
HAL Id: hal-02471601
https://cnam.hal.science/hal-02471601

Submitted on 9 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

A New Micro-Batch Approach for Partial Least Square
Clusterwise Regression

Gaël Beck, Hanane Azzag, Stéphanie Bougeard, Mustapha Lebbah, Ndèye
Niang

To cite this version:
Gaël Beck, Hanane Azzag, Stéphanie Bougeard, Mustapha Lebbah, Ndèye Niang. A New Micro-Batch
Approach for Partial Least Square Clusterwise Regression. Procedia Computer Science, 2018, 144,
pp.239-250. �10.1016/j.procs.2018.10.525�. �hal-02471601�

https://cnam.hal.science/hal-02471601
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 144 (2018) 239–250

1877-0509 © 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Selection and peer-review under responsibility of the INNS Conference on Big Data and Deep Learning 2018.
10.1016/j.procs.2018.10.525

10.1016/j.procs.2018.10.525

© 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Selection and peer-review under responsibility of the INNS Conference on Big Data and Deep Learning 2018.

1877-0509

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2018) 000–000
www.elsevier.com/locate/procedia

INNS Conference on Big Data and Deep Learning 2018

A New Micro-Batch Approach for Partial Least Square Clusterwise
Regression

Beck Gaëla,∗, Azzag Hananea, Bougeard Stéphanieb, Lebbah Mustaphaa, Niang Ndèyec

aComputer Science Lab of Paris 13 University, 99 Avenue Jean-Baptiste Clément
Villetaneuse, Ile de France, 93430, France

bAnses, Department of Epidemiology, Ploufragan, 22440, France
cCEDRIC CNAM, 292 rue St Martin, Paris Cedex 03, 75141, France

Abstract

Current implementations of Clusterwise methods for regression when applied to massive data either have prohibitive computational
costs or produce models that are difficult to interpret. We introduce a new implementation Micro-Batch Clusterwise Partial Least
Squares (mb-CW-PLS), which is consists of two main improvements: (a) a scalable and distributed computational framework
and (b) a micro-batch Clusterwise regression using buckets (micro-clusters). With these improvements, we are able to produce
interpretable regression models with multicollinearity within a reasonable time frame.

c© 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Selection and peer-review under responsibility of the INNS Conference on Big Data and Deep Learning 2018.

Keywords: Clusterwise, PLS, Spark

1. Introduction

In modern data analysis, many problems belong to the regression family which consist of explaining one or more
variable (known as the response) with respect to other observed variables (known as the explanatory variables). Many
types of regression models exist to solve specific problems. A widely used regression method is Multivariate Linear
Regression (MLR) where many explanatory variables are linked to a specific response variable by a parametric linear
model [14]. MLR is most suited to problems where the number of observations is larger than the number of explanatory
variables. On the other hand, when the number of explanatory variables is larger (e.g. high dimensional data), then
there tends to be important collinearities between them which ensures that MLR is not effective.

Partial least squares regression (PLS) is a linear regression model with latent features for high-dimensional data
[21, 12]. Standard PLS defines new components by maximizing the covariance between components from two dif-
ferent blocks of variables (data matrix X and its response matrix Y). In addition, standard PLS does not require any

∗ Corresponding author. Tel.: +33-659373517.
E-mail address: beck@lipn.univ-paris13.fr

1877-0509 c© 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Selection and peer-review under responsibility of the INNS Conference on Big Data and Deep Learning 2018.

Available online at www.sciencedirect.com

Procedia Computer Science 00 (2018) 000–000
www.elsevier.com/locate/procedia

INNS Conference on Big Data and Deep Learning 2018

A New Micro-Batch Approach for Partial Least Square Clusterwise
Regression

Beck Gaëla,∗, Azzag Hananea, Bougeard Stéphanieb, Lebbah Mustaphaa, Niang Ndèyec

aComputer Science Lab of Paris 13 University, 99 Avenue Jean-Baptiste Clément
Villetaneuse, Ile de France, 93430, France

bAnses, Department of Epidemiology, Ploufragan, 22440, France
cCEDRIC CNAM, 292 rue St Martin, Paris Cedex 03, 75141, France

Abstract

Current implementations of Clusterwise methods for regression when applied to massive data either have prohibitive computational
costs or produce models that are difficult to interpret. We introduce a new implementation Micro-Batch Clusterwise Partial Least
Squares (mb-CW-PLS), which is consists of two main improvements: (a) a scalable and distributed computational framework
and (b) a micro-batch Clusterwise regression using buckets (micro-clusters). With these improvements, we are able to produce
interpretable regression models with multicollinearity within a reasonable time frame.

c© 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Selection and peer-review under responsibility of the INNS Conference on Big Data and Deep Learning 2018.

Keywords: Clusterwise, PLS, Spark

1. Introduction

In modern data analysis, many problems belong to the regression family which consist of explaining one or more
variable (known as the response) with respect to other observed variables (known as the explanatory variables). Many
types of regression models exist to solve specific problems. A widely used regression method is Multivariate Linear
Regression (MLR) where many explanatory variables are linked to a specific response variable by a parametric linear
model [14]. MLR is most suited to problems where the number of observations is larger than the number of explanatory
variables. On the other hand, when the number of explanatory variables is larger (e.g. high dimensional data), then
there tends to be important collinearities between them which ensures that MLR is not effective.

