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1.Introduction

• Notations: 
• y a vector of n observations of a response variable 

• x(t) a set of n time functions (or curves) observed on [0,T]: the predictors

• The functional linear model (FLM) is an extension of multiple 
regression

• FLM usually assumes that the observations are independent. This is
not the case for spatial or network data
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• We propose here a simple combination of the Functional Linear
Model and of the Spatial Autoregressive (SAR) Model  to deal with
spatially correlated data

• n spatially distributed data on a regular or not regular grid

• The SAR model commonly used in econometrics states that

X is a matrix of p predictors 

W is a spatial (or neighbouring) weight matrix. Rows sum to 1 and 
diagonal elements are 0.

ρ reflects the strength of spatial dependence. 
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SFLM : a  linear regression with functional covariates and spatially
correlated responses

SFLM handles dependent responses via the autoregressive term ρWy

Related works: 

Pineda, W. and Giraldo, R. 2016., Aguilera-Morillo, M.C. et al, 2017, Giraldo et al. 
2017

5

1

0
( ) ( )t t dt  = + + +y 1 Wy x ε

CRoNoS FDA 2018



2. From regression integral to the functional
linear model (FLM)

R.A.Fisher « The Influence of Rainfall  on the Yield of Wheat 
at Rothamsted » Philosophical Transactions of the Royal 
Society, B: 213: 89-142 (1924)

Y = amount of crop

Xt = temperature curves
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The functional linear model states that :

See Ramsay, J.O. &  Silverman, B.W. (1997); Cardot et al. (1999); Cai and Hall 
(2006); Hall and Horowitz (2007) etc.

Minimizing 

leads to Wiener-Hopf equations:  
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An ill posed problem

• Picard’s  theorem states that (t) is unique if and only if:

where the are the eigenvalues of the Karhunen-Loève expansion of 
X(t) and the ci the covariances between Y and the functional principal 
components

• Generally not true…especially when n is finite
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Constrained solutions are needed.  Several solutions:

- “roughness penalty” bounds on the integral of (”)2

(cf Green & Silverman 1994, Ramsay & Silverman 1997)

- Projection onto a finite dimensional subspace

PCR  consists in a regression onto the m first principal components 
(truncated KL expansion)
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Extensions of FLM have been studied to address specific problems:

- Escabias, M., Aguilera A.M. and Valderrama M.J. (2004) discussed principal 
component estimation of functional logistic regression

- Aneiros-Prez and Vieu (2006) constructed a semi-functional partial linear
model

- Ferraty et al. (2013) generalized the FLM to functional projection pursuit 
regression that allows for more interpretability

- Liu et al. (2017) presented a functional linear mixed model
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3. The spatial functional linear model (SFLM)
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• The spatial weight matrix W is exogenous. It is constructed according 
to distances between units under different contexts. For the case of 
geographic location, W is formed according to adjacent relation or 
nearest k neighbors in terms of Euclidean distance or other metric.

• SFLM has merits of FLM and SAR simultaneously. It reduces to the 
classical FLM when  ρ= 0

• A reformulation shows that the error terms are not independent: 

maximum likelihood should be used instead of OLS
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• The intercept α , the spatial autocorrelation parameter ρ, the slope 
function β(t), and the variance of the error term σ2 are estimated by  
maximum likelihood  combined with the basis expansion in terms of 
truncated functional PCA.

• Karhunen-Loeve expansion of X(t) and basis expansion of β(t)
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• SFLM equation with truncated expansion

14

( )

1

|    =

m

j j

j

b 





=

+ + +

 
=  

 

+ +

y 1 Wy a ε

Z 1 A δ
b

y Wy Zδ ε

CRoNoS FDA 2018



One gets the log-likelihood:

Hence the estimation of ρ and β(t)
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4. Simulation 
• Three regular grids of n ={10x30; 20x25; 30x30}

• Each point has 2,3, or 4 neighbours, hence the matrix W

• Same process as in Hall, P. and Horowitz, J. L. (2007)

• Three values for ρ: 0; 0.5; 0.8
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• The functional predictor x(t) = (x1(t); x2(t);    ; xn(t))  is produced with 
independent functions
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• Two cases for the eigenvalues:
• Case 1  = 1.1,   eigenvalues are well spaced and slope function can be well 

estimated 

• Case 2:  = 2, where closely spaced eigenvalues can cause a poor performance 
for estimating β (t)

• Truncation of KL expansion: 70% of explained variance

• The experiment was repeated 500 times in each setting

• Criteria: 
• mean bias and standard derivation for ρ

• MSE evaluated at 100 equidistant point for β(t)
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Comparing FLM(2)  and SFLM (1)
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Comparing FLM(2)  and SFLM (1)
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Comparing FLM(2)  and SFLM (1)
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5. Application to chinese weather data

• Investigate the effect of 
temperature on precipitation

• Y logarithm of mean annual
precipitation

• X(t) mean monthly temperature
curve

• n= 34 cities

• Training set: average over 2005-
2007

• Test data: 2008
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1- We smoothed the mean monthly temperature over 3 years by 
Epanechnikov kernel.

2- The spatial weight matrix was formed by nearest k neighbors, each 
neighbor's weight equalling reciprocal of Euclidean distance d(i ; i’) 
between cities i and i’. For  k = {2; 3; 4; 5; 6; 7; 8; 9}

3- Urumchi being too far from other cities was removed

4- We perform the SFLM and FLM models to get estimators.

5- Then we apply the models to temperature observations in 2008 to 
predict annual precipitation.

27
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m=2 principal components for FLM and SFLM
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Spatial weight matrix W
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• The optimal number of neighbors for SFLM is k=5 according to the 
procedure of Lesage and Parent (2007) 

• L loglikelihood

• B a  bayesian model probability ratio

•
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• The two estimated curves β(t) 
have similar shapes

• Precipitation is much more 
influenced by temperature in 
winter than in other seasons. 
Under SFLM the precipitation of 
each city is less affected by 
temperature during the whole 
year.
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• SFLM is more precise than FLM

• A majority of spatial autocorrelation in responses have been 
removed.
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6.Conclusions and future works

• SFLM is simple and efficient when spatial autocorrelation is present in 
the response

• Use of PLS components instead of PCA (cf Preda and Saporta, 2005)

• Spatial cross validation

• Extensions to multiple functional predictors and spatially dependent
predictors
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