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1. Introduction 

In industrialized countries, atherosclerosis and more particularly 

its complications including myocardial infarction and ischemic 

stroke are responsible for about 50% of deaths [1]. The 

atherosclerotic process is characterized by an accumulation of 

lipids and inflammatory cells within the wall of medium/large 

arteries. These depositions can evolve towards the formation of a 

necrotic core encapsulated by a fibrous cap. These stenosing 

plaques, particularly rich in lipids, may eventually rupture 

causing thrombosis, resulting in the obstruction of the vessel and 

subsequent clinical complications [2]. In this context, more 

accurate diagnostic methods for early detection of plaque 

vulnerable to rupture represent an important challenge for 

medicine. In recent years, much effort has been put to developing 

non-invasive imaging techniques that would allow assessment of 

atherosclerotic plaque vulnerability [3]. High-Density 

Lipoproteins (HDLs) are small endogenous nanoparticles (8-12 

nm) involved in cholesterol metabolism and their plasma 

concentration is negatively correlated to cardiovascular disease. 

Reverse transport of cholesterol from peripheral tissues back to 

the liver by HDL particles enables them to reach atherosclerotic 

plaques where thy take up cholesterol in excess [4]. This property 

of HDL to transit into lipid-rich plaques and the possibility to in 

vitro chemically modify these particles make them attractive 

candidates for atherosclerosis imaging [4]. Fayad's group 

pioneered the use of labeled HDLs for the detection of 

atheromatous plaques using Magnetic Resonance Imaging (MRI) 

with Gd(III) and Positron Emission Tomography (PET) with 89Zr 

(t1/2 = 78.4 hours) [5-8]. PET high sensitivity permits the use of 

picomolar concentrations of radiotracers. 18F-fluorodeoxyglucose 

(18F-FDG) is the most widely used PET tracer in clinical practice, 

mainly for tumor detection. However, it lacks specificity for 

targeting atherosclerosis due to the heterogeneity of glucose 

consumption by vascular and inflammatory cells [9]. Gallium has 

been used in a large spectrum of applications including detection 

of tumors, infectious processes or atherosclerosis, using either 
67Ga (t1/2 = 78 hours) for Single Photon Emission Computed 

Tomography (SPECT) or 68Ga3+ (t1/2 = 68 minutes) for PET 

imaging [10,11]. 68Ga3+can be conveniently produced by a 
68Ge/68Ga generator, eliminating the need for considerably more 

expensive cyclotrons, and its short half-life is compatible with 

clinical diagnosis applications. One of the main limitations 
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encountered for in vivo 68Ga3+ administration is the need of a 

well-chosen ligand associated with a strong coordination in order 

to prevent metallic ion release [12,13]. The use of acyclic 

chelating agents such as DFO (desferrioxamine mesylate), EDTA 

(ethylenediamine tetraacetic acid) and DTPA 

(diethylenetriaminepenta�acetic acid) results in transchelation 

with apotransferrin [13]. Thus, these agents were supplanted by 

macrocyclic structures such as DOTA and NOTA (respectively 

1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic and 1,4,7-

triazacyclononane-1,4,7-trisacetic acids), due to their superior 

kinetic inertness and thermodynamic stability (Fig. 1). NOTA 

(N3O3 chelator), is currently the first choice for 67/68Ga(III)-based 

medical imaging agents (mild labeling conditions, stable 

complexation). N4O4 chelating agents such as DOTA are also 

used for SPECT/PET with Gd(III) for MRI applications in spite 

of their limited ability to chelate 67/68Ga(III) [11,14]. Recent 

investigations showed that the N4O3 12-membered macrocyclic-

chelating agent PCTA (pentadeca-1(15),11,13-triene-3,6,9-

triacetic acid) (Fig. 1), with intermediate denticity between 

NOTA and DOTA, was more suitable than DOTA for 68Ga-

labeling. It exhibits much faster kinetics at room temperature, 

together with the superior stability of the Ga-PCTA complex in 

serum [10]. PCTA, a rigidified DOTA analog bearing a pyridine, 

allows very stable coordination either with Gd(III) or Ga(III) in 

comparison with other chelates [15-17]. 

 

 
 
Fig. 1 Chemical structures of DOTA, NOTA, and PCTA. 

