

Clusterwise Sparse PLS

Stéphanie Bougeard ¹, Ndeye Niang-Keita ², Cristian Preda ³, Gilbert Saporta ²

¹ French Agency for Food, Environmental, Occupational Health & Safety (Anses) France

- ² Conservatoire National des Arts et Métiers, France
- ³ Université Lille 1, France

Outline

- 1. Introduction
- 2. Sparse regression and sparse PLS regression
- 3. Clusterwise regression
- 4. Clusterwise sparse PLS regression
- 5. Conclusion

1.Introduction

- PLS regression successful for : $y = X\beta + e$
 - multicollinearty
 - p>n
- PLS keeps all variables but for high dimensional data p>>n (gene expression data, chemometrics, ...): lack of interpretabilty, non robust results
- Sparse regression: provides combinations of a small number of variables

An other issue: Big Data are usually heterogeneous

 When the cluster structure is unknown, clusterwise regression provides groups and local models

This talk: clusterwise sparse PLS regression

A focus on prediction

- To predict new observations.
- To get (unknown) parameters (coefficients) and hyperparameters (number of clusters, number of components) by cross-validation

2. Sparse regression and sparse PLS regression

- Keeping all predictors is a drawback for high dimensional data: combinations of too many variables cannot be interpreted
- Sparse methods simultaneously shrink coefficients and select variables, hence better predictions

2.1 Lasso

The Lasso (Tibshirani, 1996) is a shrinkage and selection method. It minimizes the usual sum of squared errors, with a bound on the sum of the absolute values of the coefficients (L₁ penalty).

$$\min \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 \quad \text{with } \sum_{j=1}^p |\beta_j| < c$$

$$\hat{\boldsymbol{\beta}}_{lasso} = \arg \min \left(\|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + \lambda \sum_{j=1}^p |\beta_j| \right)$$

Looks similar to ridge regression (L₂ penalty)

$$\min \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 \quad \text{with } \|\boldsymbol{\beta}\|^2 < c$$

$$\hat{\boldsymbol{\beta}}_{ridge} = \arg \min \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 - \lambda \|\boldsymbol{\beta}\|^2$$

- Lasso continuously shrinks the coefficients towards zero when c decreases
- Convex optimisation; no explicit solution
- If $c > \sum_{j=1}^{p} \left| b_{jols} \right|$ Lasso identical to OLS

- Finding the optimal parameter
 - Cross validation if optimal prediction is needed
 - BIC when the sparsity is the main concern

$$\lambda_{opt} = \arg\min_{\lambda} \left(\frac{\left\| y - \mathbf{X}\hat{\boldsymbol{\beta}}(\lambda) \right\|^{2}}{n\sigma^{2}} + \frac{\log(n)}{n} \hat{d}f(\lambda) \right)$$

a good unbiased estimate of df is the number of nonzero coefficients. (Zou et al., 2007)

2.2. Sparse PLS

Several solutions:

a. Le Cao et al. (2008), Liquet et al. (2016)

b. Chun & Keles (2010)

Framework: PLS2 for a block of responses Y

Solution a (Package sgPLS)

$$\min\{\|\mathbf{X}'\mathbf{Y} - \mathbf{u}'\mathbf{v}\|^2 + \lambda_1 |\mathbf{u}| + \lambda_2 |\mathbf{v}|\},$$
 subject to $\|\mathbf{u}\| = \|\mathbf{v}\| = 1$ where $\|\mathbf{u}\| = \sum_{j=1}^p |u_j|$ Equivalent to:

$$\max \{ \text{cov}(\mathbf{Y}\mathbf{v}, \mathbf{X}\mathbf{u}) + \lambda_1 |\mathbf{u}| + \lambda_2 |\mathbf{v}| \},$$

subject to $\|\mathbf{u}\| = \|\mathbf{v}\| = 1$

variant (Package mixOmics)

$$\min_{\mathbf{u},\mathbf{v}} \|\mathbf{X}'\mathbf{Y} - \mathbf{u}\mathbf{v}'\| + P_{\lambda_1}(\mathbf{u}) + P_{\lambda_2}(\mathbf{v})$$

$$P_{\lambda}(x) = (|x| - \lambda)_{+} \operatorname{sign}(x)$$

« Soft thresholding function »

Figure 1. An illustration of soft-thresholding rule $y = (|x| - \Delta) + Sign(x)$ with $\Delta = 1$.

