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1.Introduction

* Notations:
* Yy avector of n observations of a response variable
* X(t) a set of n time functions (or curves) observed on [0,T]: the predictors

* The functional linear model (FLM) is an extension of multiple
regression

y=al+ jOT BH)X(t)dt +

* FLM usually assumes that the observations are independent. This is
not the case for spatial or network data



* We propose here a simple combination of the Functional Linear
Model and of the Spatial Autoregressive (SAR) Model to deal with
spatially correlated data

* n spatially distributed data on a regular or not regular grid
* The SAR model commonly used in econometrics states that

y=pWy+ XB+e¢

X is a matrix of p predictors

W is a spatial (or neighbouring) weight matrix. Rows sum to 1 and
diagonal elements are 0.

p reflects the strength of spatial dependence.



SFLM : a linear regression with functional covariates and spatially
correlated responses

v = al+ pWy + jol BH)x(t)dt +¢

SFLM handles dependent responses via the autoregressive term pWy

Related works:

Pineda, W. and Giraldo, R. 2016., Aguilera-Morillo, M.C. et al, 2017, Giraldo et al.
2017



2. From regression integral to the functional
linear model (FLM)

R.A.Fisher « The Influence of Rainfall on the Yield of Wheat
at Rothamsted » Philosophical Transactions of the Royal
Society, B: 213: 89-142 (1924)

Y = amount of crop

X, = temperature curves




.........

Disregarding, then, both the arithmetical and the statistical difficulties, which a direct
attack on the problem would encounter, we may recognise that whereas with ¢ subdi-
visions of the year, the linear regression equations of the wheat crop upon the ramfall
would be of the form

W=c+ar + af,+ ... +anr,

where 7, 7,, ..., 7, are the quantities of rain in the several intervals of time, and
¢, ... @, are the regression coefficients, so if infinitely small subdivisions of time were
taken, we should replace the linear regression function by a [regression integral jof the
form

T
zb=c~}—§ardt, v 5 s s = & ¥ u 3 1(1II)
it

where 7 d¢ is the rain falling in the element of time d¢ ; the integral is taken over the whole
period concerned, and a is a continuous function of the time ¢, which it i1s our object to
evaluate from the statistical data.
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The functional linear model states that :
Y :jOT BH)X ()dt+ ¢ or Y = a+jOT,B(t)X(t)dt+g

See Ramsay, J.0. & Silverman, B.W. (1997); Cardot et al. (1999); Cai and Hall
(2006); Hall and Horowitz (2007) etc.

Minimizing E(Y —IOT ,B(t)Xtdt)z

leads to Wiener-Hopf equations:  cov(X,,Y) = IOT C(t,s)A(s)ds



An ill posed problem o 2

* Picard’s theorem states that fjt) is unique if and only if: Z_Q? S e
where the /l are the eigenvalues of the Karhunen-Loeve expansion of
X(t) and the c; 'the covariances between Y and the functional principal

components
XM= 1,04

¢, =cov(Y, &) =cov(Y, [ f,®)X()dt) = [ E(XO)Y)f,(t)dt

* Generally not true...especially when n is finite



Constrained solutions are needed. Several solutions:

- “roughness penalty” bounds on the integral of (B”)?
(cf Green & Silverman 1994, Ramsay & Silverman 1997)

- Projection onto a finite dimensional subspace

PCR consists in a regression onto the m first principal components
(truncated KL expansion)



Extensions of FLM have been studied to address specific problems:

- Escabias, M., Aguilera A.M. and Valderrama M.J. (2004) discussed principal
component estimation of functional logistic regression

- Aneiros-Prez and Vieu (2006) constructed a semi-functional partial linear
model

- Ferraty et al. (2013) generalized the FLM to functional projection pursuit
regression that allows for more interpretability

- Liu et al. (2017) presented a functional linear mixed model



3. The spatial functional linear model (SFLM)
1
y =al+ pWy + jo Bt)x(t)dt +

* The spatial weight matrix W is exogenous. It is constructed according
to distances between units under different contexts. For the case of
geographic location, W is formed according to adjacent relation or
nearest k neighbors in terms of Euclidean distance or other metric.

