Clusterwise multiblock PLS

N'Dèye Niang⁽¹⁾, Stéphanie Bougeard⁽²⁾, Gilbert Saporta⁽¹⁾ & Hervé Abdi⁽³⁾

Correspondence Analysis and Related Methods, 20-23 September, Naples (Italy)

1. Context

2. Background 3. Clusterwise multiblock PLS 3. Application 4. Conclusion & perspectives

Table of contents

1 Context

2 Background

3 Clusterwise multiblock PLS

- Aims & criterion
- Stochastic algorithm
- Prediction
- Parameter selection

4 Application

- Simulation study
- Results on a real example

5 Conclusion & perspectives

Context of clusterwise regression

FIGURE 2. Utility functions and price.

From DeSarbo et al. (1989), Psychometrika

- "For one group of consumers, higher utility corresponds to lower prices ...
- ... while the opposite is true for the other group."

Extension of clusterwise regression to clusterwise multiblock regression

Clusterwise multiblock data features

- Large number of explanatory variables organized in meaningful blocks
 [X¹,...,X^K] (known block structure),
- Several variables Y to explain and predict,
- Unknown cluster structure of the N individuals (in G clusters).

- Clustering: Get the optimal clustering of individuals (cluster number defined in advance) ...,
- Multiblock regression: ... and compute the cluster multiblock regression coefficients within each cluster in order to improve the Y explanation and prediction.

Extension of clusterwise regression to clusterwise multiblock regression

Example of individual clustering in G=2 clusters

Clusterwise multiblock data features

- Large number of explanatory variables organized in meaningful blocks
 [X¹,...,X^K] (known block structure),
- Several variables Y to explain and predict,
- Unknown cluster structure of the N individuals (in G clusters).

- **Clustering:** Get the optimal clustering of individuals (cluster number defined in advance) . . . ,
- Multiblock regression: ... and compute the cluster multiblock regression coefficients within each cluster in order to improve the Y explanation and prediction.

Extension of clusterwise regression to clusterwise multiblock regression

Clusterwise multiblock data features

- Large number of explanatory variables organized in meaningful blocks
 [X¹,...,X^K] (known block structure),
- Several variables Y to explain and predict,
- Unknown cluster structure of the N individuals (in G clusters).

- Clustering: Get the optimal clustering of individuals (cluster number defined in advance) ...,
- Multiblock regression: ... and compute the cluster multiblock regression coefficients within each cluster in order to improve the Y explanation and prediction.

Table of contents

1 Context

2 Background

Clusterwise multiblock PLS

- Aims & criterion
- Stochastic algorithm
- Prediction
- Parameter selection

4 Application

- Simulation study
- Results on a real example

5 Conclusion & perspectives

Available clusterwise regression methods: finite mixture models

Mixture model field (clusterwise methods)

- Earliest works: DeSarbo & Cron, 1988; Hennig, 2000
- Minimize ∑_{g=1}^G ||Y_g X_gB_g||² by means of an EM algorithm,
 Y = [y₁,..., y_Q] are mixtures of conditional normal densities of *G* underlying clusters.

Advantages and limits

- Fast algorithm, available programs (commercial softwares, Flexmix R package)
- Necessary conditions
 - Multivariate normal distributions of dependent variables Y,
 - N_g (nb of individuals within the gth cluster) > P (nb of explanatory variables)... but recent extension for high-dimensional data (Lasso estimator, PhD of E. Devijver),
- Oriented towards modelling and not towards prediction.

Available clusterwise regression methods: finite mixture models

Mixture model field (clusterwise methods)

- Earliest works: DeSarbo & Cron, 1988; Hennig, 2000
- Minimize ∑_{g=1}^G ||Y_g X_gB_g||² by means of an EM algorithm,
 Y = [y₁,..., y_Q] are mixtures of conditional normal densities of *G* underlying clusters.

Advantages and limits

- Fast algorithm, available programs (commercial softwares, Flexmix R package)
- Necessary conditions
 - Multivariate normal distributions of dependent variables Y,
 - N_g (nb of individuals within the gth cluster) > P (nb of explanatory variables) ... but recent extension for high-dimensional data (Lasso estimator, PhD of E. Devijver),
- Oriented towards modelling and not towards prediction.