Solution b (package spls)

inspired by SIMPLS: $\max_{\mathbf{w}} (\mathbf{w'X'YY'Xw}) \text{ avec } \|\mathbf{w}\|^2 = 1$ sparse factor **c** close to initial PLS solution α

$$\min_{\alpha,c} \left(-k\alpha' \mathbf{M}\alpha + (1-k)(\mathbf{c} - \alpha)' \mathbf{M}(\mathbf{c} - \alpha) + \lambda_1 \|\mathbf{c}\|_1 + \lambda_2 \|\mathbf{c}\|^2 \right)$$
with $\alpha' \alpha = \mathbf{c}' \mathbf{c} = 1$, $\mathbf{M} = \mathbf{X'YY'X}$

Iterative algorithm, alternating between ${f c}$ and ${f lpha}$

3. Clusterwise regression

Local models versus global model

Hennig, 2000

- Unknown partition :
 - Unobserved heterogeneity; latent classes
 - Simultaneous search for classes and models for each class
- For each class, fit a linear model by least squares.

$$\sum_{i=1}^{n} \sum_{k=1}^{K} \mathbf{1}_{k}(i) (y_{i} - (\alpha_{k} + \beta_{k} x_{i}))^{2}$$

The fit is always better than with the global model

Two algorithms

- "Batch "algorithm (Charles, 1977):
 - An application of dynamic clustering (Diday, 1974)
 - Step 1: define an initial partition and estimate K local models.
 - Step 2: Each observation is reallocated to the cluster giving the smallest regression residual ie the best prediction. Once <u>all observations</u> being reallocated (or not), replace the initial partition
 - Iterate step 1 and 2 until convergence
- "Stochastic" algorithm
 - Step 2: Update criterium and partition <u>after each</u> reallocation (true k-means)
 - Späth (1979) coined the expression « clusterwise regression »

How to predict new observations knowing only the predictors?

- « Hard » rule: allocate to the nearest cluster and apply the relevant model
 - How? PLS-DA, nearest neighbours etc.
- « Soft » rule: weighted average of the K predictions
 - Close to Bayesian Model Averaging : weight = posterior probabilities of each model given the observation
- Random rule: choose at random one prediction according to posterior probabilities

A few comments on mixture models or latent class regression:

Proposed by DeSarbo & Cron (1988)

We assume y_i is distributed as a finite sum or mixture of conditional univariate normal densities:

$$y_i \sim \sum_{k=1}^K \lambda_k f_{ik} (y_i \mid X_{ij}, \sigma_k^2, b_{jk})$$
 (9)

$$y_{i} \sim \sum_{k=1}^{K} \lambda_{k} f_{ik} (y_{i} \mid X_{ij}, \sigma_{k}^{2}, b_{jk})$$

$$= \sum_{k=1}^{K} \lambda_{k} (2\pi\sigma_{k}^{2})^{-1/2} \exp\left[\frac{-(y_{i} - \mathbf{x}_{i} \mathbf{b}_{k})^{2}}{2\sigma_{k}^{2}}\right],$$
(9)

- Mainstream methodology: maximum likelihood through EM algorithm
 - Extensions to Poisson regression (Wedel & al. 1993), generalized local linear models (Wedel & DeSarbo, 1995)
- However prediction is generally not possible
 - In flexmix, posterior probabilities need the true class

$$P(j|x, y, \psi) = \frac{\pi_j f(y|x, \theta_j)}{\sum_k \pi_k f(y|x, \theta_k)}$$

"We have no solution for this problem: Without y you cannot determine the likelihood and hence not into which cluster the observation belongs. You could calculate predictions for each cluster, but then you have K answers, not one. "(F.Leisch, personal communication)

Clusterwise PLS regression

- Some kind of regularized regression should be used for small size clusters where nOLS solution exists
 - Clusterwise Ridge regression (Charles, 1977)
 - Clusterwise PLS regression :
 - Functional data (Preda & Saporta, 2005)
 - Symbolic data (De Carvalho et al, 2010)

4. Clusterwise sparse PLS regression

Context

- High dimensional explanatory data X (with p>>n),
- One or several variables Y to explain,
- Unknown clusters of the n observations.

Twofold aim

- Clustering: get the optimal clustering of observations,
- Sparse regression: compute the cluster sparse regression coefficients within each cluster to improve the Y prediction.
- → Improve high-dimensional data interpretation.

Clusterwise sparse PLS: stochastic algorithm

- Start from an initialization of the n observations into K clusters
- For each observation i ∈ [1;n]
 - Compute sparse PLS regressions where i belongs alternatively to each of the K clusters (select the optimal sparse parameter λ and the dimension H through 10-fold CV)
 - For each of the K solutions, compute the criterion $C = \sum_{k=1}^{K} ||y_k \widehat{y_k}||^2$
 - Update the assignment of i to the cluster which minimizes C
 - Update the sparse PLS regression coefficients
- Iterate until convergence
- Repeat the procedure for several initializations; select the best one
 - Get the assignment of the n observations into K clusters
 - Get the sparse PLS regression coefficients for each cluster
- Process the prediction model
 - PLS-DA applied on the concatetaned X variables selected from the sparse PLS regression coefficients from each cluster.