* SFLM has merits of FLM and SAR simultaneously. It reduces to the
classical FLM when p=0

* A reformulation shows that the error terms are not independent:
-1 -1 1 -1
y=(1,-pW) al+(l,—pW) joﬂ(t)x(t)olu(ln —pW) g
maximum likelihood should be used instead of OLS



* The intercept a, the spatial autocorrelation parameter p, the slope
function B(t), and the variance of the error term o? are estimated by
maximum likelihood combined with the basis expansion in terms of
truncated functional PCA.

e Karhunen-Loeve expansion of X(t) and basis expansion of B(t)
= 1
X(t) =D ap,(t) & =] x(t)p,t)dt
j=1

BO=Y 00,0 b= S0, Ok



* SFLM equation with truncated expansion

y=al+pWy+) ab +e
-1

Z=(1|A) 62(%)

y=pWYy+2Zd+¢



One gets the log-likelihood:

e=y-pWy-Z3 normally distributed with variance o°1
e'e

G

InL(p,0,0 )——E|n(272'0 )+In\I pW\

Hence the estimation of p and [(t)



4. Simulation

* Three regular grids of n ={10x30; 20x25; 30x30}
* Each point has 2,3, or 4 neighbours, hence the matrix W
e Same process as in Hall, P. and Horowitz, J. L. (2007)

S
y = (I, — pW ) ]( / ke(t)3(t)dt + l'l,.’}f-). ei ~ N[0, 1]
= |

* Three values for p: 0; 0.5; 0.8



* The functional predictor x(t) = (x,(t); x,(t); ; x,(t)) is produced with
independent functions

50

x;(t) = Z(IJZ”?J(!).

J==3
where a; = (—1)*1377/2 with v = 1.1 and 2, respectively; Z; ~ ('[—\/3. ﬁ] and

2;(t) = v2cos(jnt). Similarly, the coefficient function 3(t) is generated according to

50

B(t) =) bip;(t).
j=1
where by = 0.3 and b; = 4(—1)*1172 5 > 2.
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* Two cases for the eigenvalues:

* Case 1y=1.1, eigenvalues are well spaced and slope function can be well
estimated

* Case 2:y =2, where closely spaced eigenvalues can cause a poor performance
for estimating B (t)

* Truncation of KL expansion: 70% of explained variance
* The experiment was repeated 500 times in each setting

* Criteria:
* mean bias and standard derivation for p
 MSE evaluated at 100 equidistant point for B(t)

100
MSE = 100 E 1 (B(t:) — B(t:))



Comparing FLM(2) and SFLM (1)

y=11 =2

p n bias(sd) MSE;(sd) MSEs(sd)  bias(sd) MSE;(sd) MSEs(sd)
0 300 —-0.0051 0.0203 0.0203 —0.0086  0.1171 0.1171
(0.0495) (0.0072) (0.0072) (0.0628) (0.0239) (0.0239)

500 —0.0003 0.0087 0.0087 —0.0020 0.0691 0.0691
(0.0428) (0.0030) (0.0029) (0.0459) (0.0109) (0.0109)

900 —-0.0024 0.0034 0.0034 0.0006 0.0378 0.0378
(0.0204) (0.0011) (0.0011) (0.0369) (0.0044) (0.0044)

0.5 300 —0.0062 0.0201 0.0267 —0.0068 0.1173 0.1198
(0.0457) (0.0071) (0.0101) (0.0524) (0.0226) (0.0227)

500 —0.0016 0.0085 0.0114 —0.0037 0.0689 0.0702
(0.0343) (0.0027) (0.0036) (0.0400) (0.0101) (0.0102)

900 —0.0034 0.0034 0.0047 —0.0046 0.0380 0.0386
(0.0241) (0.0010) (0.0013) (0.0292) (0.0045) (0.0046)

0.8 300 —-0.0062 0.0202 0.0836 —0.0094 0.1173 0.1504
(0.0261) (0.0069) (0.0361) (0.0330) (0.0228) (0.0332)