Partial least squares regression (PLS) is a linear regression model with latent features for high-dimensional data
[21, 12]. Standard PLS defines new components by maximizing the covariance between components from two dif-
ferent blocks of variables (data matrix X and its response matrix Y). In addition, standard PLS does not require any

∗ Corresponding author. Tel.: +33-659373517.
E-mail address: beck@lipn.univ-paris13.fr

1877-0509 c© 2018 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
Selection and peer-review under responsibility of the INNS Conference on Big Data and Deep Learning 2018.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2018.10.525&domain=pdf

240	 Beck Gaël et al. / Procedia Computer Science 144 (2018) 239–250
2 Beck Gaël, Azzag Hanane, Bougeard Stéphanie, Lebbah Mustapha, Niang Ndèye / Procedia Computer Science 00 (2018) 000–000

Fig. 1: Distinction between micro and macro clusters

distributional assumptions for the error distributions, since they need not be normal or other parametric distributions.
Applying PLS to massive high-dimensional data is problematic because the data processing is computationally ex-
pensive. This has limited large-scale applications of PLS in practice. To reduce the computational burden, researchers
usually apply a specific model design, such as the Clusterwise PLS [3, 21, 12].

In this paper, we address a Clusterwise problem where the response variables y are explained by the explanatory
variables x, organized into clusters. The statistical model which results from simultaneously treating all observations
(i.e. a single macro-cluster) may be of low prediction quality. To overcome this problem we use two nested levels of
clustering (i.e. macro- and micro- clusters) illustrate in Figure 1 and compute one model per macro-cluster based on a
micro-batch strategy where micro-clusters are shifted from one macro-cluster to another. A standard approach to ob-
tain clusters within a regression framework is Clusterwise regression (which is also known as typological regression)
[6, 18].

Clusterwise regression assumes that there is an underlying clustering structure of the observations and that each
cluster can be revealed by the fit of a specific regression model based on micro-clusters. More formally, Clusterwise
regression simultaneously looks for a partition of the observations into clusters which minimizes the overall sum of
squared error. For Clusterwise methods, a crucial component is to describe the local relationships between the vari-
ables measured on the observations within the same cluster. This is handled in this paper by micro-batch approaches.

The remainder of the paper is organized in three sections. Section 2 summarizes previous results which are related
with our work. In Section 3, the traditional PLS and the micro-batch version are presented. Section 4 focuses on
the performance indicators including the prediction quality, execution times and scalability. Section 5 contains the
conclusions and future perspectives of our work.

Used notations

In the following read, matrix are in bold upper case, vectors in bold lower case. Micro-clusters are those generate
after being applied a clustering algorithm , here k-means. Macro-clusters are those generated for the Clusterwise
purpose, their number will be equal to G. X and Y are respectively the data and response matrix. Response variables
will use y and x will stand for the explanatory variables.

2. Related works

Existing Clusterwise methods seek clusters within a regression framework while simultaneously minimizing the
sum of squared error computed over all the clusters. These methods can be viewed as extensions of the k-means cluster-
ing from unsupervised learning to the regression set-up. As in standard regression, ordinary least squares or maximum
likelihood estimation can be used to get the quality of the regression coefficients. These k-means like algorithms are
based on a least square error criterion have been proposed by [2, 7]. A multivariate regression for heterogeneous data
which takes into account both the between- and the within-cluster variability has also been proposed [13].

To detect categorical differences in underlying regression models on the other hand, Spath [18] developed Clus-
terwise Regression (CR) which clusters the data points based on the underlying regression model. Related methods
exist within the mixture and latent class framework [6]. Other related methods are the principal component regression
(PCR) [4] and partial least square regression (PLS) [19, 15] which have also been proposed to deal with multicollinear-
ity, small sample size, or large number of variables. Specifically, PLS reduces the explanatory variables to those which
are maximally related (in terms of squared covariance) as possible to the objective function.

	 Beck Gaël et al. / Procedia Computer Science 144 (2018) 239–250� 241
Beck Gaël, Azzag Hanane, Bougeard Stéphanie, Lebbah Mustapha, Niang Ndèye / Procedia Computer Science 00 (2018) 000–000 3

In the framework of component-based path-modeling methods, several Clusterwise methods have been applied in
the marketing field (for an early review, refer to [16]). In [9] the authors propose the widely-used finite-mixture PLS
(FIMIX-PLS) which assume multivariate normally distributed data. In [10], fuzzy Clusterwise generalized structured
component analysis (FCGSCA) is proposed. In [8] the authors propose REBUS-PLS which came from the hierarchical
clustering based on a similarity measure defined from the residuals coming from the same models. [17] proposed PLS-
IRRS which identifies homogeneous clusters that have similar residual values.

In the field of multigroup analysis where the groups of observations are known a priori Clusterwise simultaneous
component analysis (CW-SCA) seeks clusters among groups of observations rather than among observations [5]. It is
worth noting that likelihood-based methods are relevant for data exploration or modeling but are unable to be utilized
for prediction as dependent values are needed to compute the likelihood.

3. Micro-Batch PLS for Clusterwise

In this section we present a new mb-CW-PLS algorithm based on combining clustering and PLS. We first review
the classical PLS algorithm and then we focus on our proposition.

3.1. Partial Least Square (PLS)

We use the common notation where scalars are defined as italic lower case (x, y), vectors are in bold lower case
(x, y) and matrices as bold upper case (X,Y).

PLS regression is a technique that generalizes and combines features from principal component analysis and multi-
ple regression. Let X = {x1, . . . xN} be N vector observations xi = (xi1, . . . , xip) ∈ �p, described by the vector response
variables Y = {y1, . . . , yn}where yi = (yi1, . . . , yiq) ∈ �q. Each pair of explanatory and response variables in the model
is denoted by the concatenated vector zi = (xi; yi). The matrices Y and X are assumed to be pre-whitened (i.e., the
sum of each variable is zero and its norm is one). The superscript T denotes the matrix transpose operation, e.g. XT

and I the identity matrix.
PLS regression is particularly well-suited when the matrix of explanatory variables X has more features p than

observations, and when there is multicollinearity among the X values. The goal of PLS regression is to predict Y
from X and to describe their common structure. When Y is a vector and X is sufficiently regular, this goal could be
accomplished using ordinary multiple regression. PLS solves the problem that arises when number of observations
(N) is much lower than the number of variables (p).

