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Context of clusterwise regression

70

Utility

PSYCHOMETRIKA

$ Price

FiouRe 2.
Utifty functions and price.

1. Context

From DeSarbo et al. (1989), Psychometrika

m “For one group of consumers, higher utility

corresponds to lower prices . ..

m ... while the opposite is true for the other

group.”
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1. Context

Extension of clusterwise regression to clusterwise multiblock regression

Clusterwise multiblock data features

m Large number of explanatory variables
organized in meaningful blocks
[X',...,X¥] (known block structure),

N m Several variables Y to explain and predict,
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1. Context

Extension of clusterwise regression to clusterwise multiblock regression

- Q Clusterwise multiblock data features

m Large number of explanatory variables
organized in meaningful blocks
[X',...,X¥] (known block structure),

m Several variables Y to explain and predict,

Xt Xk XK

Z

X=[X!| ... [XK] m Unknown cluster structure of the N
individuals (in G clusters).

Aims

m Clustering: Get the optimal clustering of individuals (cluster number defined in
advance) ...,

m Multiblock regression: . ..and compute the cluster multiblock regression
coefficients within each cluster in order to improve the Y explanation and
prediction. nses 3
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2. Background

Available clusterwise regression methods: finite mixture models

Mixture model field (clusterwise methods)

m Earliest works: DeSarbo & Cron, 1988; Hennig, 2000

m Minimize 2521 |[Yg —XgBg]|2 by means of an EM algorithm,
Y = [y1,-..,Yq] are mixtures of conditional normal densities of G underlying
clusters.

nses ;)



2. Background

Available clusterwise regression methods: finite mixture models

Mixture model field (clusterwise methods)

m Earliest works: DeSarbo & Cron, 1988; Hennig, 2000

m Minimize 2521 |[Yg —XgBg]|2 by means of an EM algorithm,
Y = [y1,-..,Yq] are mixtures of conditional normal densities of G underlying
clusters.

Advantages and limits

m Fast algorithm, available programs (commercial softwares, Flexmix R package)
m Necessary conditions

® Multivariate normal distributions of dependent variables Y,
m Ny (nb of individuals within the gth cluster) > P (nb of explanatory variables) . .. but
recent extension for high-dimensional data (Lasso estimator, PhD of E. Devijver),

m Oriented towards modelling and not towards prediction.
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Available clusterwise regression methods: geometrical approach

Distance-based model field (typological methods)

m Earliest works: Diday, 1974 (typological factorial analysis); Charles, 1977; Spath,
1979

m Minimize ):g=1 [|[Yg —XgBg]|2 by means of a K-means algorithm,

m Interesting extensions to high-dimensional data: typological PCR (Charles,
1977), typological PLS (Vinzi, 2005; Preda, 2005).
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2. Background

Available clusterwise regression methods: geometrical approach

Distance-based model field (typological methods)

m Earliest works: Diday, 1974 (typological factorial analysis); Charles, 1977; Spath,
1979

= Minimize ¥.5_, [|Yg — XgByg||? by means of a K-means algorithm,

m Interesting extensions to high-dimensional data: typological PCR (Charles,
1977), typological PLS (Vinzi, 2005; Preda, 2005).

Advantages and limits

= No available programs,

m Problem of non-monotonicity decrease of the criterion (batch versus stochastic
algorithm),

m Oriented towards both modelling and prediction.
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3. Clusterwise multiblock PLS

Clusterwise multiblock PLS: aims

Context: clusterwise multiblock regression.

CLUSTER 1
1..p! 1..p¥
! Regression
coefficients B,
Ny
1 .
1 k K Regression
Xt Xkl X cocens
N,
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ha thir

3. Clusterwise multiblock PLS

Clusterwise multiblock PLS: aims

Context: clusterwise multiblock regression.

Aims

Clustering: Get the optimal clustering of individuals (cluster number defined in
advance) ...,

Multiblock regression: ... and compute the cluster multiblock regression
coefficients within each cluster in order to improve the Y explanation and
prediction.

CLUSTER 1
1..p! 1..p¥
! Regression
coefficients B,
Ny
1 .
1 k K Regression
Xt Xkl X cocens
N,
- CLUSTER 2
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3. Clusterwise multiblock PLS

Clusterwise multiblock PLS: criterion

Get the optimal clusters on components which summarize X

Min. the sum of the residuals 2521 Yg— Xk TS(H)(ag(H)Cé(,H),)HZ where:

| |
| |
| |
-
X! LXKk, XK T! Tk T«

From the original data o the partial components
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3. Clusterwise multiblock PLS

Clusterwise multiblock PLS: criterion

Get the optimal clusters on components which summarize X

Min. the sum of the residuals 2521 Yg— Xk TS(H)(ag(H)Cé(,H),)HZ where:

] TK(H) are the matrices of block components with H (given) dimensions obtained
from the G mbPLS, such as T [t | ..|tg(H)]

Kk(H ] :
m ag( ) are the normalized covariances between components from Xg and Yg

(] (CSH),, e ,Cg’)/) are the regression coefficients of Y4 on (¥« ag(H)TS(H))

XXk T! Tk TK

+ Cluster 2

Cluster 2

From the original data o the partial components
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3. Clusterwise multiblock PLS o, SEsiEip el

Clusterwise multiblock PLS: stochastic algorithm

ALl

E For each individual n
m Compute mbPLS where n belongs
alternatively to each of the G clusters Decreasing monotonicity of the

[ ] ||v:eosri§j§|h33fn:2e G solutions, compute the criterion k(H k(,_,) oy
/ 2
T8, [I¥g — Tk TE (KM e |2 YoilYo—EkTg (a5 'Cg" )
m Assign n to the cluster wh|ch minimize the according to n
latter residual sums.
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3. Clusterwise multiblock PLS SegolotasicEloning

Clusterwise multiblock PLS: stochastic algorithm

Algorithm

Comments

El For each individual n

m Compute mbPLS where n belongs
alternatively to each of the G clusters

m For each of the G solutions, compute the
residual sums

k(H HY
T2, Vg~ ZeTa (& ci 12
m Assign nto the cluster wh|ch minimize the
latter residual sums.

Select the best initialization to get the
optimal individual clusters.

Decreasing monotonicity of the
criterion k(H k(H) (Hy
Yo i lIYg—XkTg "(ag 'Cg" )|
according to n

Get the G clusters.
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3. Clusterwise multiblock PLS SegolotasicEloning

Clusterwise multiblock PLS: stochastic algorithm

Algorithm

Comments

El For each individual n

m Compute mbPLS where n belongs
alternatively to each of the G clusters

m For each of the G solutions, compute the
residual sums

k(H HY
T2, Vg~ ZeTa (& ci 12
m Assign nto the cluster wh|ch minimize the
latter residual sums.

Select the best initialization to get the
optimal individual clusters.

Compute the G mbPLS within each
optimal cluster.

Decreasing monotonicity of the
criterion

TS [I¥g - ZiTg " (a5 el )2
according to n

Get the G clusters.
Get the G regression coefficients
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3. Clusterwise multiblock PLS

Clusterwise multiblock PLS: stochastic algorithm

aCliy

E For each individual n
m Compute mbPLS where n belongs
alternatively to each of the G clusters Decreasing monotonicity of the

m For each of the G solutions, compute the criterion

T Wy O el Lo Yo —LTg (a5 ™) 2
m Assign n to the cluster wh|ch minimize the according to n
latter residual sums.
Select the best initialization to get the Get the G clusters.
optimal individual clusters.
Compute the G mbPLS within each Get the G regression coefficients
optimal cluster. matrices.

Several initializations (random clusters of

the N individuals to G clusters) Avoid local optimum
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3. Clusterwise multiblock PLS

Problem: Assign a new individual to its optimal cluster and predict its dependent
variable values.




3. Clusterwise multiblock PLS

Clusterwise multiblock PLS: prediction of new individuals

Problem: Assign a new individual to its optimal cluster and predict its dependent
variable values.

Bayesian affectation to clusters

m Project the new individual into each of the G component spaces from the

cw.mbpls model (Xpew — Tg(ne)w)
m Process the Bayesian Mahalanobis distances between the new individual and
the G cluster gravity centres; transform them into probabilities,
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m Maximize the G probabilities (probag) — cluster membership of the new
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3. Clusterwise multiblock PLS

33. Prediction

Clusterwise multiblock PLS: prediction of new individuals

Problem: Assign a new individual to its optimal cluster and predict its dependent
variable values.

Bayesian affectation to clusters

m Project the new individual into each of the G component spaces from the

cw.mbpls model (Xpew — Tgfﬂw),
m Process the Bayesian Mahalanobis distances between the new individual and
the G cluster gravity centres; transform them into probabilities,

m Maximize the G probabilities (probag) — cluster membership of the new
individual.