 

We have previously reported the synthesis of the 3-pyridinol-

based compound 3 as a precursor of an amphiphilic PCTA 

chelating agent for MRI application [18]. We describe herein an 

optimized overall experimental procedure leading to the 

functionalizable prochelator 4. This compound bears a pyridine 

subunit with an additional carboxylic acid function allowing 

conjugation with DSPE (1,2-distearoyl-sn-glycero-3-

phosphoethanolamine). Similarly to our reported synthetic route 

[18], the dodecylamine was replaced by DSPE, a phospholipid 

naturally present in the HDL lipid layer, which allows PCTA-

DSPE insertion into these particles (Fig. 2). In order to radiolabel 

HDLs with Ga(III), two approaches were considered: either by 

mixing PCTA-DSPE chelating agent with HDL particles, 

followed by addition of 68Ga(III) or by introducing the 68Ga(III)-

PCTA-DSPE into the HDL lipid layer. The second strategy was 

chosen to avoid potential HDL denaturation. 

 

                                  

 

 

 

 

Fig. 2 PCTA-DSPE radiolabeled with 68Ga(III). 

2. Results and discussion 

The PCTA derivative 3 was obtained as described previously 

[18] with optimized protocols to prepare starting materials 1 and 

2 (see supporting information S2 and S3). The macroring 

formation was carried out at room temperature in a less diluted 

medium compared to Picard’s procedure [19]; in such conditions, 

the macrocycle 3 was isolated with a 76% yield. A selective 

deprotection of the ethyl ester was achieved by controlled 

saponification with NaOH in an aqueous ethanolic medium 

leading to the basic carboxylate. After treatment with a 

stoichiometric amount of hydrochloric acid, the targeted 

prochelator 4 was obtained with a 63% yield over the two steps 

(Scheme 1). 

Scheme 1. Synthesis of prochelator 4. Reagents and conditions: (a) Na2CO3, 

DMF, rt, 24h; (b) i) NaOHaq, EtOH, rt, 1h; ii) HClaq, 63% (2 steps). 

It is noteworthy that the final acidification step induced a 

strong line-broadening of CH2 resonances in the region 2-5 ppm 

(Fig. 3A) that can be rationalized by the formation of a zwitterion 

species with several forms in equilibrium at the NMR timescale. 

NMR characterization was thus preferred before acidic treatment 

at pH~9 to maintain the CO2Na form (Fig. 3C). A mixture of the 

two forms was obtained if 5<pH<9 (Fig. 3B).  

Fig. 3 pH dependence of 4 1H-NMR spectra (CDCl3) showing CO2H form at 

pH~5 (A), CO2Na form at pH~9 (C) and a mixture of the two forms at pH 

ranged between 5 and 9 (B). 

 

Conjugation to DSPE was achieved with compound 4 in its 

CO2H form since Na+ may interfere with PCTA chelation [19]. 

On the basis of Nicolay's work on DOTA-tris(tBu) [14], it 

occurred by activation with TSTU (N,N,N′,N′-Tetramethyl-O-(N-

succinimidyl)uronium tetrafluoroborate) in the presence of 

DIPEA (N,N-diisopropylethylamine) in a mixture of DMF (N,N-

dimethylformamide)/CHCl3, and led to compound 5 with a 72% 

yield. The final step consisted of complete tert-butyl ester 

cleavage by repeated treatments with TFA (Trifluoroacetic acid), 

leading to PCTA-DSPE 6 with a 67% yield (Scheme 2). The 

product was characterized by NMR, HRMS and HPLC-MS. The 

natural ability of DSPE to self-assemble into micelles was 

investigated by Dynamic Light Scattering (DLS). Two 

populations of nanoparticles were observed: 39 and 293 nm (see 

supporting information, Fig. S8). 
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Scheme 2. DSPE coupling. Reagents and conditions: (a) TSTU, DiPEA, 

DMF, rt, 1h, then DSPE, DIPEA, CHCl3, 65°C, 3h, 72%; (b) TFA/CHCl3 3/7 

(v/v), 72%. 

 

PCTA-DSPE 6 radiolabeling was performed with 68GaCl3 

produced by a 68Ge/68Ga generator (Galli EoTM, IRE-Elit, 

Belgium) without the need of eluate pre-purification (Scheme 3). 