PLS regression performs a simultaneous decomposition of X and Y with the constraint that these components
capture as much as possible of the covariance between X and Y. More formally, X and Y are decomposed as follows:

X = TPT + E, xik =

r∑
j=1

ti j pk j + eik (1)

Y = UQT + F, yim =

r∑
j=1

ui jqm j + fim (2)

where T and U are the r-dimensional latent representations of X and Y of size of N × r, P and Q are the loading
matrices with size of p×r and q×r, E and F are the residual matrices. Thus PLS implements the following optimization
problem:

(p, q) = argmax‖p‖=‖q‖=1 cov(T,U)

where p, q are columns of the P,Q respectively

242	 Beck Gaël et al. / Procedia Computer Science 144 (2018) 239–250
4 Beck Gaël, Azzag Hanane, Bougeard Stéphanie, Lebbah Mustapha, Niang Ndèye / Procedia Computer Science 00 (2018) 000–000

Once the decomposition of the X and Y is carried out, we can continue with computing the regression coefficients.
The latter are defined as the minimizers of the residual error

argminB‖Y − XB‖2

where B is a p by q regression coefficient matrix. Suppose there is a linear relationship such that

U = TD +H

where D is an r × r diagonal matrix, then

Y = TCT + F∗

where CT = DQT and F∗ = HQT + F. Based on the previous expressions, the response matrix is expressed as

Y = XP(PT P)−1CT + F∗EP(PT P)−1CT.

The PLS regression coefficient is thus

B = P(PT P)−1CT

For the brevity, we have discussed the PLS where the variables form a single macro-cluster. When the data consist
of non-homogeneous macro-clusters, it is necessary to decompose the regression according to these macro-clusters,
for example, using the Clusterwise techniques described in Section 2. These techniques have many bottlenecks as the
scalability for a large number of observations and variables. One of the main objectives of this paper is to integrate
the micro-batch processing into the Clusterwise PLS to resolve these scalability issues.

3.2. New model: Micro-Batch Clusterwise PLS (mb-CW-PLS)

3.2.1. Overview
Our proposed approach mb-CW-PLS (micro-batch Clusterwise Partial Least Squares) has the following properties:

• Nested clustering: we combine the PLS with two levels of clustering (macro- and micro-clustering) and micro-
batch optimization approaches to create a new Clusterwise method that can find the underlying structure of the
observations and provide each macro-cluster of observations with its own set of regression coefficients.
• Micro-Batch processing (divide and conquer strategies): rather than move a single observation from a macro-

cluster to another to calculate the regression models in a cross validation approach, we move an entire micro-
cluster of points, which we call the micro-cluster shift. These micro-clusters are computed using the k-means
clustering, where k is set as the ratio of dataset size to the desired micro-cluster size.
• Scalability: we use a distributed framework based on Apache Spark/Scala to accelerate the initialization process

and to compute the regression models. For each cross validation, we distribute initializations over the slave
processes. Each slave selects the optimal initialization and submits it to the master process, which in turns
selects the optimal one among all the results received from the slaves. This decreases execution times inversely
proportional to the number of slaves.

	 Beck Gaël et al. / Procedia Computer Science 144 (2018) 239–250� 243
Beck Gaël, Azzag Hanane, Bougeard Stéphanie, Lebbah Mustapha, Niang Ndèye / Procedia Computer Science 00 (2018) 000–000 5

• Usability: the Spark/Scala implementation requires the configuration of a small number of hyper parameters,
and can be utilized in a distributed system or even on a stand-alone terminal with minimal effort, which enlarges
the scope of usability of the PLS.

3.2.2. Mathematical details
We assume that the N observations are clustered into K micro-clusters (or buckets), C = {C1, . . . ,Ck, . . . ,CK}

where Ck = {xi, φ(xi) = k}. Denote φ as the assignment function defined as follow : φ : xi ∈ �p → {1, . . . , k, . . . ,K}
(eg. euclidean distance). The partition C of the micro-clusters is carried as an initialization before running the PLS
models. This step can be done using clustering approaches such as k-means.

Denote a second partition level P = {P1, ..., Pg, ..., PG} of the micro-clusters set C into G macro-clusters (and
K � G). Therefore G is the number of regression models that will be considered (PLS 1, ..., PLS g, ..., PLS G). The
second level assignment function Φ is defined as: Φ : {C1, . . . ,Ck, . . . ,CK} → {1, . . . , g, . . . ,G}.

We introduce Micro-Bach Clusterwise PLS methods (mb-CW-PLS) by assuming two phases of clustering: in the
first level the N observations is clustered in K fixed micro-clusters, and in the second level, the K micro-clusters are
grouped into G macro-clusters where each macro-cluster has a specific PLS regression model. Therefore the mb-
CW-PLS algorithm searches for an optimal partition of the K micro-clusters into G macro-clusters as well as the
corresponding set of regression coefficient matrices (B1, ...,BG) that minimize the overall error described in Equation
3:

L(P,B) =
G∑

g=1

∑
xi∈Pg

‖Yg − XgBg‖2

=

G∑
g=1

∑
Ck∈Pg

∑
xi∈Ck

‖yi − xibT
g ‖2 (3)

where Xg and Yg denote the data matrices of the gth macro-cluster respectively of X and Y, i.e.

X =



X1 =



x11 . . . x1p
...

xN11 . . . xN1 p


...

Xg =



x11 . . . x1p
...

xNg1 . . . xNg p


...

