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1. Context

Context of clusterwise regression

70 PSYCHOMETRIKA

From DeSarbo et al. (1989), Psychometrika

m “For one group of consumers, higher utility
corresponds to lower prices . ..

Utility

m ... while the opposite is true for the other
group.”

$ Price

FiouRe 2.
Utifty functions and price.

Clusterwise principle

m Multiple regression: No such grahical display for easy clustering detection.

m Clusterwise regression: cluster the data and simultaneously compute these
cluster regression coefficients. 1ses (3
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Extension of clusterwise regression to clusterwise multiblock regression

Clusterwise multiblock data features

) m Large number of explanatory variables
XU Xk XK organized in meaningful blocks
' [X',...,X¥] (known block structure),

m Several variables Y to explain and predict,

X=[X] ... [XK] -
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Extension of clusterwise regression to clusterwise multiblock regression

Clusterwise multiblock data features

m Large number of explanatory variables

] X! | Xk XK organized in meaningful blocks
[X',...,X¥] (known block structure),
N,
m Several variables Y to explain and predict,
X=[X!] ... [XK]
m Unknown cluster structure of the N
Example of individual clustering in G=2 clusters individuals (in G clusters).

m Clustering: Get an optimal clustering of individuals (cluster number defined in
advance) ...,

m Multiblock regression: . ..and compute the cluster multiblock regression
coefficients within each cluster in order to improve the Y explanation and
prediction. nses 3
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2. Background

Available clusterwise regression methods: finite mixture models

Mixture model field (clusterwise methods)

m Earliest works: DeSarbo & Cron, 1988; Hennig, 2000

= Minimize ¥.5_, [|Yg — XgByg||? by means of an EM algorithm,
Assumption: response variable is distributed as a finite mixture of conditional
normal densities.
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2. Background

Available clusterwise regression methods: finite mixture models

Mixture model field (clusterwise methods)

m Earliest works: DeSarbo & Cron, 1988; Hennig, 2000

= Minimize ¥.5_, [|Yg — XgByg||? by means of an EM algorithm,
Assumption: response variable is distributed as a finite mixture of conditional
normal densities.

Advantages and limits

m Fast algorithm, available programs (commercial softwares, Flexmix R package)

m Necessary conditions
m Multivariate normal distribution of dependent variable Y,
m Ny (nb of individuals within the gth cluster) > P (nb of explanatory variables)

m Oriented towards modelling and not towards prediction.



2. Background

Available clusterwise regression methods: geometrical approach

Distance-based model field (typological methods)

m Earliest works: Diday, 1974 (typological factorial analysis); Charles, 1977; Spath,
1979

m Minimize 2521 |[Yg —XgBg]|2 by means of a K-means like algorithm,

m Interesting extensions to high-dimensional data: typological PCR (Charles,
1977), typological PLS (Vinzi, 2005; Preda, 2005).
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2. Background

Available clusterwise regression methods: geometrical approach

Distance-based model field (typological methods)

m Earliest works: Diday, 1974 (typological factorial analysis); Charles, 1977; Spath,
1979

= Minimize ¥.3_, ||y —XgByg||? by means of a K-means like algorithm,

m Interesting extensions to high-dimensional data: typological PCR (Charles,
1977), typological PLS (Vinzi, 2005; Preda, 2005).

Advantages and limits

= No available programs,
m Non-monotonicity decrease of the criterion (batch versus stochastic algorithm),

m Oriented towards both modelling and prediction.
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31. Aims & criterion

3. Clusterwise multiblock PLS

Clusterwise multiblock PLS: aims

Context: clusterwise multiblock regression.

Aims

Clustering: Get an optimal clustering of individuals (cluster number defined in
advance) ...,

Multiblock regression: ...and compute the cluster multiblock regression
coefficients within each cluster in order to improve the Y explanation and
prediction.