1565

Available clusterwise regression methods: geometrical approach

Distance-based model field (typological methods)

- Earliest works: Diday, 1974 (typological factorial analysis); Charles, 1977; Späth, 1979
- Minimize $\sum_{g=1}^{G} \|\mathbf{Y}_g \mathbf{X}_g \mathbf{B}_g\|^2$ by means of a K-means algorithm,
- Interesting extensions to high-dimensional data: typological PCR (Charles, 1977), typological PLS (Vinzi, 2005; Preda, 2005).

Advantages and limits

- No available programs,
- Problem of non-monotonicity decrease of the criterion (batch versus stochastic algorithm),
- Oriented towards both modelling and prediction.

Available clusterwise regression methods: geometrical approach

Distance-based model field (typological methods)

- Earliest works: Diday, 1974 (typological factorial analysis); Charles, 1977; Späth, 1979
- Minimize $\sum_{g=1}^{G} \|\mathbf{Y}_g \mathbf{X}_g \mathbf{B}_g\|^2$ by means of a K-means algorithm,

Interesting extensions to high-dimensional data: typological PCR (Charles, 1977), typological PLS (Vinzi, 2005; Preda, 2005).

Advantages and limits

- No available programs,
- Problem of non-monotonicity decrease of the criterion (batch versus stochastic algorithm),
- Oriented towards both modelling and prediction.

Available clusterwise regression methods: geometrical approach

Distance-based model field (typological methods)

- Earliest works: Diday, 1974 (typological factorial analysis); Charles, 1977; Späth, 1979
- Minimize $\sum_{g=1}^{G} \|\mathbf{Y}_{g} \mathbf{X}_{g}\mathbf{B}_{g}\|^{2}$ by means of a K-means algorithm,

Interesting extensions to high-dimensional data: typological PCR (Charles, 1977), typological PLS (Vinzi, 2005; Preda, 2005).

Advantages and limits

- No available programs,
- Problem of non-monotonicity decrease of the criterion (batch versus stochastic algorithm),
- Oriented towards both modelling and prediction.

Proposition: Extend this approach to multiblock regression with high-dimensional data (+ improve monotonicity, prediction and program availability).

Aims & criterion
 Stochastic algorith

33. Prediction

34. Parameter selection

Table of contents

1 Context

2 Background

3 Clusterwise multiblock PLS

- Aims & criterion
- Stochastic algorithm
- Prediction
- Parameter selection

4 Application

- Simulation study
- Results on a real example

5 Conclusion & perspectives

Aims & criterion
 Stochastic algorithm
 Prediction
 Parameter selection

Clusterwise multiblock PLS: aims

Context: clusterwise multiblock regression.

- **Clustering**: Get the optimal clustering of individuals (cluster number defined in advance) ...,
- 2 Multiblock regression: ... and compute the cluster multiblock regression coefficients within each cluster in order to improve the Y explanation and prediction.

Aims & criterion
 Stochastic algorithm
 Prediction
 Parameter selection

Clusterwise multiblock PLS: aims

Context: clusterwise multiblock regression.

- **Clustering**: Get the optimal clustering of individuals (cluster number defined in advance) ...,
- Multiblock regression: ... and compute the cluster multiblock regression coefficients within each cluster in order to improve the Y explanation and prediction.

Aims & criterion
 Stochastic algorithm
 Prediction
 Parameter selection

Clusterwise multiblock PLS: criterion

Get the optimal clusters on components which summarize **X** Min. the sum of the residuals $\sum_{g=1}^{G} \|\mathbf{Y}_g - \sum_k \mathbf{T}_g^{k(H)} (\mathbf{a}_g^{k(H)} \mathbf{C}_g^{(H)'})\|^2$ where: $\mathbf{T}_g^{k(H)}$ are the matrices of block components with *H* (given) dimensions obtained

from the
$$G$$
 mbPLS, such as $\mathsf{T}_g^{k(H)} = [t_g^{k(1)}| \ldots |t_g^{k(H)}]$

a $a_g^{k(H)}$ are the normalized covariances between components from \mathbf{X}_g^k and \mathbf{Y}_g **(C**₁^{(H)'},..., **C**_G^{(H)'}) are the regression coefficients of \mathbf{Y}_g on ($\sum_k a_g^{k(H)} \mathbf{T}_g^{k(H)}$)

