

values clearly decay quickly, and the first two eigenvalues account for 99% of the total

variance. Therefore, we consider two candidate truncation parameters, 1 and 2. In the

first case, only one covariate is contained in the truncated SFLM; in the second case,

two covariates are included. Combining the 8 possible weight matrices mentioned above

with these two parameters, we have 16 candidates for the truncated SFLM. Because 16

is relatively small, we compute their posterior model probabilities directly, instead of

using a strategic stochastic Markov chain process to search for an appropriate model.

The log-likelihood function values and Bayesian model probability ratios of each model

are displayed in Table 2.

The results presented in Table 2 can be summarized as follows. The matrix with 5

nearest neighbours is the most appropriate for our model, and when m = 2, the SFLM

yields a greater posterior probability than when m = 1. We display the fitting results

of the SFLM and the FLM with m = 2, k = 5 in Table 3 and Figure 4. To assess

the predictive ability of the SFLM, we apply the fitting result to the temperature
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Table 2: The values of the log-likelihood function and the Bayesian model probability
ratios of the 16 candidates of the truncated SFLM, denoted L and B, respectively.
Specifically, the Bayesian model probability ratio is obtained by dividing the posterior
probability of the current model by the posterior probability of the model for which m
and k are 1 and 2.

m/k k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9

m = 1 L -9.38 -8.54 -5.42 -3.72 -4.13 -4.10 -4.47 -4.94

B 1 2.46 44.37 198.31 141.03 145.42 108.51 69.89

m = 2 L -4.42 -3.28 -1.51 -1.11 -1.90 -2.15 -2.25 -2.50

B 90.39 302.32 1755.32 2253.14 1163.4 943.31 887.44 695.95

Table 3: The fitting and prediction results of the SFLM and the FLM. Here, the
fitting error and prediction error are evaluated separately in terms of the mean square
error of the fitted values and the prediction values.

models ρ̂ Moran’s I statistic(residuals) MSE(fitted error) MSE(prediction error)

FLM — 0.41 0.33 0.12
SFLM 0.58 0.15 0.24 0.10

observations made in 2008 to determine the annual precipitation in the same year.

The fitting results and prediction errors are displayed in Table 3 and Figure 4.

Recall from Section 1 that Figure 1 reflects significant spatial autocorrelation among

the annual precipitation values for the different cities, and the FLM can not efficiently

address this correlation. The Moran’s I scatterplot of residuals of the SFLM in Figure 4

suggests that a majority of the spatial autocorrelation in responses has been removed.

We can also conclude from Figure 4 that the SFLM has reduced the fitting error

substantially when compared to the FLM.

As for the estimated parameters, ρ̂ is 0.58, and the corresponding P value is smaller

than 0.001; the slope functions of the two models are provided in Figure 4 (to the right).

The two curves of the estimated β(t) have similar shapes, and the β̂(t) of the SFLM is

smoother than that of the FLM. We conclude that precipitation is much more strongly
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Figure 4: Eigenvalues of sample covariance function (top left), Moran I scatter plot
of residuals of SFLM (top right), fitted error of SFLM and FLM (bottom left), and
estimated β(t) of SFLM and FLM (bottom right), respectively.

influenced by temperature during the winter than in the other seasons; moreover, under

SFLM, the precipitation received by each city is less affected by temperature over the

year as a whole.

To illustrate the superiority of the SFLM relative to the FLM, we also compare their

predictive abilities. We use the data from 2005 to 2007 to predict the precipitation

in 2008. The MSE values of the predicted yi under the SFLM and FLM are 0.10 and

0.12, respectively, which reflects substantial improvement.

6 CONCLUSION AND DISCUSSION

The FLM is popular in studies of links between a scalar response and functional pre-

dictors. However, the existing FLM cannot address the dependencies that arise due to
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the presence of a network structure. We propose a powerful spatial functional linear

model that integrates the advantages of FLM in handling high-dimensional data and

SAR model in coping with spatial dependencies. A simple estimation method is de-

veloped to obtain the estimators of the spatial autoregressive parameter and the slope

function. Our simulation study demonstrates the consistency of the proposed estima-

tors. In particular, the new estimators perform as well as the FPCA-based estimator

of the FLM when the spatial autoregressive parameter equals zero; on the other hand,

the new methods outperform the existing ones when spatial autocorrelation is present.

An examination of a real dataset demonstrates the superiority of the SFLM over the

FLM. From this perspective, our proposed model and estimation procedure represent

competitive alternatives to the FLM.

Note that network structure is indeed what is considered in the SFLM, and the concept

of network-structured data is more general than the spatially correlated data consid-

ered in this article. For example, social network data display network structure, but

they are not spatially correlated. In fact, the weather data studied here are spatially

dependent in terms of their network structure, which provides a new perspective on

spatial functional data. Moreover, we discuss the SFLM under the assumption that

only one functional predictor is involved. However, the SFLM with multiple func-

tional predictors also deserve attention. Based on the estimation method introduced

in Section 3, the methods presented here can easily be generalized to the SFLM with

multiple functional predictors. Functional variable selection can then be conducted.

These steps are beyond the scope of the current paper and will be investigated further

in subsequent work.
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