Two parameters are chosen: the number of clusters G and of components H.
CLUSTER 1

Regression
coefficients B,

Regression
coefficients B,

Xt Xk XK

CLUSTER 2 anses :—7



31. Aims & criterion
3. Clusterwise multiblock PLS

Clusterwise multiblock PLS: criterion

Get the optimal clusters on components which summarize X
Min. the sum of the residuals ZG,1 IYg— ZTK(H) K(H )C(H ) ||> where:

Predicted Y

H ‘ ‘ - }> o

X! Xk XK

Cluster 2

-
Cluser T! Tk

-1
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3. Clusterwise multiblock PLS

Clusterwise multiblock PLS: criterion

Get the optimal clusters on components which summarize X
Min. the sum of the residuals ): 4 |Yg— ZTK(H) C(H ) ||> where:

Predicted Y

[ Tk(H) are the matrices of block components with H (given) dimensions obtained

from the G mbPLS, such as T [t | ..|t§(H)]
L] ag(H) are the normalized covariances between components from Xk and Yg

[ (CSH),, e ,CE;H)/) are the regression coefficients of Y4 on (¥ ag k() (H))

XL Xk. s T! Tk TK

Cluster 2
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3. Clusterwise multiblock PLS

Clusterwise multiblock PLS: stochastic algorithm

Algorithm

E Start from a random initialization of N
individuals into G clusters
For each individual n
m Compute mbPLS where n belongs [ Decreasing monotonicity of the

alternatively to each of the G clusters criterion Z
m For each of the G solutions, compute the
residual sums Y.3_ [|Yg — Y42
m Assign nto the cIuster whlch minimize the
former residual sums.

o1 |Yg = ¥g|[? according
ton
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Clusterwise multiblock PLS: stochastic algorithm

il B

Comments

E Start from a random initialization of N
individuals into G clusters
For each individual n
m Compute mbPLS where n belongs m Decreasing monotonicity of the

alternatively to each of the G clusters criterion 26:1 ||Yg _ ?g”Z according
m For each of the G solutions, compute the 9

residual sums Y.3_ [|Yg — Y42 1o o
m Assign nto the cIuster whlch minimize the
former residual sums.
Repeat the former procedure for several m Avoid local optimum
random initializations of the clusters and Get the G clusters.

select the best solution.
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Clusterwise multiblock PLS: stochastic algorithm

il B

Comments

E Start from a random initialization of N
individuals into G clusters
For each individual n
m Compute mbPLS where n belongs m Decreasing monotonicity of the

alternatively to each of the G clusters criterion 26:1 ||Yg _ ?g”Z according
m For each of the G solutions, compute the 9

residual sums Y.3_ [|Yg — Y42 1o o
m Assign nto the cIuster whlch minimize the
former residual sums.
Repeat the former procedure for several m Avoid local optimum
random initializations of the clusters and Get the G clusters.

select the best solution.

Compute the G mbPLS within each
optimal cluster.

m Get the G regression coefficient
matrices.
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3. Clusterwise multiblock PLS

Clusterwise multiblock PLS: parameter selection (10-fold cross-validation)

m Parameter selection: minimize the RMSEg 4 processed for several model
dimensions H and several cluster numbers G — get Hopr and Gopt,
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3. Clusterwise multiblock PLS

Clusterwise multiblock PLS: parameter selection (10-fold cross-validation)

m Parameter selection: minimize the RMSEg 4 processed for several model
dimensions H and several cluster numbers G — get Hopr and Gopt,

Algorithm: 10-fold cross-validation

m Split the data into ten folds,

m Apply clusterwise multiblock PLS on the train data (9/10 folds),

m For each individual n, choose the cluster yielding the lowest error (1/10 fold),
m Compare the observed and the predicted dependent values — RMSE.
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38. Prediction

Clusterwise multiblock PLS: prediction of new individuals

Problem: Assign a new individual to its optimal cluster and predict its dependent variable values.
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3. Clusterwise multiblock PLS

Clusterwise multiblock PLS: prediction of new individuals

Problem: Assign a new individual to its optimal cluster and predict its dependent variable values.