Aims & criterion
 Stochastic algorithm
 Prediction
 Parameter selection

Clusterwise multiblock PLS: criterion

Get the optimal clusters on components which summarize X

Min. the sum of the residuals $\sum_{g=1}^{G} \|\mathbf{Y}_g - \sum_k \mathbf{T}_g^{k(H)} (a_g^{k(H)} \mathbf{C}_g^{(H)'})\|^2$ where:

T_g^{k(H)} are the matrices of block components with *H* (given) dimensions obtained from the *G* mbPLS, such as **T**_g^{k(H)} = $[t_g^{k(1)}| \dots |t_g^{k(H)}]$

a $a_g^{k(H)}$ are the normalized covariances between components from \mathbf{X}_g^k and \mathbf{Y}_g **c** $(\mathbf{C}_1^{(H)'}, \dots, \mathbf{C}_G^{(H)'})$ are the regression coefficients of \mathbf{Y}_g on $(\sum_k a_g^{k(H)} \mathbf{T}_g^{k(H)})$

Aims & criterion
 Stochastic algorithm
 Prediction
 Parameter selection

Clusterwise multiblock PLS: stochastic algorithm

Algorithm

For each individual n

- Compute mbPLS where n belongs alternatively to each of the G clusters
- For each of the G solutions, compute the residual sums
 - $\sum_{g=1}^{G} \|\mathbf{Y}_{g} \sum_{k} \mathbf{T}_{g}^{k(H)} (a_{g}^{k(H)} \mathbf{C}_{g}^{(H)'})\|^{2}$

 Assign n to the cluster which minimize the latter residual sums.

- 2 Select the best initialization to get the optimal individual clusters.
- 3 Compute the *G* mbPLS within each optimal cluster.
- 4 Several initializations (random clusters of the *N* individuals to *G* clusters)

Comments

1 Decreasing monotonicity of the criterion $\sum_{g=1}^{G} \|\mathbf{Y}_{g} - \sum_{k} \mathbf{T}_{g}^{k(H)} (a_{g}^{k(H)} \mathbf{C}_{g}^{(H)'})\|^{2}$ according to *n*

2 Get the G clusters.

- 3 Get the G regression coefficients matrices.
- 4 Avoid local optimum

Aims & criterion
 Stochastic algorithm
 Prediction
 Parameter selection

Clusterwise multiblock PLS: stochastic algorithm

Algorithm

For each individual n

- Compute mbPLS where n belongs alternatively to each of the G clusters
- For each of the G solutions, compute the residual sums

$$\sum_{g=1}^{G} \|\mathbf{Y}_{g} - \sum_{k} \mathbf{T}_{g}^{k(H)} (a_{g}^{k(H)} \mathbf{C}_{g}^{(H)'})\|^{2}$$

Assign n to the cluster which minimize the latter residual sums.

Select the best initialization to get the optimal individual clusters.

- 3 Compute the *G* mbPLS within each optimal cluster.
- Several initializations (random clusters of the *N* individuals to *G* clusters)

Comments

Decreasing monotonicity of the criterion $\sum_{g=1}^{G} \|\mathbf{Y}_g - \sum_k \mathbf{T}_g^{k(H)} (a_g^{k(H)} \mathbf{C}_g^{(H)'})\|^2$ according to *n*

2 Get the G clusters.

- 3 Get the G regression coefficients matrices.
- 4 Avoid local optimum

Aims & criterion
 Stochastic algorithm
 Prediction
 Parameter selection

Clusterwise multiblock PLS: stochastic algorithm

Algorithm

For each individual *n*

- Compute mbPLS where n belongs alternatively to each of the G clusters
- For each of the *G* solutions, compute the residual sums

$$\sum_{g=1}^{G} \|\mathbf{Y}_{g} - \sum_{k} \mathbf{T}_{g}^{k(H)}(a_{g}^{k(H)}\mathbf{C}_{g}^{(H)'})\|^{2}$$

- Assign n to the cluster which minimize the latter residual sums.
- Select the best initialization to get the optimal individual clusters.
- Compute the *G* mbPLS within each optimal cluster.
- Several initializations (random clusters of the *N* individuals to *G* clusters)