Averaging prediction

L ?new = 25:1 probag x [Zk Tg,new(agcéy)] ases (3
m This prediction takes into account the predictions to the G clusters. -
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Pr n
34. Parameter selection

Clusterwise multiblock PLS: parameter selection (10-fold cross-validation)

m Parameter selection: minimize the RMSEg 4 processed for several model
dimensions H and several cluster numbers G — get Hopr and Gopt,
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3. Clusterwise multiblock PLS

n
34. Parameter selection

Clusterwise multiblock PLS: parameter selection (10-fold cross-validation)

m Parameter selection: minimize the RMSEg 4 processed for several model
dimensions H and several cluster numbers G — get Hopr and Gopt,

Algorithm: 10-fold cross-validation

m Split the data into ten folds,

m Apply clusterwise multiblock PLS on the train data (9/10 folds),

m Get the assignation to clusters and the predictions of the test data (1/10 fold),
m Compare the observed and the predicted dependent values — RMSE.
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31. Simulation study

3. Application

Simulation: multiblock data
Several Y variables, limited number of observations compared to the number of explanatory variables, multiblock case

Simulated data features

m G=2 clusters with the same size,

i Individual map (N observations) volume, orientation and shape,
g ] m Limited number of N=32 individuals
g Bl compared to P=20 explanatory
* 1] R variables X (max. of 16 individuals

P P e within each cluster),

Dim 1 (62.90%)

m X variables organized in K=2 blocks
m X' — X' are correlated (cor=0.8)

Variable map (cluster 2)

_E s s and not correlated with X" — X20
LR s 2] y (cor=0.1)
Ty P e m X" — X?0 are correlated (cor=0.8)
°. T and not correlated with X' — X"°
B I BN (cor=0.1)
Dim 1 (49.45%) Dim 1 (56.52%)

m Q=2 dependent variables Y, positively
linked with X for the cluster 1 and ses(}
negatively for the cluster 2.
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31. Simulation study

3. Application

Simulation: clusterwise multiblock PLS performance

Several Y variables, limited number of observations compared to the number of explanatory variables, multiblock case

ss-validation)

10-fold RMSE

Number of components

— Optimal number of components selected: 2

 Cluster 1 (model with 2 components) [l Cluster 2 (model with 2 componerts) i
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31. Simulation study

3. Application

Simulation: clusterwise multiblock PLS performance
Several Y variables, limited number of observations compared to the number of explanatory variables, multiblock case

Selection of the optimal number of components (10-fold cross-validation)

— Optimal number of components selected: 2

Cluster 1 (model with 2 components) Cluster 2 (model with 2 components)
Expected regression coefficients: 0.1 (for Expected regression coefficients: -0.1 (for
all explanatory and dependent variables) all explanatory and dependent variables)

Y.1-Cluster 1 Y.2 - Cluster 1 Y.1- Cluster 2 Y.2 - Cluster 2

012
P
012
P

-010 -005 0.00
-0.10 -0.05 0.00

Explanatory variables Explanatory variables Explanatory variables Explanatory variables
100% of corresponding results (10 random 100% of corresponding results (10 random -y
initializations) initializations) >



31. Simulation study
32. Real example

3. Application

Indoor air quality data: multiblock data & aims

Data features [Kirchner et al., 2

m Y: 2 pollutants

1
R m X: 14 potential risk factors of pollution
z ML 57 2 3 organized into 3 blocks: household
3, 1: u DI} A , characteristics (5 var.), dwelling
— ouseno! 'Wel lng L 1 h b[ S . . .
2 lharacteristies | structure “(‘;%a;‘)‘ s structure (4 var.), living habits (5 var.)
2 Gvac) | ML m Individuals: 199 main residences

N,

. m Pre-processing: Variables are
centred and scaled; block are
weighted to have the same weight.



31. Simulation study
32. Real example

3. Application

Indoor air quality data: multiblock data & aims

Data features [Kirchner et al., 2

m Y: 2 pollutants

1
R m X: 14 potential risk factors of pollution
z ML 57 2 3 organized into 3 blocks: household
o u 1: » DI} N » characteristics (5 var.), dwelling
= ouseho! 'Wel lng L 1 h b'[. S . . .
2 lharacteristies | structure W (I;I%af)l s structure (4 var.), living habits (5 var.)
2 Gvac) | ML m Individuals: 199 main residences

N,

. m Pre-processing: Variables are
centred and scaled; block are
weighted to have the same weight.

m Clustering: Get the optimal clustering of residences ...,

m Regression: ...and compute the multiblock regression coefficients within each res (3
residence cluster to improve the pollutant prediction. =
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31. Simulation study
32. Real example

3. Application

Indoor air quality data: comparison to the global model & parameter selection

Min. value
Ten-fold RMSE

(Cluly 11035 11359 @ 1,0815 @ 12113

2dim 1,2261 1,2099 1,2130 1,1940

3dim

4dim

Telu 2clu 3clu 4clu

1ses ;)
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31. Simulation study
32. Real example

3. Application

Indoor air quality data: comparison to the global model & parameter selection

Min. value
Ten-fold RMSE

(Cluly 11035 11359 @ 1,0815 @ 12113

2dim 1,2261 1,2099 1,2130 1,1940

3dim

4dim

Telu 2clu 3clu 4clu

Interpretation

m Comparison to the global model: (small) RMSE improvement in comparison with

“no cluster”
m Selection of the optimal number of clusters: 3 (Ng = [90,58,51])
m Selection of the optimal number of model dimensions: 1 ises
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Simulation
32. Real example