500 —0.0027 0.0087 0.0405 —0.0057 0.0689 0.0876
(0.0202) (0.0028) (0.0152) (0.0245) (0.0110) (0.0161)

900 —0.0024 0.0033 0.0190 —0.0040 0.0382 0.0479
(0.0149) (0.0011) (0.0058) (0.0189) (0.0044) (0.0060)
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n=300 ,p=0.3

n=900 ,p=0.3
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n=300 ,p=0.8
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1) When p = 0, 5 1s very small, almost equal to zero. And the performances of
estimators for 3(¢) based on the proposed method and FPCA based method for
FLM perform equally well. This satisfies our expectation, as SFLM reduces to
the classical FLM when p = 0.

2) When p # 0, our proposed method behaves better than FPCA based method,
which is as we had expected. MSE of SFLM is always smaller than MSE of FLM
when other settings are identical. And as p increases, the difference of MSE
between SFLM and FLM becomes greater.

3) No matter what p equals to, MSE of 5(t) obtained via SFLM decreases as
sample size increases. And the standard deviation of p has a decreasing pattern,
as well. What's more, the bias of p i1s small under all cases. Similar to numerical

results in Lee (2004), the bias of p is negative in all settings.

4) As the case in Hall and Horowitz (2007), 3(t) is better estimated with v = 1.1
than that under v = 2 when other simulation parameters equal. The performance
of estimator g is also influenced by a. In case v = 1.1, the standard deviation of
¢ 1s smaller compared to v = 2.
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5. Application to chinese weather data

* Investigate the effect of
temperature on precipitation

* Y logarithm of mean annual

Harbin precipitation
eUrumchi e Changchun
ol 1L *Shenyang e X(t) mean monthly temperature
YinChuanﬂ'aiyuanJEO nh.ijiaZhLTEIijr'I%“an curve

Xining® ', ¢ anzhoy JiNAN® ¢ Qingdao
Xi ‘ane ¢ Zhengzhou

Heteis *NGURGghai

* n= 34 cities

Chengdue Wuhane eHangzhou « .
s OO gshas. *Nanchang * Training set: average over 2005-
Guiyange
Kunminge * Guilin Sruzhou 2007
Nanninge eGuangzhou

e Test data: 2008

Haikoue



Main steps

1- We smoothed the mean monthly temperature over 3 years by
Epanechnikov kernel.

2- The spatial weight matrix was formed by nearest k neighbors, each
neighbor's weight equalling reciprocal of Euclidean distance d(i ; i’)
between citiesiandi’. For k={2; 3;4;5;6;7; 8; 9}

3- Urumchi being too far from other cities was removed
4- We perform the SFLM and FLM models to get estimators.

5- Then we apply the models to temperature observations in 2008 to
predict annual precipitation.



Eigenvalues
100 200 300 400 500

0
>
>

Index

m=2 principal components for FLM and SFLM



Spatial weight matrix W
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* The optimal number of neighbors for SFLM is k=5 according to the

procedure of Lesage and Parent (2007)

k=2 k=3 k=4 k=5| k=6 k=7 k=8 k=9
m=2 L -442 -3.28 -1.51 -1.11 -1.90 -2.15 -2.25 -2.50
B 9039 30232 1755.32 |2253.14| 1163.4 943.31 88744 695.95

* Ba bayesian model probability ratio

. p=058
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B(t)

-02 00 02 04 06 038

Jan Mar May Jul Sep Nov
Month

* The two estimated curves B(t)
have similar shapes

* Precipitation is much more
influenced by temperature in
winter than in other seasons.
Under SFLM the precipitation of
each city is less affected by
temperature during the whole
year.
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* SFLM is more precise than FLM

* A majority of spatial autocorrelation in responses have been
removed.



6.Conclusions and future works

* SFLM is simple and efficient when spatial autocorrelation is present in
the response

e Use of PLS components instead of PCA (cf Preda and Saporta, 2005)
 Spatial cross validation

* Extensions to multiple functional predictors and spatially dependent
predictors
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