XG =


x11 . . . x1p

v . . .
xNG1 . . . xNG p







φ(x1) Φ(Cφ(x1))
...

...
φ(xN) Φ(Cφ(xN))

 and Y =



Y1 =



y11 . . . y1q
...

yN11 . . . yN1q


...

Yg =



y11 . . . y1q
...

yNg1 . . . yNgy


...

YG =



y11 . . . y1q
...

yNG1 . . . yNGq





The classical Clusterwise PLS does not provide estimators in reasonable time for large N. Based on the traditional
sequential algorithm, each observation xi is assigned to its optimal cluster and the overall error is updated whenever
one observation switches cluster. In order to overcome this problem and to ensure that the error decreases monotoni-
cally at each iteration of the algorithm, we propose to use a new sequential micro-batch algorithm. Each micro-cluster
Ck is assigned to its optimal macro-cluster Pg and the overall error is updated whenever a micro-cluster switches to a
different macro-cluster. Therefore the main idea, instead moving a single observation xi from its original macro-cluster
to other macro-clusters, we move the entire micro-cluster Ck which contains xi and then re-compute the regression

244	 Beck Gaël et al. / Procedia Computer Science 144 (2018) 239–250
6 Beck Gaël, Azzag Hanane, Bougeard Stéphanie, Lebbah Mustapha, Niang Ndèye / Procedia Computer Science 00 (2018) 000–000

model. Starting with an initial partition of macro-clusters P(0) = {P(0)
0 , . . . , P

(0)
G }, the algorithm constructs iteratively a

sequence {P(s),B(s))}, s > 0, in the following way:

• For each g ∈ {1 . . . ,G}, P(0) is given by the least square estimators of the PLS regression using the points of the
macro-cluster Pg.
• Given (P(s),B(s)

g), then for each macro-cluster
Pg ∈ {P1, . . . , PG},

P(s+1)
g = {(Xi,Yi) : ‖Yi − XiB(s)

g1
‖2

< ‖Yi − XiB(s)
g2
‖2,∀g1 � g2}. (4)

The resulting B(s+1) are the PLS estimators using the data partitioned by P(s+1). The sequence {(P(s),B(s))}s≥0 is
such that

L(P(s),B(s)) ≥ L(P(s+1),B(s+1)), ∀s ≥ 0

and so it is convergent.
• Repeat above step for all micro-clusters Ck which are re-assigned to their optimal macro-cluster Pg. This guar-

antees that the overall error decreases monotonically at each change in assignment.

The mb-CW-PLS algorithm finds simultaneously an optimal partition of the fixed K micro-clusters (buckets) into
P = {P1, ..., Pg, ..., PG}, Pg = {Ck,Φ(Ck) = g and
∀xi ∈ Ck φ(xi) = k} and the regression models associated to each macro-cluster g. Finally the best cross-validated

try is selected based on the Root Mean Squared Error (RMSE) [20] score. This metric evaluate the prediction accuracy
of the fitted regression,

RMS E =

√∑N
i=1 (ŷi − yi)2

N

where ŷi is the predicted value, yi the true value and N the number of data points. This method is summarized in the
Algorithm 1.

3.3. Implementations specificities

In order to get an efficient distributed implementations, we decided to apply the Clusterwise logic through Spark
framework. As explained previously in order to apply a regression in the faster way, data should be inside the machine
which perform linked operations. Then rather than to distribute piece of data through nodes in order to avoid shuffling,
we put the entire dataset on each node using the sc.broadcast(dataset) function. Once this step done, we distribute
simultaneously every initializations which correspond to CV×INIT homogeneously over nodes. It allows to each node
to perform sequentially their CV×INIT

nodes Clusterwise initializations, via a mapPartitions functions where the number of
Spark partitions is CV × INIT . The Map part achieved we aggregateByKey obtained results where the Key is a Cross-
Validation index. We decided to use the non-parametric k-nearest neighbors method to assign observations to their
closest macro-cluster Pg in order to apply the associated PLS g. Finally, based on RMSE scores, the best model is
selected over Cross-Validations.

	 Beck Gaël et al. / Procedia Computer Science 144 (2018) 239–250� 245
Beck Gaël, Azzag Hanane, Bougeard Stéphanie, Lebbah Mustapha, Niang Ndèye / Procedia Computer Science 00 (2018) 000–000 7

Algorithm 1 mb-CW-PLS Clusterwise algorithm

1: procedure Clusterwise(X,G,CV, INIT)
// Generate the cross validated dataset

2: ∪CV
i=1Xi = X

// These steps are distributed over nodes
3: for i := 1 to CV do
4: Xcurr = ∪CV

i� j Xi
5: for j := 1 to INIT do

// Generate randomly filled classes
6: ∪G

g=1Xg = Xcurr
7: Choose randomly x where x ∈ Xcurr
8: for u := 1 to G do Apply PLS g on Xu with x ∈ Xu

9: for u := 1 to G do Apply PLS g on Xu with x � Xu

10: Choose the class b with the best regression score (least error)
11: Add x to Xb

12: Select the best initialization b-init
13: Apply corresponding model on the test set
14: Select the best model among CV through RMSE

Package availability. The mb-CW-PLS method described in this article are implemented in Spark/Scala
and will be available on Clustering4Ever github repository at https: // github. com/ Clustering4Ever/

Clustering4Ever

4. Numerical experiments

4.1. Prediction accuracy vs micro-cluster sizes

In contrast to the regular PLS regression, micro-batch Clusterwise PLS provides G regression models correspond-
ing to G macro-clusters. The iterative cross validation process is as follows: macro clusters are initiated by assigning
them randomly each point, for standard Clusterwise, or each micro-cluster Ck for micro-batch Clusterwise. Then the
PLS is applied to each macro-cluster, once it is achieved, one observation or one micro-cluster Ck is moved inside all
other macro-cluster Pg in order to compute new PLS regressions. Therefore we run one regression per macro-cluster
with and without a specific observation or micro-cluster given 2 ×G regressions. Once least squares have been com-
pared over all combinations, the point or the micro-cluster Ck is assigned to the macro-cluster Pg which yields the
minimal error. For our experiments different datasets listed in Table 1 of various sizes have been used. Most of them
came from UCI repository [11].

