A New Micro-Batch Approach for Partial Least Square Clusterwise Regression - Cnam - Conservatoire national des arts et métiers
Article Dans Une Revue Procedia Computer Science Année : 2018

A New Micro-Batch Approach for Partial Least Square Clusterwise Regression

Résumé

Current implementations of Clusterwise methods for regression when applied to massive data either have prohibitive computational costs or produce models that are difficult to interpret. We introduce a new implementation Micro-Batch Clusterwise Partial Least Squares (mb-CW-PLS), which is consists of two main improvements: (a) a scalable and distributed computational framework and (b) a micro-batch Clusterwise regression using buckets (micro-clusters). With these improvements, we are able to produce interpretable regression models with multicollinearity within a reasonable time frame.

Mots clés

Fichier principal
Vignette du fichier
1-s2.0-S1877050918322348-main.pdf (588.3 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02471601 , version 1 (09-02-2020)

Licence

Identifiants

Citer

Gaël Beck, Hanane Azzag, Stéphanie Bougeard, Mustapha Lebbah, Ndèye Niang. A New Micro-Batch Approach for Partial Least Square Clusterwise Regression. Procedia Computer Science, 2018, 144, pp.239-250. ⟨10.1016/j.procs.2018.10.525⟩. ⟨hal-02471601⟩
113 Consultations
341 Téléchargements

Altmetric

Partager

More