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Résumé. Clusterwise linear regression aims at partitioning a dataset into clus-
ters characterized by their own regression coefficients. To deal with multiblock
data, an extension of clusterwise regression to multiblock PLS is proposed. As
this method is component-based, it may handle high dimensional data. The in-
terest of the proposed method will be illustrated on the basis of a simulation
study.

1 Introduction
Several multiblock regression methods are proposed for the analysis of huge transactional

experimental data usually generated as multiblock data. Among them, multiblock Partial Least
Squares (mbPLS) aims at exploring and modeling the relationships between several variables
to be predicted from several other explanatory ones organized into meaningful blocks. The
main idea of this component-based regression method is to find out the best combination of
variables within explanatory blocks summarized with components to explain and predict the
dependent variables. As an extension of PLS regression it inherits its advantages, that is, it
handles situations where the variable number is higher than the observation number as well as
multicollinearity.

However in many applications, observations do not come from a single and homogeneous
population ; there is an unknown underlying group structure of observations. It follows that
the estimation of a single set of regression coefficients for the whole dataset may mask the
variables relationships and be misleading. Clusterwise, also called typological, regression is
proposed to overcome this drawback in the context of standard regression. Clusterwise regres-
sion consists of simultaneously looking for a partition of the observations into clusters and
their associated regression model by minimizing the sum of the error sums of squares com-
puted over all the clusters. As in standard linear multiple regression, ordinary least squares
or maximum likelihood estimation can be used to estimate clusterwise regression coefficients.
Several methods and algorithms have been proposed. For example, in (DeSarbo et al, 1988) a
maximum likelihood solution based on finite mixtures of conditional Gaussian distributions is
proposed with a EM algorithm to get model parameters estimations. Extensions to principal
component regression or PLS have been proposed to deal with multicollinearity and critical
situations of small sample size or large variable number.
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The problem addressed here is to model and predict multiblock data with the additional
constraint of an underlying unknown cluster structure of observations. We propose an new clus-
terwise multiblock method which extends the typological PLS regression (Vinzi et al, 2005) to
multiblock data. Additionally, the associated sequential algorithm guarantee the monotonous
decreasing of the criterion to be minimized.

2 Methods
Consider the multiblock setting where a dataset Y is to be predicted from K explanatory

ones (X1, . . . ,XK). The Y dataset contains Q variables and each dataset Xk contains P k va-
riables (k = 1, . . . ,K). The merged dataset X = [X1| . . . |XK ] related to all the explanatory
variables contains P =

∑
k P

k variables. All these quantitative variables are measured on the
same N observations and are supposed to be column centred. Furthermore, clusterwise multi-
block data suppose that there is an unknown structure of the N observations into G clusters of
size N1, . . . , NG. In standard multiblock PLS, the relationship between Y and the K matrices
Xk (stored in X) is first modeled by computing a pair of linear combinations—called com-
ponents–of the columns of, respectively Y and X such that these components have maximal
covariance. After this first step–equivalent to a standard PLS model–specific components are
computed to relate each Xk to Y. Formally, mbPLS first implements the following optimization
problem :

Argmax
u,tk,ak,t

cov2(u, t) with u = Yv, t = Xw =
∑
k

aktk (1)∑
k

(ak)
2
= 1, tk = Xkwk and ‖w‖ = ‖wk‖ = ‖v‖ = 1

In a second step, the dependent dataset Y is predicted (with a standard linear regression)
from the component t as Ŷ = tc′.

To improve the Y prediction, the second order solutions are obtained while deflating the da-
tasets (X1, . . . ,XK) by means of a regression onto the first global component denoted t(1). The
maximization (1) is performed but the original datasets are replaced by the residuals obtained
in the deflation step. We denote by O the optimal number of components to keep in the model
which is in general estimated by a cross-validation approach. Then the dependent dataset is

predicted as : Ŷ
(O)

=
∑O

h=1 t
(h)c(h)

′
=

∑O
h=1

∑K
k=1 a

k(h)tk(h)c(h)
′

with c(h) = Y′t(h)

‖t(h)‖2

being the vector of the regression coefficients of Y on t(h).
This last regression step corresponds to the following optimization problem :

Argmin
c

‖Y−
O∑

h=1

K∑
k=1

ak(h)tk(h)c(h)
′
‖2 with tk(h) = Xk(h−1)wk(h) and ‖wk(h)‖ = 1 (2)

Xk(h−1) is the residual of the prediction of Xk from h−1 previous components (t(1), . . . , t(h−1)).

mbPLS Criterion As for the standard clusterwise methods, the criterion to minimize is the
sum of errors square computed over all the clusters using local multiblock PLS applied to each
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cluster instead of standard regression. Let Yg , Xg = [X1
g| . . . |X