Dataset n X size, p Y size, q
Yacht Hydrodynamics 308 6 1

Forest Fire 517 10 1
Wine Quality Red 1599 11 1

Wine Quality White 4898 11 1
SimData 400 10 3

Table 1: Overview of data sets.

The evolution of the RMSE in Table 3 with the value of micro-cluster size Nk shows that we can efficiently decrease
the RMSE with our approach (mb-CW-PLS). We observe a property of Clusterwise methods that increasing number of
macro-clusters G reduces the RMSE score. On the other hand, a lower G allows to use larger values of Nk. In Table 3,

246	 Beck Gaël et al. / Procedia Computer Science 144 (2018) 239–250
8 Beck Gaël, Azzag Hanane, Bougeard Stéphanie, Lebbah Mustapha, Niang Ndèye / Procedia Computer Science 00 (2018) 000–000

N/A entry indicates that we cannot execute the algorithms under these conditions due to risk of generate empty class
which will falsify quality of results. First we seek for the optimal number of macro-clusters G, then we search for
the optimal size of the micro-clusters (buckets) Nk. The first performance criterion is the Root Mean Square Error of
prediction as evaluated with a ten-fold cross-validation procedure. Not surprisingly, mb-CW-PLS always improve the
Root Mean Square Error (RMSE) of prediction while taking into account the cluster size Nk.

We observe a property of Clusterwise methods that an increasing number of macro-clusters G reduces the RMSE
score. On the other hand, a lower G allows to use larger values of Nk. In Table 3, N/A entry indicates that the choice of
tuning parameters does not lead to a well-defined solution e.g. if we set high value of Nk we could inconveniently mov-
ing every micro-cluster in a macro-cluster to others macro-cluster. However every macro-cluster have to be present in
order to compare score of the different generated models. If this happened, then we re-tried with a different initializa-
tion, but a threshold of the number of attempts is fixed before considering tuning parameters ill-posed. The number
of clusters K in the k-means clustering is K = N/Nk, the number of cross validation classes is CV = 10, the number
of initializations is INIT = 20 and the number of k nearest neighbors for PLS model assignation is 20. Note that for
Nk = 1 is equivalent to the standard CW-PLS.

Figure 2 illustrates results with the three output dimensions Y from SimData dataset. We observe that the predicted
values (in red) are closer to the true values (in blue) for the mb-CW-PLS than with CW-PLS. The corresponding
RMSE is referenced in Table 3.

CW-PLS mb-CW-PLS

Fig. 2: Comparison of Clusterwise regression CW-PLS vs mb-CW-PLS for SimData ’s Y. True responses are in blue and predicted one are in red

4.2. Comparison to existing regression methods

To compare our PLS and mb-CW-PLS regressions to other regression methods, we took the experimental data sets
with a single response variable (q = 1). We then fit models for the OLS, Ridge regression, LASSO and Random
Forest using code from the Smile library (https://haifengl.github.io/smile/). 500 replicates of 90% random sampled are
taken as training data, then the RMSE based on the remaining 10% test data is computed. The RMSEs are shown in
Table 2. We observe that PLS provides at least as well the the OLS, Ridge regression and the LASSO, and less well
than the Random Forest for the Forest Fire, Yacht Hydrodynamics and Wine Quality Red. The proposed mb-CW-
PLS outperforms these methods, in some cases by a substantial margin, in terms of the RMSE. Furthermore, for the
SimData which has 3 response variables (q = 3), the PLS and mb-CW-PLS are able to produce results, whereas the
other regressions cannot provide results.

4.3. Comparison of prediction accuracy and execution times

Table 3 shows the RMSE scores and the execution times for CW-PLS and mb-CW-PLS. Let recall that CW-PLS
is equivalent to mb-CW-PLS with Nk = 1. Figure 4a illustrates some of these results indicating that the higher we
set G the better can be our results with a smaller standard deviation. This result is partially intuitive in that sense
that the more specialized cluster we build, the more effective will be model build on them. The counter part of this
strategy is a risk of overfitting. For most datasets, mb-CW-PLS presents similar RMSE scores to classical CW-PLS

	 Beck Gaël et al. / Procedia Computer Science 144 (2018) 239–250� 247
Beck Gaël, Azzag Hanane, Bougeard Stéphanie, Lebbah Mustapha, Niang Ndèye / Procedia Computer Science 00 (2018) 000–000 9

Regression
method

Forest
Fire

Yacht
Hydro-

dynamics

Wine
Quality

Red

Sim
Data

OLS 0.730
±0.415

0.597
±0.007

0.803
±0.003

N/A

Ridge
regression

0.729
±0.415

0.596
±0.007

0.803
±0.003

N/A

LASSO 0.729
±0.416

0.594
±0.007

0.803
±0.003

N/A

Random
Forest

0.715
±0.362

0.289
±0.008

0.750
±0.002

N/A

PLS 0.720
±0.419

0.594
±0.007

0.808
±0.002

0.223
±0.158

mb-CW-PLS
G = 6

0.899
±0.328

0.226
±0.039

0.003
±0.000

0.016
±0.000

Table 2: Comparison of the different regression methods. The first row indicates the mean RMSE followed by the standard deviation. N/A entry
indicates that we cannot execute the algorithms under these conditions

ones. Indeed execution times is much faster as Figure 3c highlight it, especially on bigger datasets. The micro-batch
processing which produces the micro-clusters allows these decrease in execution time without sacrificing too much of
the prediction accuracy as it is exposed on Figure 4b-4c. In some case as with the Wine Quality Red dataset we even
observe better results. An interesting thing holds in the modest RMSE evolutions over different Nk values for Nk > 1.