Bayesian affectation to clusters

m Project the new individual into each of the G component spaces from the cw.mbpls model
k(H
(xnew - Tgfne)w),
m Compute the Bayesian Mahalanobis distances between the new individual and the G
cluster gravity centres; transform them into probabilities,

e
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Clusterwise multiblock PLS: prediction of new individuals

Problem: Assign a new individual to its optimal cluster and predict its dependent variable values.

Bayesian affectation to clusters

m Project the new individual into each of the G component spaces from the cw.mbpls model

k(H
(Xnew — Tg,(ne)w),
m Compute the Bayesian Mahalanobis distances between the new individual and the G
cluster gravity centres; transform them into probabilities,

m Maximize the G probabilities (probag) — cluster membership of the new individual
[ ]
u
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3. Clusterwise multiblock PLS

Clusterwise multiblock PLS: prediction of new individuals

Problem: Assign a new individual to its optimal cluster and predict its dependent variable values.

Bayesian affectation to clusters

m Project the new individual into each of the G component spaces from the cw.mbpls model
k(H)
(Xnew — Tg,new),

m Compute the Bayesian Mahalanobis distances between the new individual and the G
cluster gravity centres; transform them into probabilities,

m Maximize the G probabilities (probag) — cluster membership of the new individual

Model averaging prediction

m Vi = X5 probal” x [Y Toloon (a5 ey )]
k

Predicted Y{/")

m This prediction takes into account the predictions to the G clusters. nses (3
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Comparison of cw.PLS and Flexmix

Individual map (N observations)

~ L - Simulated data features
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4. Application

Simulated data

Comparison of cw.PLS and Flexmix

Simulated data features

m G=2 clusters with the same size,
volume, orientation and shape and
correctly separated,

m N=50 individuals,
m P=6 explanatory variables X

moderately correlated (0.30) with no
block structure,

m Q=1 dependent variable Y positively
linked with X for cluster 1 (1 = 0.5)
and negatively for cluster 2
(B2 =—0.5).
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4. Application

Simulated data
Comparison of cw.PLS and Flexmix

Results (ten-fold cross-validation, prediction purpose)

® No cluster

Index Linear reg. PLS reg. (h=1)
RMSE | 1.52[1.17;1.80] 1.41[1.033;1.71]
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Ap n o ality data
4. Application Ap - uality data

Simulated data
Comparison of cw.PLS and Flexmix

Results (ten-fold cross-validation, prediction purpose)

® No cluster

Index Linear reg. PLS reg. (h=1)
RMSE | 1.52[1.17;1.80] 1.41[1.033;1.71]

m G =2 clusters

Index Flexmix cw.PLS (h=1)
Adj. Rand 1[1;1] 0.76 [0.47;1]
RMSE 6.2e-16 [3.9e-16;7.8e-16]  0.18 [0.10;0.24]




4. Application

Simulated data
Comparison of cw.PLS and Flexmix

Results (ten-fold cross-validation, prediction purpose)

® No cluster

Index Linear reg. PLS reg. (h=1)
RMSE | 1.52[1.17;1.80] 1.41[1.033;1.71]

m G =2 clusters

Index Flexmix cw.PLS (h=1)
Adj. Rand 1[1;1] 0.76 [0.47;1]
RMSE 6.2e-16 [3.9e-16;7.8e-16]  0.18 [0.10;0.24]

Interpretation

m Performance improvement while taking account the G=2 clusters,

m Excellent performance of Flexmix and correct one for cw.PLS.



4. Application

Simulated data n°2
Comparison of cw.PLS and Flexmix with a reduced number of individuals and higher correlation

Individual map (N observations)
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4. Application

Simulated data n°2

Comparison of cw.PLS and Flexmix with a reduced number of individuals and higher correlation

Simulated data features

. . m G=2 clusters with the same size,

S i Lot volume, orientation and shape and
e v little separated,

Joam L) e ) e | m N=20 individuals,

m P=6 explanatory variables X
correlated (0.90) with no block

) :. L R structure,
N N S m Q=1 dependent variable Y
: e I R positively linked with X for cluster
s T T e 1 (B4 = 0.5) and negatively for

cluster 2 (B2 = —0.5).



