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1.Introduction

* PLS regression successful for: y = Xp+e
— multicollinearty
— p>n

* PLS keeps all variables but for high

dimensional data p>>n (gene expression data,
chemometrics, ...) : lack of interpretabilty, non

robust results

* Sparse regression: provides combinations of a
small number of variables
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An other issue: Big Data are usually heterogeneous

* When the cluster
structure is unknown,
clusterwise regression
provides groups and
local models

This talk: clusterwise sparse PLS regression
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A focus on prediction

* To predict new observations.

* To get (unknown) parameters (coefficients) and
hyperparameters (number of clusters, number of
components) by cross-validation
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2. Sparse regression and sparse PLS
regression

* Keeping all predictors is a drawback for high
dimensional data: combinations of too many
variables cannot be interpreted

e Sparse methods simultaneously shrink coefficients
and select variables, hence better predictions



2.1 Lasso

The Lasso (Tibshirani, 1996) is a shrinkage and
selection method. It minimizes the usual sum of
squared errors, with a bound on the sum of the
absolute values of the coefficients (L, penalty).

R P
= v i Iy~ X0 1315
j=1
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* Looks similar to ridge regression (L, penalty)
min y-XBH2 with HB ‘<c

y-XB| -2 |B|

N

Bridge — arg min

* Lasso continuously shrinks the coefficients
towards zero when c decreases

* Convex g)ptimisation; no explicit solution
o If ¢>) |b| Lasso identical to OLS
j=1




Finding the optimal parameter

— Cross validation if optimal prediction is needed

— BIC when the sparsity is the main concern
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a good unbiased estimate of df is the number of
nonzero coefficients . (Zou et al., 2007)



2.2. Sparse PLS

Several solutions:
a. Le Cao et al. (2008), Liquet et al. (2016)
b. Chun & Keles (2010)

Framework: PLS2 for a block of responses Y



* Solution a (Package sgPLS)
min{HX’Y-u'sz +A4 |u|+A4, |V},

subject to || u || v|l=1 where|ul=Y|u|
Equivalent to: =
max{cov(Yv,Xu)+ A |u|+A, |V},
subject to [|ul|=]| v||=1



variant (Package mixOmics)

‘X'Y—uv'

min +P, (w)+P, (V)

P,(x)=(|x|-4). sign(x) /
« Soft thresholding function » / = ;

Figure 1. An illustration of soft-thresholding rule v = (|z| — A) Sign(x) with A = 1.




* Solution b (package spls)

inspired by SIMPLS: max (W'X'YY'Xw) avec HWH2 =1
sparse factor ¢ close to initial PLS solution a

min (—ka'Ma+ (1-Kk)(c—a) M(c—a)+ 4 e[, + 4 o)
witha'a=c'c=1, M=X'YY'X

Iterative algorithm, alternating between ¢ and a



3. Clusterwise regression

* Local models versus global model

Hennig, 2000



 Unknown partition :
— Unobserved heterogeneity ; latent classes

— Simultaneous search for classes and models for
each class

* For each class, fit a linear model by least
squares.

anzlk(i)(yi - (a, "‘,kai))z

I=1 k=l

— The fit is always better than with the global model



Two algorithms

— “ Batch ” algorithm (Charles, 1977):
* An application of dynamic clustering (Diday, 1974)

— Step 1: define an initial partition and estimate K local models.

— Step 2: Each observation is reallocated to the cluster giving
the smallest regression residual ie the best prediction. Once

all observations being reallocated (or not) , replace the initial
partition

— Iterate step 1 and 2 until convergence

— “Stochastic” algorithm

— Step 2: Update criterium and partition after each reallocation
(true k-means)

— Spath (1979) coined the expression « clusterwise regression »



How to predict new observations
knowing only the predictors?

e « Hard » rule: allocate to the nearest cluster and
apply the relevant model

— How? PLS-DA, nearest neighbours etc.
* « Soft » rule: weighted average of the K predictions

— Close to Bayesian Model Averaging : weight =
posterior probabilities of each model given the
observation

 Random rule: choose at random one prediction
according to posterior probabilities



A few comments on mixture models or latent
class regression:

Proposed by DeSarbo & Cron (1988)
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* Mainstream methodology: maximum
likelihood through EM algorithm

— Extensions to Poisson regression (Wedel & al.
1993), generalized local linear models (Wedel &
DeSarbo, 1995)

* However prediction is generally not possible
— In Flexmi X, posterior probabilities need the true

class P(j|t.'- ’ u,;) _ frjf{y‘.t:,ﬁj)
U > T f(yle, Of)

"We have no solution for this problem: Without y you cannot determine
the likelihood and hence not into which cluster the observation
belongs. You could calculate predictions for each cluster, but then

you have K answers, not one. “ (F.Leisch , personal communication)
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Clusterwise PLS regression

* Some kind of regularized regression should be
used for small size clusters where n<p and no
OLS solution exists

— Clusterwise Ridge regression (Charles, 1977)

— Clusterwise PLS regression :
* Functional data (Preda & Saporta, 2005)
e Symbolic data (De Carvalho et al, 2010)



4. Clusterwise sparse PLS regression

* Context
— High dimensional explanatory data X (with p>>n),
— One or several variables Y to explain,
— Unknown clusters of the n observations.