3. Application

Indoor air quality data: cluster regression coefficients
Dependent variable: acroleine, significant regression coefficients by means of bootstrap simulations

Cluster 1 (N=90) Cluster 2 (N=58) Cluster 3 (N=51)

)

3 x

3 _ 2 [

3 [ z

Z TRPSEL z TRPSCL

g TRsze1 g Rszel

z 3z TRSSel

A H]

£ | e -

] £

5 1=

- \ | Formaldehyde Eortkele - Formaldeliyde
Z Seraeine = Z o Aerotene
S . No_ensen 2

£ Pollutants (Y) H Pollutants (Y)
g b Zoat o 10 2 |7 wmasms a0 )

g Nb_Enfants_sup_10 /

z |

Z /,7 j

Si
e

VermisOngleDissoly 1005
NoPieceAvecProdutsChim N1 42

[E——
NoPisceAvacProdut:Chim NOI42

NoPieceAvecProduisChim NQU2
NettoySolBalaiSerp QUE2D
NettoyAvireQueSol QMESD

CuissonparGilade CUISD

NettoySolBalaiSerp QMEZD
NettoyAutzeQueSol QMESH
CuissonPasGrilade.CU,

NettoySolRalaiserp QMEZD
NettoyAureQuesal QMESS
CuissonParGillade CUIS

Habits (X,)

u 1ses :}

19/23



32. Real example

3. Application

Indoor air quality data: cluster regression coefficients
Dependent variable: acroleine, significant regression coefficients by means of bootstrap simulations

Cluster 1 (N=90) Cluster 2 (N=58) Cluster 3 (N=51)

)

NiACe!
TRPSEL
RS20
RSl

TRssel
\ Formuldehyde

——  Acroleine

—
Pollutants (Y)

Revenss —

No_Enfanis_inf_10

Structure (X;) Characteristics (X,)

Structure (X;) Characteristics (X,)
Structure (X,) Characteristics (X,

NopisceAvecProdut:Chim NQ12
NettoySolBalaiSerp QUE2D
NettoyAvireQueSol QMESD

Habits (X;)

Habits (X,)

Habits (X,)

CuissonParGiilade CULSL

Interpretation

m Cluster 1: significantly linked to the number and the age of children,

m Cluster 2: significantly linked to housing age, rate of laminate ground, number of
solvent use and ground cleaning,

m Cluster 3: significantly linked to housing age, number of persons and of more  ses (3
than 10y-children and number of barbecues.
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32. Real example

3. Application

Indoor air quality data: cluster block importance
Significant block importance by means of bootstrap simulations

Cluster 1 (N=90) Cluster 2 (N=58) Cluster 3 (N=51)
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32. Real example

3. Application

Indoor air quality data: cluster block importance
Significant block importance by means of bootstrap simulations

Cluster 1 (N=90) Cluster 2 (N=58) Cluster 3 (N=51)

4595

Pollutants (V) Pollutants (Y)

Structure (X;) Characteristics (X,)
Strueture (X,) Characteristics (X,)

Structure (X;) Characteristics

3

Habits (X;)
Habits (X.
Habits (X;)

Interpretation

m Household characteristics: average effect for all clusters,
m Dwelling structure: significantly less important for cluster 2,
m Living habits: significantly more important for cluster 2. nses 3
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4. Conclusion & perspectives

Conclusion & perspectives

Conclusion

m Clusterwise multiblock PLS handles the specificity supervised multiblock data
with an unknown structure on individuals
m Aim: improve the prediction,
® Meaningful criterion to minimize,
m Parameters (number of dimensions and clusters) obtained through cross-validation,
m Prediction of new individuals (clusters, predicted Y values).

m Useful tools to deal with real data especially in biology (e.g., different risk factors
of a disease according to sub-populations).
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4. Conclusion & perspectives

Conclusion & perspectives

Conclusion

m Clusterwise multiblock PLS handles the specificity supervised multiblock data
with an unknown structure on individuals
m Aim: improve the prediction,
® Meaningful criterion to minimize,
m Parameters (number of dimensions and clusters) obtained through cross-validation,
m Prediction of new individuals (clusters, predicted Y values).

m Useful tools to deal with real data especially in biology (e.g., different risk factors
of a disease according to sub-populations).

Perspectives

m Any other supervised multiblock methods can be included in the algorithm,

m Next step: allow specific clusters (and dimensions) for each block
(Y7X1,...,XK),
m Programs will be transformed into a R package. nses 3
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