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Context of clusterwise regression

From DeSarbo et al. (1989), Psychometrika

“For one group of consumers, higher utility
corresponds to lower prices . . .

. . . while the opposite is true for the other
group.”

Clusterwise principle

Multiple regression: No such grahical display for easy clustering detection.

Clusterwise regression: cluster the data and simultaneously compute these
cluster regression coefficients.
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Extension of clusterwise regression to clusterwise multiblock regression

Example of individual clustering in G=2 clusters

Clusterwise multiblock data features

Large number of explanatory variables
organized in meaningful blocks
[X1, . . . ,XK ] (known block structure),

Several variables Y to explain and predict,

Unknown cluster structure of the N
individuals (in G clusters).

Aims

Clustering: Get an optimal clustering of individuals (cluster number defined in
advance) . . . ,

Multiblock regression: . . . and compute the cluster multiblock regression
coefficients within each cluster in order to improve the Y explanation and
prediction.
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Available clusterwise regression methods: finite mixture models

Mixture model field (clusterwise methods)

Earliest works: DeSarbo & Cron, 1988; Hennig, 2000

Minimize ∑
G
g=1 ‖Yg−XgBg‖2 by means of an EM algorithm,

Assumption: response variable is distributed as a finite mixture of conditional
normal densities.

Advantages and limits

Fast algorithm, available programs (commercial softwares, Flexmix R package)
Necessary conditions

Multivariate normal distribution of dependent variable Y,
Ng (nb of individuals within the gth cluster) > P (nb of explanatory variables)

Oriented towards modelling and not towards prediction.
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Available clusterwise regression methods: geometrical approach

Distance-based model field (typological methods)

Earliest works: Diday, 1974 (typological factorial analysis); Charles, 1977; Späth,
1979

Minimize ∑
G
g=1 ‖Yg−XgBg‖2 by means of a K-means like algorithm,

Interesting extensions to high-dimensional data: typological PCR (Charles,
1977), typological PLS (Vinzi, 2005; Preda, 2005).

Advantages and limits

No available programs,

Non-monotonicity decrease of the criterion (batch versus stochastic algorithm),

Oriented towards both modelling and prediction.
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g=1 ‖Yg−XgBg‖2 by means of a K-means like algorithm,

Interesting extensions to high-dimensional data: typological PCR (Charles,
1977), typological PLS (Vinzi, 2005; Preda, 2005).

Advantages and limits

No available programs,

Non-monotonicity decrease of the criterion (batch versus stochastic algorithm),

Oriented towards both modelling and prediction.

Proposition: Extend this approach to multiblock regression with high-dimensional data
(+ guarantee of monotonicity, prediction and program availability).
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Clusterwise multiblock PLS: aims

Context: clusterwise multiblock regression.

Aims

1 Clustering: Get an optimal clustering of individuals (cluster number defined in
advance) . . . ,

2 Multiblock regression: . . . and compute the cluster multiblock regression
coefficients within each cluster in order to improve the Y explanation and
prediction.

Two parameters are chosen: the number of clusters G and of components H.
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Clusterwise multiblock PLS: criterion

Get the optimal clusters on components which summarize X

Min. the sum of the residuals ∑
G
g=1 ‖Yg−∑

k
Tk(H)

g (ak(H)
g C(H)′

g )︸ ︷︷ ︸
Predicted Yg

‖2 where:

Tk(H)
g are the matrices of block components with H (given) dimensions obtained

from the G mbPLS, such as Tk(H)
g = [tk(1)

g | . . . |tk(H)
g ]

ak(H)
g are the normalized covariances between components from Xk

g and Yg

(C(H)′

1 , . . . ,C(H)′

G ) are the regression coefficients of Yg on (∑k ak(H)
g Tk(H)

g )
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Clusterwise multiblock PLS: stochastic algorithm

Algorithm

1 Start from a random initialization of N
individuals into G clusters

2 For each individual n
Compute mbPLS where n belongs
alternatively to each of the G clusters
For each of the G solutions, compute the
residual sums ∑

G
g=1 ‖Yg − Ŷg‖2

Assign n to the cluster which minimize the
former residual sums.

3 Repeat the former procedure for several
random initializations of the clusters and
select the best solution.

4 Compute the G mbPLS within each
optimal cluster.

Comments

Decreasing monotonicity of the
criterion ∑

G
g=1 ‖Yg− Ŷg‖2 according

to n

Avoid local optimum
Get the G clusters.

Get the G regression coefficient
matrices.
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Clusterwise multiblock PLS: parameter selection (10-fold cross-validation)

Aims

Parameter selection: minimize the RMSEG,H processed for several model
dimensions H and several cluster numbers G→ get Hopt and Gopt ,

Algorithm: 10-fold cross-validation

Split the data into ten folds,

Apply clusterwise multiblock PLS on the train data (9/10 folds),

For each individual n, choose the cluster yielding the lowest error (1/10 fold),

Compare the observed and the predicted dependent values→ RMSE.
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Clusterwise multiblock PLS: prediction of new individuals

Problem: Assign a new individual to its optimal cluster and predict its dependent variable values.