K
g ] be the parts of the data

corresponding to the cluster g respectively for the dependent variables and the explanatory
ones. Equation (2) is adapted to the clusterwise context, and so the criterion for clusterwise
mbPLS for a given number of clusters G and an optimal number O of components to be
included in the model is

Argmin
c1, . . . , cG

G∑
g=1

‖Yg −
O∑

h=1

K∑
k=1

ak(h)g tk(h)g c(h)
′

g ‖2 with c(h)g =
Y′gt

(h)
g

‖t(h)g ‖2
(3)

In order to ensure the decreasing monotonicity of the criterion according to the N itera-
tions, we propose to apply a sequential algorithm rather than a standard batch one ; it follows
that each observation is assigned to its optimal cluster and the criterion is updated at each step
of the algorithm as in standard K-means algorithm. Thereafter, to avoid local optimum, several
random initialisations are used. The optimal numbers of clusters and dimensions are unknown
and must therefore be determined. Because our method is distribution-free, penalized para-
metric criteria such as BIC or AIC cannot be used. As the proposed clusterwise multiblock
methods can be used to explicitly predict new observations (see below), we propose to select
the unknown parameters on the basis of a ten-fold cross-validation procedure where the opti-
mal G and O parameters are selected to minimize the average root mean square error (RMSE)
of prediction.
Prediction of new observations Up to our knowledge, in clusterwise framework, the pre-
diction of a new observation is an original question not really addressed. Given a new data
point for which only the values of the predictors are available, the prediction of the dependent
variables Y is processed in two sequential steps : (i) the observation is firstly assigned to its
nearest cluster and (ii) the relevant cluster regression model is applied to get the predicted Y
value. In the first step, the response variable to predict is the categorical variable whose cate-
gories are the cluster labels. The associated predictor variables can be the initial explanatory
variables if X is of full rank. If not, X can be summarized through components. Then several
solutions exist for the assignment of a new observation to the nearest cluster. Geometrical rules
based on Mahalanobis distances to the cluster gravity centres can be used or probabilistic rules
such as the Bayes rule. In the context of multiblock data with a free distribution setting, we
propose to apply a non parametric method using the maximum posterior probability estimated
by a K-nearest neighbour method with euclidian distance or the Mahalanobis one ; the k num-
ber of neighbours is choosen through a cross-validation procedure.
Once the new observation is assigned to its optimal cluster, this cluster regression model is
applied to get the predicted value.

3 Application
The proposed clusterwise method is illustrated in a simulated study through twenty-one

situations depending on the general structure and the block structure as well as the cluster
structure (Bougeard et al., 2017). Several factors are taken into account : the number of de-
pendent variables, the number of explanatory variables, the number of blocks, the proportion
of variables per block, the block weighting scheme when the blocks of variables have different
sizes, the within-block correlation, the number of observations, the number of clusters, the
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proportion of observations per cluster, and the separation between clusters. For each of the
twenty-one case study, twenty datasets were simulated. The first performance criterion is the
Root Mean Square Error of prediction evaluated with a ten-fold cross-validation procedure.
Not surprisingly, mbPLS always improves the Root Mean Square Error of prediction while
taking account the cluster structure of observations. This effect is particularly clear for the
simplest simulation cases of well-separated clusters of equal sizes. The second performance
criterion is the Adjusted Rand index. Not surprisingly, best performance was achieved for the
case of well-separated clusters of equal sizes with an average adjusted Rand of .81 and slightly
decreased for the case of well-separated clusters of different sizes with an average adjusted
Rand of .77 and for the case of mild-separated clusters of equal sizes with an average Adjusted
Rand of .73. The last performance criterion evaluated how well the actual regression coeffi-
cients were recovered. The regression coefficients were, most of time, correctly recovered for
the case of well-separated clusters of equal sizes but differed slightly from the actual value
when the block sizes differed and—but to a lesser extend— when block sizes varied.

4 Conclusion
We propose a new clusterwise multiblock regression method useful for analyzing complex

data as found, for example in marketing, biology, or any field dealing with population mixtures.
The proposed clusterwise procedure is oriented both towards modeling and prediction and can
be applied to any other multiblock component methods.
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Summary
La régression clusterwise vise à partitionner un ensemble de données en classes carac-

térisées chacune par un modèle de régression linéaire spécifique. Nous proposons une exten-
sion à la régression PLS multiblocs. Cette méthode basée sur des composantes permet alors de
traiter des données de grande dimension. La méthode proposée est illustrée sur la base d’une
étude de simulation.