This generator affords a fully integrated system for 68GaCl3 

elution with 0.1 M HCl. The high purity of the eluate in a small 

volume (1.1 mL) is suitable for a one-pot radiolabeling step with 

the chelating agent in the reactor without compromising the 

radiochemical yield and purity. 2 mg of compound 6 were 

dissolved at 80°C in 0.2 M NaOAc buffer (pH = 5). The 

precursor 6 was incubated with 1.1 mL of eluate for 10 min at 

80°C (resulting pH = 4).  

 

Scheme 3. PCTA-DSPE 6 radiolabeling with 68GaCl3. 

 

A PD-10 desalting column was used to remove unreacted 
68GaCl3 and to elute the radiolabeled 68Ga-PCTA-DSPE in PBS 

(pH = 7.4) before insertion into HDLs. 68Ga-PCTA-DSPE was 

finally obtained with a decay-corrected radiochemical yield 

(RCY) of 70% and a high radiochemical purity > 99% (Fig. 4). 

 

 
 
Fig. 4 UV/radio-HPLC profiles of 68Ga-PCTA-DSPE (Superdex Increase 200 

10/300 GL – PBS 1X, pH 7.4 flow rate of 1 mL/min) 
 

HDLs were isolated from human serum following a 

previously reported procedure [20]. Radiolabeled micelles of 
68Ga-PCTA-DSPE were incubated with 1 mL HDL solution (10 

mg/mL of proteins) at 37°C for 15 min. The complete insertion 

of the radiolabeled micelles was assessed by HPLC. Radiolabeled 

HDLs, 68Ga-PCTA-DSPE-HDL (later abbreviated " 68Ga-HDL"), 

were obtained with radiochemical purity of over 98% (Fig. 5), 

suitable for preclinical studies. 68Ga-HDL stability was evaluated 

in phosphate buffer and human serum at 30, 60 and 90 min with 

less than 5% of degradation observed (see supporting 

information Fig. S1, S2, S3, S4 and S5). 

 

Fig. 5 UV/radio-HPLC profiles of unlabeled HDL (A) and 68Ga-HDL (B/C). 

(Superdex Increase 200 10/300 GL – PBS 1X, pH 7.4 flow rate of 1 mL/min) 

In order to test the ability of 68Ga-HDL to image 

atherosclerosis, it was injected into a mouse model known to 

develop aortic atheroma (ApoE deficient mice, ApoE KO). Our 

radiotracer was compared to the well-established 18F-FDG 

expected to accumulate in glucose-consuming inflammatory cells 

associated with atherosclerotic plaques [9]. The biodistribution of 
68Ga-HDL was also compared to that of 68Ga-PCTA-DSPE in 

order to demonstrate the specificity of HDLs for targeting 

atheromatous plaques. 68Ga-PCTA-DSPE, 68Ga-HDL or 18F-FDG 

(15 ± 5 MBq) were injected via the caudal vein in 10 months-old 

ApoE KO mice. This animal model allowed us to test the ability 

of 68Ga-HDL to image atheromatous plaques. Taking advantage 

of HDL reverse transport of cholesterol from the plaque back to 

the liver, we were able to show that these particles accumulate 

sufficiently within atheromatous plaques to be used as 

radioactive probes for PET imaging, as also reported by other 

groups [5]. 

As depicted in Fig. 6, whole body imaging was performed at 

30 min. In ApoE KO mice, no significant positive signal was 

observed in the vascular system regardless of the radiotracer 

used. This may be due to the high uptake by other organ such as 

liver (23 ± 6 and 23 ± 4 %ID/g) and heart (12 ± 2 and 11 ± 1 

%ID/g) respectively for 68Ga-PCTA-DSPE and 68Ga-HDL, 

respectively, which potentially masks the aortic signal, since the 

aorta follows the course of the spine. Injection in C57BL/6 wild 

type mice gave similar results with accumulation in the liver (31 

± 4 and 29 ± 4 %ID/g) and the heart (22 ± 2 and 19 ± 4 %ID/g) 

respectively for 68Ga-PCTA-DSPE and 68Ga-HDL (see 

supporting information, Fig. S6). 