Bayesian affectation to clusters

Project the new individual into each of the G component spaces from the cw.mbpls model

(Xnew → Tk(H)
g,new ),

Compute the Bayesian Mahalanobis distances between the new individual and the G
cluster gravity centres; transform them into probabilities,

Maximize the G probabilities (probag )→ cluster membership of the new individual

Model averaging prediction

Ŷ
(H)
new = ∑

G
g=1 proba(H)

g × [∑
k

Tk(H)
g,new (a

k(H)
g C(H)′

g )]︸ ︷︷ ︸
Predicted Y(H)

g

This prediction takes into account the predictions to the G clusters.
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Simulated data
Comparison of cw.PLS and Flexmix
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Simulated data features

G=2 clusters with the same size,
volume, orientation and shape and
correctly separated,

N=50 individuals,

P=6 explanatory variables X
moderately correlated (0.30) with no
block structure,

Q=1 dependent variable Y positively
linked with X for cluster 1 (β1 = 0.5)
and negatively for cluster 2
(β2 =−0.5).
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Simulated data
Comparison of cw.PLS and Flexmix

Results (ten-fold cross-validation, prediction purpose)

No cluster

Index Linear reg. PLS reg. (h=1)
RMSE 1.52 [1.17;1.80] 1.41 [1.033;1.71]

G = 2 clusters

Index Flexmix cw.PLS (h=1)
Adj. Rand 1 [1;1] 0.76 [0.47;1]
RMSE 6.2e-16 [3.9e-16;7.8e-16] 0.18 [0.10;0.24]

Interpretation

Performance improvement while taking account the G=2 clusters,

Excellent performance of Flexmix and correct one for cw.PLS.
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Simulated data n◦2
Comparison of cw.PLS and Flexmix with a reduced number of individuals and higher correlation
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Simulated data features

G=2 clusters with the same size,
volume, orientation and shape and
little separated,

N=20 individuals,

P=6 explanatory variables X
correlated (0.90) with no block
structure,

Q=1 dependent variable Y
positively linked with X for cluster
1 (β1 = 0.5) and negatively for
cluster 2 (β2 =−0.5).
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volume, orientation and shape and
little separated,

N=20 individuals,

P=6 explanatory variables X
correlated (0.90) with no block
structure,

Q=1 dependent variable Y
positively linked with X for cluster
1 (β1 = 0.5) and negatively for
cluster 2 (β2 =−0.5).

17 / 24



1. Context
2. Background

3. Clusterwise multiblock PLS
4. Application

5. Conclusion & perspectives

Simulated data
Application on indoor air quality data

Simulated data n◦2
Comparison of cw.PLS and Flexmix with a reduced number of individuals

Results (ten-fold cross-validation, prediction purpose)

No cluster

Index Linear reg. PLS reg. (h=1)
RMSE 3.68 [1.92;4.84] 1.68 [0.89;2.20]

G = 2 clusters

Index Flexmix cw.PLS (h=1)
Adj. Rand 0.56 [0.15;0.96] 0.83 [0.40;1]
RMSE 5.21 [0;79] 0.085 [0.042;0.11]

Interpretation

Performance improvement while taking account the G=2 clusters,

Good performance of cw.PLS especially for prediction error,

High instability of Flexmix results.
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Simulated data
Application on indoor air quality data

Indoor air quality data: multiblock data & aims

Data features [Kirchner et al., 2007]

Y: 2 pollutants: formaldehyde, acrolein

X: 21 potential risk factors of pollution
organized into 3 blocks: household
characteristics (10 var.), dwelling structure
(4 var.), living habits (7 var.)

Individuals: 246 main residences

Pre-processing: Variables are centred
and scaled; block are weighted to have the
same weight.

Aims

Clustering: Get the optimal clustering of residences to improve the pollutant prediction
. . . ,

Regression: . . . and compute the multiblock regression coefficients within each residence
cluster.
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Indoor air quality data: comparison to the global model & parameter selection

H=1 H=2 H=3 H=4
G=1 0,83 0,79 0,77 0,77
G=2 0,57 0,50 0,46 0,44
G=3 0,41 0,34 0,29 0,27
G=4 0,32 0,24 0,19 0,19
G=5 0,26 0,18 0,15 0,13
G=6 0,21 0,15 0,12 0,10

Table : RMSE2 for calibration

H=1 H=2 H=3 H=4
G=1 0,84 0,86 0,86 0,87
G=2 0,66 0,70 0,73 0,73
G=3 0,60 0,58 0,54 0,61
G=4 0,53 0,44 0,48 0,49
G=5 0,40 0,43 0,46 0,45
G=6 0,37 0,39 0,41 0,40

Table : RMSE2 for prediction

Interpretation

Performance improvement while taking account several clusters,

Use of the Q2 =

√
RMSE2

pred (G)

RMSE2
cal (G−1)

< 0.95 (Tenenhaus, 1998) to select the optimal

number of clusters G and dimensions H,

Selection of G=2 clusters with H=2 dimensions (Q2 = 0.94).
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Indoor air quality data: cluster regression coefficients
Dependent variable: acrolein, significant regression coefficients by means of bootstrap simulations

Interpretation

Cluster 1: significantly linked to several variables (e.g., age of inhabitants,
number and the age of children),

Cluster 2: significantly and mainly linked to the rates of wood and PVC carpentry 21 / 24
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Conclusion

Clusterwise multiblock PLS handles the specificity supervised multiblock data
with an unknown structure on individuals

Aim: improve the prediction,
Meaningful criterion to minimize,
Parameters (number of dimensions and clusters) obtained through cross-validation,
Prediction of new individuals (clusters, predicted Y values).

Useful tool to deal with real data especially in biology (e.g., different risk factors
of a disease according to sub-populations).

Perspectives

Any other supervised multiblock method can be included in the algorithm,

Next step 1: develop an index select the optimal numbers of clusters and
dimensions by means of cross-validation,

Next step 2: allow specific clusters (and dimensions) for each block,

Programs will be transformed into a R package.
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