Comments

- $\begin{array}{l} \hline \quad \text{Decreasing monotonicity of the} \\ \text{criterion} \\ \sum_{g=1}^{G} \| \mathbf{Y}_g \sum_k \mathbf{T}_g^{k(H)} (\mathbf{a}_g^{k(H)} \mathbf{C}_g^{(H)'}) \|^2 \\ \text{according to } n \end{array}$
- 2 Get the G clusters.
- 3 Get the *G* regression coefficients matrices.
- 4 Avoid local optimum

Aims & criterion
 Stochastic algorithm
 Prediction
 Parameter selection

Clusterwise multiblock PLS: stochastic algorithm

Algorithm

For each individual *n*

- Compute mbPLS where n belongs alternatively to each of the G clusters
- For each of the *G* solutions, compute the residual sums

$$\sum_{g=1}^{G} \|\mathbf{Y}_{g} - \sum_{k} \mathbf{T}_{g}^{k(H)} (a_{g}^{k(H)} \mathbf{C}_{g}^{(H)'})\|^{2}$$

- Assign n to the cluster which minimize the latter residual sums.
- Select the best initialization to get the optimal individual clusters.
- Compute the *G* mbPLS within each optimal cluster.
- Several initializations (random clusters of the *N* individuals to *G* clusters)

Comments

- Decreasing monotonicity of the criterion $\sum_{g=1}^{G} \|\mathbf{Y}_g - \sum_k \mathbf{T}_g^{k(H)} (a_g^{k(H)} \mathbf{C}_g^{(H)'})\|^2$ according to *n*
- 2 Get the G clusters.
- Get the G regression coefficients matrices.
- 4 Avoid local optimum

Aims & criterion
 Stochastic algorithm
 Prediction
 Parameter selection

Clusterwise multiblock PLS: prediction of new individuals

Problem: Assign a new individual to its optimal cluster and predict its dependent variable values.

Bayesian affectation to clusters

- Project the new individual into each of the G component spaces from the cw.mbpls model (X_{new} → T^{k(H)}_{g,new}),
- Process the Bayesian Mahalanobis distances between the new individual and the G cluster gravity centres; transform them into probabilities,
- Maximize the G probabilities $(proba_g) \rightarrow cluster$ membership of the new individual.

Averaging prediction

$$\hat{\mathbf{Y}}_{new} = \sum_{g=1}^{G} proba_g \times [\sum_k \mathbf{T}_{g,new}^k (a_g^k \mathbf{C}_g')]$$

This prediction takes into account the predictions to the G clusters.

Aims & criterion
 Stochastic algorithm
 Prediction
 Parameter selection

Clusterwise multiblock PLS: prediction of new individuals

Problem: Assign a new individual to its optimal cluster and predict its dependent variable values.

Bayesian affectation to clusters

- Project the new individual into each of the *G* component spaces from the cw.mbpls model (X_{new} → T^{k(H)}_{g,new}),
- Process the Bayesian Mahalanobis distances between the new individual and the G cluster gravity centres; transform them into probabilities,

Aims & criterion
 Stochastic algorithm
 Prediction
 Parameter selection

Clusterwise multiblock PLS: prediction of new individuals

Problem: Assign a new individual to its optimal cluster and predict its dependent variable values.

Bayesian affectation to clusters

- Project the new individual into each of the *G* component spaces from the cw.mbpls model (X_{new} → T^{k(H)}_{g,new}),
- Process the Bayesian Mahalanobis distances between the new individual and the G cluster gravity centres; transform them into probabilities,
- Maximize the *G* probabilities $(proba_g) \rightarrow cluster$ membership of the new individual.

Averaging prediction

- $\hat{\mathbf{Y}}_{new} = \sum_{g=1}^{G} proba_g \times [\sum_k \mathbf{T}_{g,new}^k (a_g^k \mathbf{C}_g')]$
- This prediction takes into account the predictions to the G clusters.

Aims & criterion
 Stochastic algorithm
 Prediction
 Parameter selection

Clusterwise multiblock PLS: prediction of new individuals

Problem: Assign a new individual to its optimal cluster and predict its dependent variable values.

Bayesian affectation to clusters

- Project the new individual into each of the *G* component spaces from the cw.mbpls model (X_{new} → T^{k(H)}_{g,new}),
- Process the Bayesian Mahalanobis distances between the new individual and the G cluster gravity centres; transform them into probabilities,
- Maximize the G probabilities $(proba_g) \rightarrow cluster$ membership of the new individual.