4.4. Scalability

4.4.1. Scalability with the respect with the number of nodes
The results obtained in Table 3 were carried in a local environment (i.e. a stand-alone terminal). We now exam-

ine the performance of mb-CW-PLS in a true distributed computing set-up. To execute these experiments, we used
Grid5000 [1] infrastructure which is one of the biggest French’s laboratories clusters. We used a set-up with two times
8 core Intel Xeon E5-2630v3 or two times 12 cores AMD Opteron 6164 HE CPUs and 128 Gb RAM per node. Table 4
presents average time spend for four run executing a full Clusterwise workflow, which consist to train and test models
to select best one. Total init CV × Init corresponds to the total number of initializations made. Figure 3a shows that
the execution times decreases efficiently with the number of nodes.

In order to maximize efficiency, we recommend to have 2-3 times more Spark partitions than the total number of
core among every nodes. This approach is not optimal if we have a large data set with few initializations as we do not
utilize fully the distributed computational power of Spark. We can also observe that when the number of core nodes is
exceeded by the number of initializations, the growth in execution time is almost linear with respect with the number
of initializations. As our distributed set-up consists of nodes with 32 cores, a reduction in execution time is observed
when the number of initializations is higher than 32.

4.4.2. Scalability with respect with the number of initializations
Figure 3b shows the linearity of the problem with the increase of the number of initializations with a set-up of

8 slave nodes. This results illustrate that initializations are well distributed among nodes which allows an efficient
computations of the algorithm.

5. Discussions and conclusion

This work present a new Clusterwise PLS regression algorithm, which brings multiple improvements. First, the
micro-batch processing facilitates a drastic reduction in execution times, keeping the same magnitude of prediction
accuracy. Second, the distributed implementation enables the test with a large number of initializations in order to

248	 Beck Gaël et al. / Procedia Computer Science 144 (2018) 239–250

10 Beck Gaël, Azzag Hanane, Bougeard Stéphanie, Lebbah Mustapha, Niang Ndèye / Procedia Computer Science 00 (2018) 000–000

Dataset CW-PLS
mb-CW-PLS

Nk = 5
mb-CW-PLS

Nk = 10

mb-CW-PLS
Nk =

custom1

mb-CW-PLS
Nk =

custom2

Forest Fire
G = 4

6 slaves INTEL

0.06625
±0.0132

26.3s

0.07771
±0.00843

16.6s

0.08627
±0.00952

15.6s

0.0857
±0.00304

14.9s
Nk = 15

0.08577
±0.00728

15.1s
Nk = 20

Yacht
Hydrodynamics

G = 2
6 slaves INTEL

0.0101
±4.0E-4

15.6s

0.01852
±3.7E-4

13.2s

0.01888
±0.00138

12.8s

0.01821
±0.00103

13.3s
Nk = 15

0.01899
±0.00182

13.2s
Nk = 20

Yacht
Hydrodynamics

G = 4
6 slaves INTEL

0.01066
±4.1E-4

15.0s

0.02002
±8.2E-4

13.1s

0.01815
±0.00146

13.1s

0.0167
±8.0E-4

12.9s
Nk = 15

0.01435
±7.9E-4

12.8s
Nk = 20

Yacht
Hydrodynamics

G = 6
8 slaves AMD

0.00146
±5.0E-5

32.5s

0.01227
±8.9E-4

28.2s

0.01233
±6.7E-4

29.2s

N/A
Nk = 15

N/A

Wine
Quality

Red
G = 4

8 slaves AMD

0.01269
±4.8E-4
522.1s

0.00969
±1.0E-4
141.6s

0.00982
±1.0E-5

93.5s

0.00989
±7.0E-5

63.1s
Nk = 20

0.00971
±8.0E-5

50.2s
Nk = 40

Wine
Quality
White
G = 4

8 slaves AMD

Not finished
after 5h

of computation

0.05567
±3.4E-4
3878.7s

0.05545
±4.0E-5
2032.0s

0.05489
±3.9E-4
1059.2s
Nk = 20

0.05481
±2.5E-4
587.3s

Nk = 40

Sim Data
G = 2

8 slaves AMD

0.02203
±5.2E-4

40.5s

0.10793
±0.00558

30.1s

0.10281
±0.01839

28.7s

0.10541
±0.00389

28.2
Nk = 15

N/A

Sim Data
G = 3

8 slaves AMD

0.02383
±0.00105

38.3s

0.09959
±0.00473

30.0s

0.09464
±0.00611

29.8s

0.09479
±0.00274

28.7s
Nk = 15

N/A

Sim Data
G = 4

8 slaves AMD

0.02723
±0.00156

38.2s

0.10054
±0.00688

30.0s

0.08356
±0.00497

29.3s

0.09095
±0.00731

30.0s
Nk = 15

N/A

Sim Data
G = 5

8 slaves AMD

0.02951
±0.00233

42.7s

0.0909
±0.00376

30.5s

0.0894
±0.00572

30.5s

0.0707
±0.00606

31.7
Nk = 15

N/A

Sim Data
G = 6

8 slaves AMD

0.02317
±8.4E-4

36.0s

0.09274
±0.0058

29.7s

0.07298
±0.00552

32.0s

0.07436
±0.00828

36.5
Nk = 15

N/A

Table 3: Comparison of CW-PLS and mb-CW-PLS. The first row is the mean RMSE followed by the standard deviations and the execution times.
N/A indicates that we cannot execute the algorithms

total init local 2 slaves 4 slaves 6 slaves 8 slaves
260 276.6 170.3 114.6 107.4 93.9
500 509.7 303.6 191.2 162.7 146.7