 Twofold aim
— Clustering: get the optimal clustering of observations,

— Sparse regression: compute the cluster sparse
regression coefficients within each cluster to improve
the Y prediction.

— Improve high-dimensional data interpretation.



Clusterwise sparse PLS: stochastic algorithm

Start from an initialization of the n observations into K clusters

For each observationi € [1;n]

— Compute sparse PLS regressions where i belongs alternatively to each of

the K clusters (select the optimal sparse parameter A and the dimension
H through 10-fold CV)

— For each of the K solutions, compute the criterion C=Yr_1|lvx — Vzll
— Update the assignment of i to the cluster which minimizes C
— Update the sparse PLS regression coefficients

Iterate until convergence
Repeat the procedure for several initializations; select the best
one
— Get the assignment of the n observations into K clusters
— Get the sparse PLS regression coefficients for each cluster
Process the prediction model

— PLS-DA applied on the concatetaned X variables selected from the
sparse PLS regression coefficients from each cluster.
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Application: simulated data

 Data features
— 500 explanatory variables (X) and 1 dependent one (y),
— 50 observations organized into K=2 well-separated clusters of equal size

— Cluster 1: 30 X variables positively linked to y (B=2), correlated (cor=0.9) and
non-correlated (cor=0) with the 470 other X variables,

— Cluster 2: 30 other X variables negatively linked to y (3=-2) , correlated
(cor=0.9) and non-correlated (cor=0) with the 470 other X variables.

Cluster 1 (N=23) Cluster 2 (N=27)

Xloadngs | 1 | Xloadngs

PLS X-variable graphical display for the first two components



Simulated data: convergence criterium

Clusterwise sparse PLS

0.20-

0.15-

Criterion.to.minimize

0.05-

0.00-
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[teration

— Number of iterations = Number of observations (50) * Number of passes (10)
— Stable convergence after 3 passes



Simulated data (retrieving the true betas)

Cluster 1 (N=27) Cluster 2 (N=23)

Clusterwise.regression.coefficient
o
Clusterwise.regression.coefficient
o

'

6 160 260 360 460 560 0 160 260 360 460 560
X.variable.index X.variable.index

— A =0.8, H= 2 (for both clusters)
— The method cw.spls perfectly retrieve the actual clusters (AdjRand index = 1)

— The actual regression coefficients are correctly retrieved in cluster 1 and well
retrieved in cluster 2.



Application: genomic data (Bushel et al., 2007)

* Data features (liver toxicity from miXOmics R package)
— X: 3116 genes (mMRNA extracted from liver)
— y: clinical chemistry marker for liver injury (serum enzymes level)

— QObservations: 64 rats

* Each rat is subject to different more or less toxic acetaminophen doses (50, 150, 1500,
2000)

* Necropsy is performed at 6, 18, 24 and 48 hours after exposure (i.e., time when the mRNA
is extracted from liver)

* Data pre-processing
— y and X are centered and scaled

* Aims
— Improve the sparse PLS link between genes (X) and liver injury marker (y)...
— ... while seeking K unknown clusters of the 64 rats.
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Application: optimal number of clusters

Calibration error Prediction error

0.100-

1.50-

RMSEp

1.00-

0.000-

2 3 2 3
Number.of.clusters Number.of.clusters

— A sparse model without cluster (K=1) leads to more stable prediction but is

less explanatory,
— A clusterwise sparse model with (K=3) clusters is a correct trade-off between

explanation and prediction. 2017, Macau 27



Application: cw.spls regression coefficients

No cluster K=1 K=3 clusters of rats

Cluster 1 (N=23)
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Sparse.regression.coefficient

0.025-
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. -0.025-
Gene.index

-0.050- | | I I
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Gene.index

Clusterwise.regression.coefficient Clusterwise.regression.coefficient

Links between genes (X) and marker for liver
injury (y) are specific to each cluster
Cluster 1: 25 selected genes (A=0.8, H=2)
Cluster 2: 279 selected genes (A=0.7, H=2)
Cluster 3: 3016 selected genes (A=0.1, H=2)
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A =0.9 (sparse parameter)
- 25 selected genes

H =2 dimensions




Conclusions and perspectives

e Clusterwise sparse PLS regression useful for the
Big Data case

— Find clusters and local models with a good prediction
ability and interpretability

* Research in progress:

— Extension to the case where predictors have a block
structure

— Enhancing the R package mbclusterwise



Thank for your attention
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