4. Application

Simulated data n°2
Comparison of cw.PLS and Flexmix with a reduced number of individuals

Results (ten-fold cross-validation, prediction purpose)

m No cluster

Index Linear reg. PLS reg. (h=1)
RMSE | 3.68[1.92;4.84] 1.68[0.89;2.20]
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Simulated data n°2
Comparison of cw.PLS and Flexmix with a reduced number of individuals

Results (ten-fold cross-validation, prediction purpose)

m No cluster

Index Linear reg. PLS reg. (h=1)
RMSE | 3.68[1.92;4.84] 1.68[0.89;2.20]
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Index Flexmix cw.PLS (h=1)
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RMSE 5.21 [0;79] 0.085 [0.042;0.11]
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4. Application

Simulated data n°2
Comparison of cw.PLS and Flexmix with a reduced number of individuals

Results (ten-fold cross-validation, prediction purpose)

m No cluster

Index Linear reg. PLS reg. (h=1)
RMSE | 3.68[1.92;4.84] 1.68[0.89;2.20]

® G =2clusters

Index Flexmix cw.PLS (h=1)
Adj. Rand | 0.56[0.15;0.96] 0.83[0.40;1]
RMSE 5.21 [0;79] 0.085 [0.042;0.11]

Interpretation

m Performance improvement while taking account the G=2 clusters,
m Good performance of cw.PLS especially for prediction error,

m High instability of Flexmix results. nses L3
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Application on indoor air quality data

4. Application

Indoor air quality data: multiblock data & aims

Data features [Ki

1 m Y: 2 pollutants: formaldehyde, acrolein
g m X: 21 potential risk factors of pollution
2 N, w1 2 w3 organized into 3 blocks: household
. X 1‘( 43 characteristics (10 var.), dwelling structure
= Household | |Dwelling | |1 jying habits |P s (4 var.), living habits (7 var.)
r?\lr characteristic structure (7 \'ar.)
4 (10 var.) (4 var.) = Individuals: 246 main residences
N, m Pre-processing: Variables are centred
and scaled; block are weighted to have the
same weight.
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Simulated data
Application on indoor air quality data

4. Application

Indoor air quality data: multiblock data & aims

Data features [Ki

1 m Y: 2 pollutants: formaldehyde, acrolein
g m X: 21 potential risk factors of pollution
s N, 1 2 3 organized into 3 blocks: household
. X 1‘( 43 characteristics (10 var.), dwelling structure
= Household | |Dwelling | |1 jying habits |P s (4 var.), living habits (7 var.)
;\lr characteristic structure (7 \'ar.) . .
) (10 var.) (4 var.) = Individuals: 246 main residences
N, m Pre-processing: Variables are centred
and scaled; block are weighted to have the
same weight.

m Clustering: Get the optimal clustering of residences to improve the pollutant prediction
m Regression: ...and compute the multiblock regression coefficients within each residence
cluster. nses (3
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Simulated data

4. Application Application on indoor air quality data

Indoor air quality data: comparison to the global model & parameter selection

H=1 H=2 H=3 H=4 H=1 H=2 H=3 H=4
G=1 | 0,83 0,79 0,77 0,77 G=1 | 0,84 086 086 0,87
G=2 | 057 050 046 0,44 G=2 | 066 070 073 0,73
G=3 | 041 034 029 0027 G=3 | 0,60 0,58 0,554 0,61
G=4 | 0,32 024 0,19 0,19 G=4 | 053 044 048 049
G=5 | 026 0,18 0,15 0,13 G=5 | 040 043 046 045
G=6 | 021 0,5 0,12 0,10 G=6 | 0,37 0,39 041 0,40
Table : RMSE? for calibration Table : RMSE? for prediction

Interpretation

m Performance improvement while taking account several clusters,

RMSES..,(G)
RMSEZ,(G—1)
number of clusters G and dimensions H,

m Selection of G=2 clusters with H=2 dimensions (Q* = 0.94).