Table 4: Comparison of execution times with different number of initializations and slave processes for the Yacht Hydrodynamics using Intel setup.

find the optimal cross-validated model. One key aspect of the algorithm is the number of regressions needed for one
complete run which is 2×G ×CV × INIT × N ≈ 1000× N leading to a quadratic time complexity. Our micro-cluster

	 Beck Gaël et al. / Procedia Computer Science 144 (2018) 239–250� 249

10 Beck Gaël, Azzag Hanane, Bougeard Stéphanie, Lebbah Mustapha, Niang Ndèye / Procedia Computer Science 00 (2018) 000–000

Dataset CW-PLS
mb-CW-PLS

Nk = 5
mb-CW-PLS

Nk = 10

mb-CW-PLS
Nk =

custom1

mb-CW-PLS
Nk =

custom2

Forest Fire
G = 4

6 slaves INTEL

0.06625
±0.0132

26.3s

0.07771
±0.00843

16.6s

0.08627
±0.00952

15.6s

0.0857
±0.00304

14.9s
Nk = 15

0.08577
±0.00728

15.1s
Nk = 20

Yacht
Hydrodynamics

G = 2
6 slaves INTEL

0.0101
±4.0E-4

15.6s

0.01852
±3.7E-4

13.2s

0.01888
±0.00138

12.8s

0.01821
±0.00103

13.3s
Nk = 15

0.01899
±0.00182

13.2s
Nk = 20

Yacht
Hydrodynamics

G = 4
6 slaves INTEL

0.01066
±4.1E-4

15.0s

0.02002
±8.2E-4

13.1s

0.01815
±0.00146

13.1s

0.0167
±8.0E-4

12.9s
Nk = 15

0.01435
±7.9E-4

12.8s
Nk = 20

Yacht
Hydrodynamics

G = 6
8 slaves AMD

0.00146
±5.0E-5

32.5s

0.01227
±8.9E-4

28.2s

0.01233
±6.7E-4

29.2s

N/A
Nk = 15

N/A

Wine
Quality

Red
G = 4

8 slaves AMD

0.01269
±4.8E-4
522.1s

0.00969
±1.0E-4
141.6s

0.00982
±1.0E-5

93.5s

0.00989
±7.0E-5

63.1s
Nk = 20

0.00971
±8.0E-5

50.2s
Nk = 40

Wine
Quality
White
G = 4

8 slaves AMD

Not finished
after 5h

of computation

0.05567
±3.4E-4
3878.7s

0.05545
±4.0E-5
2032.0s

0.05489
±3.9E-4
1059.2s
Nk = 20

0.05481
±2.5E-4
587.3s

Nk = 40

Sim Data
G = 2

8 slaves AMD

0.02203
±5.2E-4

40.5s

0.10793
±0.00558

30.1s

0.10281
±0.01839

28.7s

0.10541
±0.00389

28.2
Nk = 15

N/A

Sim Data
G = 3

8 slaves AMD

0.02383
±0.00105

38.3s

0.09959
±0.00473

30.0s

0.09464
±0.00611

29.8s

0.09479
±0.00274

28.7s
Nk = 15

N/A

Sim Data
G = 4

8 slaves AMD

0.02723
±0.00156

38.2s

0.10054
±0.00688

30.0s

0.08356
±0.00497

29.3s

0.09095
±0.00731

30.0s
Nk = 15

N/A

Sim Data
G = 5

8 slaves AMD

0.02951
±0.00233

42.7s

0.0909
±0.00376

30.5s

0.0894
±0.00572

30.5s

0.0707
±0.00606

31.7
Nk = 15

N/A

Sim Data
G = 6

8 slaves AMD

0.02317
±8.4E-4

36.0s

0.09274
±0.0058

29.7s

0.07298
±0.00552

32.0s

0.07436
±0.00828

36.5
Nk = 15

N/A

Table 3: Comparison of CW-PLS and mb-CW-PLS. The first row is the mean RMSE followed by the standard deviations and the execution times.
N/A indicates that we cannot execute the algorithms

total init local 2 slaves 4 slaves 6 slaves 8 slaves
260 276.6 170.3 114.6 107.4 93.9
500 509.7 303.6 191.2 162.7 146.7

Table 4: Comparison of execution times with different number of initializations and slave processes for the Yacht Hydrodynamics using Intel setup.

find the optimal cross-validated model. One key aspect of the algorithm is the number of regressions needed for one
complete run which is 2×G ×CV × INIT × N ≈ 1000× N leading to a quadratic time complexity. Our micro-cluster

Beck Gaël, Azzag Hanane, Bougeard Stéphanie, Lebbah Mustapha, Niang Ndèye / Procedia Computer Science 00 (2018) 000–000 11

0 2 4 6 8

100

200

300

400

500

Number of slaves

E
xe

cu
tio

n
tim

e
(s

)

260 Inits
500 Inits

(a) Evolution of the execution times
with respect with the number of slaves.
Set-up with Intel CPUs

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·104

40

60

80

100

Number of initializations

E
xe

cu
tio

n
tim

e
(s

)

(b) Evolution of the execution times
with respect with the number of initial-
izations on Yacht dataset. Set-up with 8
AMD slaves

0 10 20 30 40

0

1,000

2,000

3,000

4,000

Micro-cluster size

E
xe

cu
tio

n
tim

e
(s

)

Wine Quality Red
Wine Quality White

(c) Evolution of the execution times
with respect with of the size of micro-
cluster for different datatsets