Application: simulated data

Data features

- 500 explanatory variables (X) and 1 dependent one (y),
- 50 observations organized into K=2 well-separated clusters of equal size
- <u>Cluster 1</u>: 30 **X** variables positively linked to y (β =2), correlated (cor=0.9) and non-correlated (cor=0) with the 470 other X variables,
- Cluster 2: 30 other **X** variables negatively linked to y (β =-2), correlated (cor=0.9) and non-correlated (cor=0) with the 470 other X variables.

Simulated data: convergence criterium

- Number of iterations = Number of observations (50) * Number of passes (10)
- Stable convergence after 3 passes

Simulated data (retrieving the true betas)

- $-\lambda = 0.8$, H= 2 (for both clusters)
- The method cw.spls perfectly retrieve the actual clusters (AdjRand index = 1)
- The actual regression coefficients are correctly retrieved in cluster 1 and well retrieved in cluster 2.

Application: genomic data (Bushel et al., 2007)

- Data features (liver toxicity from mixOmics R package)
 - X: 3116 genes (mRNA extracted from liver)
 - y: clinical chemistry marker for liver injury (serum enzymes level)
 - Observations: 64 rats
 - Each rat is subject to different more or less toxic acetaminophen doses (50, 150, 1500, 2000)
 - Necropsy is performed at 6, 18, 24 and 48 hours after exposure (i.e., time when the mRNA is extracted from liver)

Data pre-processing

y and X are centered and scaled

Aims

- Improve the sparse PLS link between genes (X) and liver injury marker (y)...
- ... while seeking K unknown clusters of the 64 rats.

Application: optimal number of clusters

- A sparse model without cluster (K=1) leads to more stable prediction but is less explanatory,
- A clusterwise sparse model with (K=3) clusters is a correct trade-off between explanation and prediction.

Application: cw.spls regression coefficients

No cluster K=1

λ = 0.9 (sparse parameter)→ 25 selected genes

H = 2 dimensions

K=3 clusters of rats

Links between genes (X) and marker for liver injury (y) are specific to each cluster

Cluster 1: 25 selected genes (λ =0.8, H=2)

Cluster 2: 279 selected genes (λ =0.7, H=2)

Cluster 3: 3016 selected genes (λ =0.1, H=2)

\$ 2017, Macau 28

Conclusions and perspectives

- Clusterwise sparse PLS regression useful for the Big Data case
 - Find clusters and local models with a good prediction ability and interpretability
- Research in progress:
 - Extension to the case where predictors have a block structure
 - Enhancing the R package mbclusterwise

Thank for your attention

References

- Bougeard, S. (2016): R package mbclusterwise, CRAN
- Charles, C. (1977): Régression Typologique et Reconnaissance des Formes. Thèse de doctorat, Université Paris-Dauphine.
- Chun, H. and Keles, S. (2010): Sparse partial least squares for simultaneous dimension reduction and variable selection, *Journal of the Royal Statistical Society Series B*, Vol. 72, pp. 3–25.
- De Carvalho, F., Saporta, G., Queiroz, D. (2010): A Clusterwise Center and Range Regression Model for Interval-Valued, COMPSTAT'2010, 19th International Conference on Computational Statistics, pp.461-468,
- Diday, E. (1974): Introduction à l'analyse factorielle typologique, Revue de Statistique Appliquée, 22, 4, pp.29-38
- Hennig, C. (1999): Models and methods for clusterwise linear regression. In: Classification in the Information Age, Springer, pp.179-187.

- Lê Cao K.-A., Rossouw, D., Robert-Granié C., Besse, P. (2008): A
 Sparse PLS for Variable Selection when Integrating Omics data
 Statistical Applications in Genetics and Molecular Biology: Vol. 7:
 Iss. 1, Article 35.
- Leisch, F. (2004): FlexMix: A General Framework for Finite Mixture Models and Latent Class Regression in R. *Journal of Statistical Software*, 11(8).
- Liquet, B., Lafaye de Michaux, P., Hejblum, B., Thiebaut, R. (2016):
 Group and sparse group partial least square approaches applied in genomics context, *Bioinformatics*, 32(1), 35–42
- Niang, N., Bougeard, S., Saporta, G., Abdi, H. (2015): Clusterwise multiblock PLS, CARME 2015, pp.58, Neaples
- Preda, C. and Saporta, G. (2005): Clusterwise PLS regression on a stochastic process. Computational Statistics and Data Analysis, 49, pp.99–108.
- Späth, H. (1979): Clusterwise linear regression, Computing, 22, pp.367-373
- Tibshirani, R. (1996): Regression shrinkage and selection via the Lasso. *Journal of the Royal Statistical Society, Series B*, **58**, 267-288