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Context of clusterwise regression

From DeSarbo et al. (1989), Psychometrika

“For one group of consumers, higher utility
corresponds to lower prices . . .

. . . while the opposite is true for the other
group.”
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Extension of clusterwise regression to clusterwise multiblock regression

Clusterwise multiblock data features

Large number of explanatory variables
organized in meaningful blocks
[X1, . . . ,XK ] (known block structure),

Several variables Y to explain and predict,

Unknown cluster structure of the N
individuals (in G clusters).

Aims

Clustering: Get the optimal clustering of individuals (cluster number defined in
advance) . . . ,

Multiblock regression: . . . and compute the cluster multiblock regression
coefficients within each cluster in order to improve the Y explanation and
prediction.
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Available clusterwise regression methods: finite mixture models

Mixture model field (clusterwise methods)

Earliest works: DeSarbo & Cron, 1988; Hennig, 2000

Minimize ∑
G
g=1 ‖Yg−XgBg‖2 by means of an EM algorithm,

Y = [y1, . . . ,yQ] are mixtures of conditional normal densities of G underlying
clusters.

Advantages and limits

Fast algorithm, available programs (commercial softwares, Flexmix R package)
Necessary conditions

Multivariate normal distributions of dependent variables Y,
Ng (nb of individuals within the gth cluster) > P (nb of explanatory variables) . . . but
recent extension for high-dimensional data (Lasso estimator, PhD of E. Devijver),

Oriented towards modelling and not towards prediction.
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Available clusterwise regression methods: geometrical approach

Distance-based model field (typological methods)

Earliest works: Diday, 1974 (typological factorial analysis); Charles, 1977; Späth,
1979

Minimize ∑
G
g=1 ‖Yg−XgBg‖2 by means of a K-means algorithm,

Interesting extensions to high-dimensional data: typological PCR (Charles,
1977), typological PLS (Vinzi, 2005; Preda, 2005).

Advantages and limits

No available programs,

Problem of non-monotonicity decrease of the criterion (batch versus stochastic
algorithm),

Oriented towards both modelling and prediction.
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Distance-based model field (typological methods)

Earliest works: Diday, 1974 (typological factorial analysis); Charles, 1977; Späth,
1979

Minimize ∑
G
g=1 ‖Yg−XgBg‖2 by means of a K-means algorithm,

Interesting extensions to high-dimensional data: typological PCR (Charles,
1977), typological PLS (Vinzi, 2005; Preda, 2005).

Advantages and limits

No available programs,

Problem of non-monotonicity decrease of the criterion (batch versus stochastic
algorithm),

Oriented towards both modelling and prediction.

Proposition: Extend this approach to multiblock regression with high-dimensional data
(+ improve monotonicity, prediction and program availability).
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Clusterwise multiblock PLS: aims

Context: clusterwise multiblock regression.

Aims

1 Clustering: Get the optimal clustering of individuals (cluster number defined in
advance) . . . ,

2 Multiblock regression: . . . and compute the cluster multiblock regression
coefficients within each cluster in order to improve the Y explanation and
prediction.
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Clusterwise multiblock PLS: criterion

Get the optimal clusters on components which summarize X

Min. the sum of the residuals ∑
G
g=1 ‖Yg−∑k Tk(H)

g (ak(H)
g C(H)′

g )‖2 where:

Tk(H)
g are the matrices of block components with H (given) dimensions obtained

from the G mbPLS, such as Tk(H)
g = [tk(1)

g | . . . |tk(H)
g ]

ak(H)
g are the normalized covariances between components from Xk

g and Yg

(C(H)′

1 , . . . ,C(H)′

G ) are the regression coefficients of Yg on (∑k ak(H)
g Tk(H)

g )
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Clusterwise multiblock PLS: stochastic algorithm

Algorithm

1 For each individual n
Compute mbPLS where n belongs
alternatively to each of the G clusters
For each of the G solutions, compute the
residual sums
∑

G
g=1 ‖Yg −∑k Tk(H)

g (ak(H)
g C(H)′

g )‖2

Assign n to the cluster which minimize the
latter residual sums.

2 Select the best initialization to get the
optimal individual clusters.

3 Compute the G mbPLS within each
optimal cluster.

4 Several initializations (random clusters of
the N individuals to G clusters)

Comments

1 Decreasing monotonicity of the
criterion
∑

G
g=1 ‖Yg−∑k Tk(H)

g (ak(H)
g C(H)′

g )‖2

according to n

2 Get the G clusters.

3 Get the G regression coefficients
matrices.

4 Avoid local optimum
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Clusterwise multiblock PLS: prediction of new individuals

Problem: Assign a new individual to its optimal cluster and predict its dependent
variable values.