Averaging prediction

$$\hat{\mathbf{Y}}_{new} = \sum_{g=1}^{G} proba_g \times [\sum_k \mathbf{T}_{g,new}^k (a_g^k \mathbf{C}_g')]$$

This prediction takes into account the predictions to the *G* clusters.

Aims & criterion
 Stochastic algorithm
 Prediction
 Parameter selection

Clusterwise multiblock PLS: parameter selection (10-fold cross-validation)

Aims

■ Parameter selection: minimize the RMSE_{G,H} processed for several model dimensions H and several cluster numbers G → get H_{opt} and G_{opt},

Algorithm: 10-fold cross-validation

- Split the data into ten folds,
- Apply clusterwise multiblock PLS on the train data (9/10 folds),
- Get the assignation to clusters and the predictions of the test data (1/10 fold),
- Compare the observed and the predicted dependent values \rightarrow RMSE.

Aims & criterion
 Stochastic algorithm
 Prediction
 Parameter selection

Clusterwise multiblock PLS: parameter selection (10-fold cross-validation)

Aims

■ Parameter selection: minimize the RMSE_{G,H} processed for several model dimensions H and several cluster numbers G → get H_{opt} and G_{opt},

Algorithm: 10-fold cross-validation

- Split the data into ten folds,
- Apply clusterwise multiblock PLS on the train data (9/10 folds),
- Get the assignation to clusters and the predictions of the test data (1/10 fold),
- Compare the observed and the predicted dependent values \rightarrow RMSE.

Simulation study
 Real example

Table of contents

1 Context

2 Background

3 Clusterwise multiblock PLS

- Aims & criterion
- Stochastic algorithm
- Prediction
- Parameter selection

4 Application

- Simulation study
- Results on a real example

5 Conclusion & perspectives

31. Simulation study 32. Real example

Simulation: multiblock data

Several Y variables, limited number of observations compared to the number of explanatory variables, multiblock case

Simulated data features

- G=2 clusters with the same size, volume, orientation and shape,
- Limited number of N=32 individuals compared to P=20 explanatory variables X (max. of 16 individuals within each cluster),
- X variables organized in K=2 blocks
 - $X^1 X^{10}$ are correlated (cor=0.8) and not correlated with $X^{11} - X^{20}$ (cor=0.1)
 - $X^{11} X^{20}$ are correlated (cor=0.8) and not correlated with $X^1 - X^{10}$ (cor=0.1)
- Q=2 dependent variables Y, positively linked with X for the cluster 1 and negatively for the cluster 2.

31. Simulation study 32. Real example

Simulation: clusterwise multiblock PLS performance

Several Y variables, limited number of observations compared to the number of explanatory variables, multiblock case

Selection of the optimal number of components (10-fold cross-validation)

 \rightarrow Optimal number of components selected: 2

Cluster 1 (model with 2 components)

Cluster 2 (model with 2 components)

31. Simulation study 32. Real example

Simulation: clusterwise multiblock PLS performance

Several Y variables, limited number of observations compared to the number of explanatory variables, multiblock case

Selection of the optimal number of components (10-fold cross-validation)

 \rightarrow Optimal number of components selected: 2

Cluster 1 (model with 2 components)

Expected regression coefficients: 0.1 (for all explanatory and dependent variables)

100% of corresponding results (10 random initializations)

Cluster 2 (model with 2 components)

Expected regression coefficients: -0.1 (for all explanatory and dependent variables)

100% of corresponding results (10 random initializations)

Simulation study
 Real example

Indoor air quality data: multiblock data & aims

Data features [Kirchner et al., 2007]

- Y: 2 pollutants
- X: 14 potential risk factors of pollution organized into 3 blocks: household characteristics (5 var.), dwelling structure (4 var.), living habits (5 var.)
- Individuals: 199 main residences
- Pre-processing: Variables are centred and scaled; block are weighted to have the same weight.

- Clustering: Get the optimal clustering of residences ...,
- **Regression:** ... and compute the multiblock regression coefficients within each residence cluster to improve the pollutant prediction.

Simulation study
 Real example

Indoor air quality data: multiblock data & aims

Data features [Kirchner et al., 2007]

- Y: 2 pollutants
- X: 14 potential risk factors of pollution organized into 3 blocks: household characteristics (5 var.), dwelling structure (4 var.), living habits (5 var.)
- Individuals: 199 main residences
- Pre-processing: Variables are centred and scaled; block are weighted to have the same weight.

