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Abstract 

 

Instead of fitting a single and global model (regression, PCA, etc.) to a set of observations, clusterwise 

methods look simultaneously for a partition into k clusters and k local models optimizing some criterion. 

There are two main approaches:  

1. the least squares approach introduced by E.Diday in the 70's, derived from k-means  

2. mixture models using maximum likelihood  

but only the first one easily enables prediction. 

After a survey of classical methods, we will present recent extensions to functional, symbolic and 

multiblock data. 

 

Keywords: clusterwise regression; mixture models; dimension reduction; PLS regression 

 

1. Introduction 

When a data set in partitioned into k heterogenous clusters, it would be unwise to fit a single model to 

the whole set of data without taking into account this information, as shown in Figure 1 for a simple 

regression.  

 
 

Figure 1 from Hennig (2000). 

 

The solution is simple: it consists to fit as many models as the number of clusters. When the clusters are 

not known beforehand, instead of finding in two steps first the clusters and after the models, clusterwise 

methods aim at finding simultaneously the clusters and the models, by optimizing some criterium.   

There are two main ways for performing clusterwise analysis: k-means methods optimizing a least-

squares criterium and mixture models with latent classes. 

 

2. Typological PCA 

In his pioneering paper, Diday (1974) proposed the simultaneous search of k subspaces with maximal 

inertia, ie local factorial planes. The algorithm, derived from k-means, is the following: after a first 

partition, units are reallocated (or not) to the nearest cluster according to their distances to the local 

plane. New local factorial planes are computed until convergence. Convergence is guaranteed since the 



 

 
 

 

sum of the inertia is increasing at each step. As in the following methods, there are two types of updating: 

update criterium and partition after each reallocation (true k-means, or « stochastic » algorithm) or 

update criterium and partition after a « pass », or complete run of all observations  which is the « batch » 

algorithm.    

 

3. Clusterwise regression 

The principle is for each class, to fit a linear model maximizing the global criterium  
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Where 1k(i) is equal to 1 if unit i belongs to cluster k , otherwise 0. Starting from an initial partition 

Charles (1977) defined the reallocation step in order to get the smallest regression residual ie the best 

prediction. Since it could happen that a cluster might contain less observations than the number of 

predictors, a ridge or other kind of regularized regression should be used instead of OLS. Späth (1979) 

did not noticed this problem, when he coined the expression « clusterwise regression » together with a 

Fortran package. 

Esposito-Vinzi et al. (2003, 2005) studied clusterwise regression using common PLS components across 

clusters, while Niang et al. (2016) advocate the use of local PLS component.  

Preda & Saporta (2005) proposed a clusterwise functional regression where for each cluster, one 

estimates the functional linear model : 
0
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k tY t X dt   by PLS regression since it is an ill-posed 

problem. 

More recently Carvalho et al.  (2010) presented a clusterwise generalization of « center and range » 

regression for symbolic interval data. In this problem one predicts the center and the mid-ranges by two 

regressions.  

In order to find the adequate number of clusters, and prevent trivial solutions, it is necessary to use cross-

validation. 

 

4. Latent class regression  

DeSarbo & Cron (1988) assumed that the response is distributed as a finite sum, or mixture, of 

conditional univariate normal densities:  
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The weights and the parameters are estimated by maximum likelihood through EM algorithm. 

Wedel & al. (1993) extended the method to Poisson regression, and Wedel & DeSarbo (1995) to 

generalized local linear models.  

Mixture models are not always identifiable and Hennig (2000) gave the following result: mixtures of 

linear regression models with Gaussian noise are identifiable, if the number of components K is smaller 

than the minimal number of (feasible) hyperplanes necessary to cover all covariate points (without 

intercept). 

 

5. The prediction problem 

Once each local model has been calibrated, a common issue is how to predict the response of a new unit 

whose only the predictors are known. The simplest way or “hard rule” is to allocate the new unit to the 

nearest cluster and apply the relevant model. This necessitates the choice of a relevant distance.  

A more flexible way is to use a weighted average of the K predictions; the weights being the posterior 

probabilities to belong to each cluster. A third solution is to pick at random, with unequal probabilities, 

one of the K models. 

The 3 previous solutions are easy to implement in the framework of k-means like methods, but it is not 

the case for the mixture model, or latent class regression. In the FlexMix package, which is widely used, 



 

 
 

 

one needs to know the true cluster in order to compute the likelihood and get the posterior membership 

probabilities. As F.Leisch wrote (personal communication) “Without y you cannot determine the 

likelihood and hence not into which cluster the observation belongs. You could calculate predictions for 

each cluster, but then you have K answers, not one.” 

 

6. Software 

Latent class regression is implemented in commercial software such as GLIMMIX 

http://www.scienceplus.com/glimmix, LatentGold 5.0 and XLSTAT-LG. Free packages are easily 

available: Flexmix  by Leisch (2004), Mixmod and many others. 

Until very recently (Bougeard, 2016) there was no available software for clusterwise regression using 

least squares, despite several publications dealing with global optimization techniques like simulated 

annealing (DeSarbo et al., 1989), Variable Neighbour Search metaheuristics (Caporossi & Hansen, 

2005) and  Carbonneau et al., 2014  which have not been compared between them.  

Numerical experiments will be presented which prove the efficiency of k-means-like algorithms, 

coupled with PLS regression. Figure 2 from Niang et al (2016) shows the performance of clusterwise 

PLS regression with 3 components on  an example derived from Späth’s data: 

 

 
Figure 2: comparison of the prediction accuracy of 7 clusterwise methods 

 

7. Conclusions 

The publication bias towards mixture models may be a reflect of the long controversy between 

explaining and predicting, see Breiman (2001), Saporta (2008). As long as prediction is the main goal, 

methods based on least-squares and regularized regression are efficient and need less assumptions.  K-

means algorithms may be applied in various situations, like multiblock data  Bougeard et al., (2016).  

Works in progress include clusterwise sparse PLS.   
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