m Use of the @ = < 0.95 (Tenenhaus, 1998) to select the optimal

nses ;)
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4. Application

mu C
Application

on indoor air quality data

Indoor air quality data: cluster regression coefficients
Dependent variable: acrolein, significant regression coefficients by means of bootstrap simulations

Cluster 1 (N=104)

T

TMMze1

TRMLe1
TRMSe1
TRMSe1
TRMSe1
TRMSe1 \

TRMSe1

Characteristics (X,)

/ Pollutants (Y)

NbPisceAvecProduitsChim NQI42
jantDeSurface QPELD

[
°
£
8
@

AutreNettoyants QPE2D

NetioyAutreQueSolQME3D 1

CuissonALaVapeur CUIb
CuissonParFriture. CUL4b.

Cluster 2 (N=142)

Characteristics (X,)

Structure (X,)

Pollutants (Y)

Nb_Enfants_inf_10

Nb_Enfants_sup_10

NettoyantDeSurfice QPEIb

AutreNettoyants QPE2D
InsectcideActosol QPPID
‘NettoyAutreQuesol. QME3b
CussonALaVapeur CUI3D
CuissonParFitre CULdb
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Simulats ata
Application on indoor air quality data

4. Application

Indoor air quality data: cluster regression coefficients
Dependent variable: acrolein, significant regression coefficients by means of bootstrap simulations

Cluster 1 (N=104) Cluster 2 (N=142)

) [
‘Sigaificant coetficient (negative k)| 2 TMM2e1 [ sienificant coefficient (negative Link)|
e Z F o o]
T, 7| e
Rwter 2| e
Tovser Z ] e
& 2 TRMSe1
N g
g TRMSe1 g TRMSe1
S Trmse1 ] TRMSeL
o \ Q \" Formaldehyde
~ 4 A TRMSe1 \ =
Taser
-~ Pollutants (Y) ) Pollutants (Y)
[ < e
s e Nb_Person
: £
H E | soeatmsncio
g 4 Nb_Enfants_sup_10
b 3

NbPisceAvecProduitsChim NQI42
NetioyaniDeSurface QPELD

(X3

AutreNettoyants QPE2D

I

NetioyAutreQueSolQME3D 1
CuissonALaVapeur CUIb
CuissonParFriture. CUL4b.

Habits (X;)

NettoyantDeSuface QPEID
AutreNettoyants QPE2D
InsectcideActosol QPPID
NettoyAuireQuesol QME3D
CuissonALaVapeur CULD

CuissonParFrifure CUT4D

Interpretation

m Cluster 1: significantly linked to several variables (e.g., age of inhabitants,

number and the age of children),

m Cluster 2: significantly and mainly linked to the rates of wood and PVC carpentry
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5. Conclusion & perspectives

Conclusion & perspectives

Conclusion

m Clusterwise multiblock PLS handles the specificity supervised multiblock data
with an unknown structure on individuals
m Aim: improve the prediction,
® Meaningful criterion to minimize,
m Parameters (number of dimensions and clusters) obtained through cross-validation,
m Prediction of new individuals (clusters, predicted Y values).

m Useful tool to deal with real data especially in biology (e.g., different risk factors
of a disease according to sub-populations).
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Conclusion & perspectives

Conclusion

m Clusterwise multiblock PLS handles the specificity supervised multiblock data
with an unknown structure on individuals

m Aim: improve the prediction,

® Meaningful criterion to minimize,

m Parameters (number of dimensions and clusters) obtained through cross-validation,
m Prediction of new individuals (clusters, predicted Y values).

m Useful tool to deal with real data especially in biology (e.g., different risk factors
of a disease according to sub-populations).

m Any other supervised multiblock method can be included in the algorithm,

m Next step 1: develop an index select the optimal numbers of clusters and
dimensions by means of cross-validation,

m Next step 2: allow specific clusters (and dimensions) for each block,
m Programs will be transformed into a R package.
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