- Clustering: Get the optimal clustering of residences ...,
- Regression: ... and compute the multiblock regression coefficients within each residence cluster to improve the pollutant prediction.

1. Context 2. Background 3. Clusterwise multiblock PLS 3. Application

Simulation study
 Real example

Indoor air quality data: comparison to the global model & parameter selection

- Comparison to the global model: (small) RMSE improvement in comparison with "no cluster"
- Selection of the optimal number of clusters: 3 ($N_g = [90, 58, 51]$)
- Selection of the optimal number of model dimensions: 1

1. Context 2. Background 3. Clusterwise multiblock PLS 3. Application

31. Simulation study 32. Real example

Indoor air quality data: comparison to the global model & parameter selection

- Comparison to the global model: (small) RMSE improvement in comparison with "no cluster"
- Selection of the optimal number of clusters: 3 ($N_g = [90, 58, 51]$)
- Selection of the optimal number of model dimensions: 1

Simulation study
 Real example

Indoor air quality data: cluster regression coefficients

Dependent variable: acroleine, significant regression coefficients by means of bootstrap simulations

- Cluster 1: significantly linked to the number and the age of children,
- Cluster 2: significantly linked to housing age, rate of laminate ground, number of solvent use and ground cleaning,
- Cluster 3: significantly linked to housing age, number of persons and of more than 10y-children and number of barbecues.

Simulation study
 Real example

Indoor air quality data: cluster regression coefficients

Dependent variable: acroleine, significant regression coefficients by means of bootstrap simulations

- **Cluster 1**: significantly linked to the number and the age of children,
- Cluster 2: significantly linked to housing age, rate of laminate ground, number of solvent use and ground cleaning,
- Cluster 3: significantly linked to housing age, number of persons and of more than 10y-children and number of barbecues.

31. Simulation study 32. Real example

Indoor air quality data: cluster block importance

Significant block importance by means of bootstrap simulations

- Household characteristics: average effect for all clusters,
- **Dwelling structure**: significantly less important for cluster 2,
- Living habits: significantly more important for cluster 2.

31. Simulation study 32. Real example

Indoor air quality data: cluster block importance

Significant block importance by means of bootstrap simulations

- Household characteristics: average effect for all clusters,
- Dwelling structure: significantly less important for cluster 2,
- Living habits: significantly more important for cluster 2.

Table of contents

1 Context

2 Background

3 Clusterwise multiblock PLS

- Aims & criterion
- Stochastic algorithm
- Prediction
- Parameter selection

4 Application

- Simulation study
- Results on a real example

5 Conclusion & perspectives

Conclusion & perspectives

Conclusion

- Clusterwise multiblock PLS handles the specificity supervised multiblock data with an unknown structure on individuals
 - Aim: improve the prediction,
 - Meaningful criterion to minimize,
 - Parameters (number of dimensions and clusters) obtained through cross-validation,
 - Prediction of new individuals (clusters, predicted Y values).
- Useful tools to deal with real data especially in biology (*e.g.*, different risk factors of a disease according to sub-populations).

Perspectives

- Any other supervised multiblock methods can be included in the algorithm,
- Next step: allow specific clusters (and dimensions) for each block (Y,X¹,...,X^K),
- Programs will be transformed into a R package.

Conclusion & perspectives

Conclusion

- Clusterwise multiblock PLS handles the specificity supervised multiblock data with an unknown structure on individuals
 - Aim: improve the prediction,
 - Meaningful criterion to minimize,
 - Parameters (number of dimensions and clusters) obtained through cross-validation,
 - Prediction of new individuals (clusters, predicted Y values).
- Useful tools to deal with real data especially in biology (*e.g.*, different risk factors of a disease according to sub-populations).

Perspectives

- Any other supervised multiblock methods can be included in the algorithm,
- Next step: allow specific clusters (and dimensions) for each block (Y,X¹,...,X^K),
- Programs will be transformed into a R package.

Clusterwise multiblock PLS

N'Dèye Niang⁽¹⁾, Stéphanie Bougeard⁽²⁾, Gilbert Saporta⁽¹⁾ & Hervé Abdi⁽³⁾

Correspondence Analysis and Related Methods, 20-23 September, Naples (Italy)