 68Ga-PCTA-DSPE and 68Ga-HDL accumulated mainly in the 

liver, in accordance with HDL metabolism and nanomicelles 

catabolism [4,21]. Liver is the keystone of lipid metabolism, in 

particular for lipoproteins, which are taken up from the blood 

stream using specific receptors such as SRB1 (scavenger receptor 

type 1) for HDLs. In comparison, 18F-FDG accumulated in 

glucose-consuming organs (brain and heart) whereas kidneys and 

bladder also showed a high signal, as they are involved in 

glucose elimination. 
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Fig. 6 Whole body PET images of C57BL/6 control (top row) and ApoE KO 

(bottom row) mice. From left to right: 68Ga-PCTA-DSPE, 68Ga-HDL and 18F-

FDG radiotracers; B (Bladder), H (Head), Ht (Heart), K (Kidneys), L (Liver). 

In order to evaluate the potential accumulation of 68Ga-PCTA-

DSPE and 68Ga-HDL within atheromatous vessels, the heart and 

the aorta were dissected out 30 min post-injection and imaged ex 

vivo (15 min PET acquisition). The aortas were then opened 

longitudinally, split and pinned onto a black wax surface, to 

expose the atheromatous plaques. Macroscopic photographs of 

plaques were compared to ex vivo PET images (Fig. 7). As 

depicted in Fig. 7, no signal was detected in the aorta of 

C57BL/6 control mice injected with 68Ga-PCTA-DSPE, 68Ga-

HDL or 18F-FDG. However, a strong positivity in different areas 

of the aorta was observed in ApoE KO mice injected with 68Ga-

HDL, correlating with the presence of atheromatous plaques as 

shown on macroscopic views while no positive signal was 

observed with either 68Ga-PCTA-DSPE or 18F-FDG. As a result, 
68Ga-HDL could represent a good radiotracer for detection of 

atheromatous lipid-rich plaques. 

Accumulation of HDL particles within atheromatous plaques of 

injected mice was also confirmed by immunohistofluorescence 

(see supporting information, Fig. S9) 

Fig. 7 Images of aorta and heart of C57BL/6 control (top panel) and ApoE 

KO (bottom panel) mice. From left to right, 68Ga-PCTA-DSPE, 68Ga-HDL 

and 18F-FDG radiotracers: (a) Macroscopic view; (b) 3D PET image; (c) 2D 

PET image. The heart was removed before dissection of the aorta; its position 

is indicated with a red dashed circle. Atheromatous plaques have been 

highlighted in yellow. 

In order to strengthen these results, we evaluated the ability of 
68Ga-HDL to label human carotid atherosclerotic samples 

characterized by both non-complicated lipid-rich plaques and 

more advanced complicated lesions containing intraplaque 

hemorrhages. Both 68Ga-HDL and 18F-FDG were tested ex vivo 

in freshly obtained carotid endarterectomy samples. As shown in 

Fig. 8, 18F-FDG-incubated carotid samples displayed a strong 

signal only in the stenosed complicated plaque sample. More 

interestingly, 68Ga-HDL particles were able to accumulate in both 

complicated and non-complicated parts of atherosclerotic carotid 

samples. This underlines the greater ability of our radiotracer to 

accumulate within lipid-rich plaques that are prone to rupture 

even in non-stenosing conditions.  
 

 
 

Fig. 8 Ex vivo accumulation of 68Ga-HDL (bottom panels) and 18F-FDG (top 

panels) radiotracers in human carotid endarterectomy samples: macroscopic 

view (left), and 3D PET images (right); ncp: non-complicated plaque, cp: 

culprit plaque corresponding to the stenosed part of the same carotid sample. 

 

3. Conclusion 

We have synthesized for the first time a PCTA-derivative 

chelate coupled with DSPE. Our chelating agent was able to 

efficiently coordinate 68Ga3+ with a 70% RCY. Finally, our 

radiotracer was completely inserted into the HDL lipid layer. 

Atherosclerosis PET imaging performed in both a murine model 

and human ex vivo samples showed a better potential of our 

tracer than 18F-FDG whose accumulation was limited to 

metabolically active cells. These preliminary results have 

demonstrated that our new lipid-based agent able to chelate a 

short half-life isotope (68Ga, t1/2 = 68 min) could be used for 

diagnosis of atherosclerosis. Formulation of 68Ga-PCTA-DSPE 

with synthetic HDL particles injectable into human or other 

nanomicelles could allow a wider use in different clinical settings 

[22]. 
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