Bayesian affectation to clusters

Project the new individual into each of the G component spaces from the

cw.mbpls model (Xnew → Tk(H)
g,new ),

Process the Bayesian Mahalanobis distances between the new individual and
the G cluster gravity centres; transform them into probabilities,

Maximize the G probabilities (probag )→ cluster membership of the new
individual.

Averaging prediction

Ŷnew = ∑
G
g=1 probag× [∑k Tk

g,new (a
k
gC′g)]

This prediction takes into account the predictions to the G clusters.
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Clusterwise multiblock PLS: parameter selection (10-fold cross-validation)

Aims

Parameter selection: minimize the RMSEG,H processed for several model
dimensions H and several cluster numbers G→ get Hopt and Gopt ,

Algorithm: 10-fold cross-validation

Split the data into ten folds,

Apply clusterwise multiblock PLS on the train data (9/10 folds),

Get the assignation to clusters and the predictions of the test data (1/10 fold),

Compare the observed and the predicted dependent values→ RMSE.
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31. Simulation study
32. Real example

Simulation: multiblock data
Several Y variables, limited number of observations compared to the number of explanatory variables, multiblock case
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Simulated data features

G=2 clusters with the same size,
volume, orientation and shape,

Limited number of N=32 individuals
compared to P=20 explanatory
variables X (max. of 16 individuals
within each cluster),
X variables organized in K=2 blocks

X 1−X 10 are correlated (cor=0.8)
and not correlated with X 11−X 20

(cor=0.1)
X 11−X 20 are correlated (cor=0.8)
and not correlated with X 1−X 10

(cor=0.1)

Q=2 dependent variables Y, positively
linked with X for the cluster 1 and
negatively for the cluster 2.
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Simulation: clusterwise multiblock PLS performance
Several Y variables, limited number of observations compared to the number of explanatory variables, multiblock case

Selection of the optimal number of components (10-fold cross-validation)
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→ Optimal number of components selected: 2

Cluster 1 (model with 2 components) Cluster 2 (model with 2 components)
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Simulation: clusterwise multiblock PLS performance
Several Y variables, limited number of observations compared to the number of explanatory variables, multiblock case

Selection of the optimal number of components (10-fold cross-validation)

→ Optimal number of components selected: 2

Cluster 1 (model with 2 components)

Expected regression coefficients: 0.1 (for
all explanatory and dependent variables)
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Cluster 2 (model with 2 components)

Expected regression coefficients: -0.1 (for
all explanatory and dependent variables)
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Indoor air quality data: multiblock data & aims

Data features [Kirchner et al., 2007]

Y: 2 pollutants

X: 14 potential risk factors of pollution
organized into 3 blocks: household
characteristics (5 var.), dwelling
structure (4 var.), living habits (5 var.)

Individuals: 199 main residences

Pre-processing: Variables are
centred and scaled; block are
weighted to have the same weight.

Aims

Clustering: Get the optimal clustering of residences . . . ,

Regression: . . . and compute the multiblock regression coefficients within each
residence cluster to improve the pollutant prediction.
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Indoor air quality data: comparison to the global model & parameter selection

Interpretation

Comparison to the global model: (small) RMSE improvement in comparison with
“no cluster”

Selection of the optimal number of clusters: 3 (Ng = [90,58,51])

Selection of the optimal number of model dimensions: 1
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Indoor air quality data: cluster regression coefficients
Dependent variable: acroleine, significant regression coefficients by means of bootstrap simulations

Interpretation

Cluster 1: significantly linked to the number and the age of children,

Cluster 2: significantly linked to housing age, rate of laminate ground, number of
solvent use and ground cleaning,

Cluster 3: significantly linked to housing age, number of persons and of more
than 10y-children and number of barbecues.
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than 10y-children and number of barbecues.
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31. Simulation study
32. Real example

Indoor air quality data: cluster block importance
Significant block importance by means of bootstrap simulations

Interpretation

Household characteristics: average effect for all clusters,

Dwelling structure: significantly less important for cluster 2,

Living habits: significantly more important for cluster 2.
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Conclusion

Clusterwise multiblock PLS handles the specificity supervised multiblock data
with an unknown structure on individuals

Aim: improve the prediction,
Meaningful criterion to minimize,
Parameters (number of dimensions and clusters) obtained through cross-validation,
Prediction of new individuals (clusters, predicted Y values).

Useful tools to deal with real data especially in biology (e.g., different risk factors
of a disease according to sub-populations).

Perspectives

Any other supervised multiblock methods can be included in the algorithm,

Next step: allow specific clusters (and dimensions) for each block
(Y,X1, . . . ,XK ),

Programs will be transformed into a R package.
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