Fig. 3: Evolution of the execution times

(a) RMSE with standard deviation per G
value

(b) RMSE with standard deviation per
micro-cluster size

(c) RMSE with standard deviation per
micro-cluster size

Fig. 4: Root Mean Square Error (RMSE)

approach reduce exclusively the number of regression from N to N
Nk

, but we still compute PLS on the whole dataset
preventing better time performance. In our future works we will examine methods to decrease the execution time and
also to increase prediction quality. Unfortunately, an inevitable bottleneck is the impossibility to decrease the inner
complexity of a regression and Clusterwise strategy is very regression greedy. One solution we desire to investigate
will be to reduce to a computable size datasets keeping their inner structure in order to train the Clusterwise model. We
have engage this work but due to number of existing sketching methods we need to further testing to find an optimal
solution. Another important aspect holds in the affectation of a new observation to its closest macro-cluster which is
solved here by the k-nearest neighbors. However others methods can be tested as for example comparison between
the observation with macro-clusters centroid which is faster than k-nearest neighbors but potentially less accurate.
As explained previously, an important number of initializations is required to guaranty quality due to their random
nature. One option we are thinking about is relaunch an initialization over an achieved one in order to benefit from
the Clusterwise process. We can also relaunch this process multiple times until we converge toward an optimal score.
The computation overhead could be decrease by reducing the number of random initializations. Another quality result
issue is linked to micro-clusters we generate, they came from a basic k-means version ,using an euclidean dissimilarity,
in order to formed our micro-clusters, others clustering techniques could be used and compared to discover which one
fit the best a specific need.

References

[1] Balouek, D., Carpen Amarie, A., Charrier, G., Desprez, F., Jeannot, E., Jeanvoine, E., Lèbre, A., Margery, D., Niclausse, N., Nussbaum, L.,
Richard, O., Pérez, C., Quesnel, F., Rohr, C., Sarzyniec, L., 2013. Adding virtualization capabilities to the Grid’5000 testbed, in: Ivanov, I.I.,

250	 Beck Gaël et al. / Procedia Computer Science 144 (2018) 239–250
12 Beck Gaël, Azzag Hanane, Bougeard Stéphanie, Lebbah Mustapha, Niang Ndèye / Procedia Computer Science 00 (2018) 000–000

van Sinderen, M., Leymann, F., Shan, T. (Eds.), Cloud Computing and Services Science. Springer International Publishing. volume 367 of
Communications in Computer and Information Science, pp. 3–20. doi:10.1007/978-3-319-04519-1_1.

[2] Bock, H., 1969. The equivalence of two extremal problems and its application to the iterative classification of multivariate data. Mathematisches
Forschungsinstitut .

[3] Bougeard, S., Abdi, H., Saporta, G., Niang, N., 2017. Clusterwise analysis for multiblock component methods. Advances in Data Analysis
and Classification , 1–29.

[4] Charles, C., 1977. Régression typologique et reconnaissance des formes. Ph.D. thesis. Université Paris IX.
[5] De Roover, K., Ceulemans, E., Timmerman, M.E., Vansteelandt, K., Stouten, J., Onghena, P., 2012. Clusterwise simultaneous component

analysis for analyzing structural differences in multivariate multiblock data. Psychological Methods 17, 100.
[6] DeSarbo, W.S., Cron, W.L., 1988. A maximum likelihood methodology for clusterwise linear regression. Journal of classification 5, 249–282.
[7] Diday, E., 1976. Classification et sélection de paramètres sous contraintes. Rapport de recherche IRIA-LABORIA .
[8] Esposito Vinzi, V., Trinchera, L., Squillacciotti, S., Tenenhaus, M., 2008. Rebus-pls: A response-based procedure for detecting unit segments

in pls path modelling. Applied Stochastic Models in Business and Industry 24, 439–458.
[9] Hahn, C., Johnson, M.D., Herrmann, A., Huber, F., 2002. Capturing customer heterogeneity using a finite mixture pls approach. Schmalenbach

Business Review 54, 243–269.
[10] Hwang, H., Desarbo, W.S., Takane, Y., 2007. Fuzzy clusterwise generalized structured component analysis. Psychometrika 72, 181.
[11] Lichman, M., 2013. UCI machine learning repository. URL: http://archive.ics.uci.edu/ml.
[12] Lohmöller, J.B., 2013. Latent variable path modeling with partial least squares. Springer Science & Business Media.
[13] Martella, F., Vicari, D., Vichi, M., 2015. Partitioning predictors in multivariate regression models. Statistics and Computing 25, 261–272.
[14] Montgomery, D.C., Peck, E.A., Vining, G.G., 2001. Introduction to linear regression analysis. .
[15] Preda, C., Saporta, G., 2005. Clusterwise pls regression on a stochastic process. Computational Statistics & Data Analysis 49, 99–108.
[16] Sarstedt, M., 2008. A review of recent approaches for capturing heterogeneity in partial least squares path modelling. Journal of Modelling in

Management 3, 140–161.
[17] Schlittgen, R., Ringle, C.M., Sarstedt, M., Becker, J.M., 2016. Segmentation of pls path models by iterative reweighted regressions. Journal

of Business Research 69, 4583–4592.
[18] Späth, H., 1979. Algorithm 39 clusterwise linear regression. Computing 22, 367–373.
[19] Vinzi, V.E., Lauro, C.N., Amato, S., 2005. Pls typological regression: algorithmic, classification and validation issues, in: New developments

in classification and data analysis. Springer, pp. 133–140.
[20] Willmott, C.J., Matsuura, K., 2005. Advantages of the mean absolute error (mae) over the root mean square error (rmse) in assessing average

model performance. Climate research 30, 79–82.
[21] Wold, H., 1985. Partial least squares. Encyclopedia of statistical sciences .

