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Abstract. Clinical research is often interested in longitudinal follow-up over several
visits. All scheduled visits are not carried out and it is not unusual to have a different
number of visits by patient. The Generalized Estimating Equations can handle con-
tinuous or discrete autocorrelated response. The method allows a different number
of visits by patients. The GEE are robust to missing completely at random data, but
when the last visits are fewer, the estimator may be biased. We propose a simula-
tion study to investigate the impact of missing visits on the estimators of the model
parameters under different missing data patterns. Different types of responses are
studied with an exchangeable or autoregressive of order one structure. The number
of subjects affected by the missing data and the number of visits removed, vary in
order to assess the impact of the missing data. Our simulations show that the esti-
mators obtained by GEE are resistant to a certain rate of missing data. The results
are homogeneous regardless to the imposed missing data structure.
Keywords: Longitudinal data, repeated correlated data, correlation, missing data,
simulations, Generalized Estimating Equations.

1 Introduction

Clinical follow-up provides information on changing pattern of diseases. This
allows for biological measurements and clinical criterion observation over sev-
eral visits. Therefore, it is possible to study the link between several potential
biological covariates and a clinical response on repeated measurements.

However, observations from the same patient cannot be handled as inde-
pendent and the correlation among visits must be taken into account. Two of
the most common methods which are able to deal with longitudinal data are
the Generalized Linear Mixed Model, GLMM as describe by McCulloch [6] and
the Generalized Estimating Equations, GEE from Liang and Zeger [5].

GLMM are a subject specific method which introduces a random effect per
patient to take into account the longitudinal aspect of observations. Unfortu-
nately, the integration over these random effects distribution may be numer-
ically untractable. GEE are a population specific method which consider the

16thASMDA Conference Proceedings, 30 June – 4 July 2015, Piraeus, Greece

c© 2015 ISAST

269



intra-subject correlations by imposing a correlation structure to the response.
Advantage of the GEE method is that only correct specification of marginal
means is needed for having a consistent and asymptotically normal parameter
estimator. We will use this method in this paper. For a discussion on GEE,
GLMM and relation between marginal and mixed effect models, reader can
refer to the work of Park [9], Heagerty and Zeger[3] and Nelder and Lee[7].

Studies’design provides for a number of visits per patient which is regret-
tably not always complied. In the case of intermittent missing data this results
in blank lines in observation matrix. No classical parametric imputation shall
be performed since no information is collected at this date. Moreover the in-
terpolation of these values is difficult because there are often few widely spaced
visits which means the prediction is blurred.

Missing data, as defined by Rubin [15], are divided into three categories :

• Missing Completely at Random, like a visit randomly deleted by loss record
• Missing At Random, as a missed visit linked to the length of the study
• Missing Not At Random, such as non presence of a patient related to the

latent seriousness of his condition

The GEE estimator is robust to the first case but biased in the other two
as explained by Liang and Zeger[5] and Robins et al.[13]. In case of dropouts
Robins et al.[13] introduced an inverse probability of censoring weighted GEE
which have been studied by Preisser et al.[10]. They proposed a modified
version of GEE in which observations or person-visits have weights inversely
proportional to their probability of being observed, which is unfortunately not
suitable here.

Within this context questions may arise :

• How much the GEE estimator is robust to missing visits?
• Which bias should we consider in case of MAR data?

We provide a simulation study to measure the impact of different missing
data patterns on GEE estimators. Second part of this paper gives the GEE
approach outline. Simulations plan and their results are shown in section 3 and
4. The paper ends by a conclusion in section 5.

2 Generalized Estimating Equation

When the population-average effect is of interest, the marginal model is com-
monly used to analyzing longitudinal data. Liang and Zeger[5] proposed the
Generalized Estimating Equations to estimate the regression parameter, by
only specifying the marginal distribution of the outcome variables in the marginal
model. Both continuous and binary responses can be modeled.
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Let yit, of expectation µit, be the response of interest for the subject i at
the visit t for i ∈ {1, ..,K} and t ∈ {1, .., ni}. Each subject has a set of p
measured covariates at each time t denoted xit. For a known function V (.) and
a given mean-link function g(.) we have :

Var(yit) = φV (µit) (1)

g(µit) = xtitβ (2)

β is the regression parameter to be estimated, φ is the dispersion parameter.
We will note Yi, the ni × 1 independent response vector and Xi, the ni × p
measured covariates matrix for subject i. Generalized Estimating Equations
are defined by :

U(β) =

K∑
i=1

Dt
iV
−1
i (Yi − µi) = 0 (3)

Di is the matrix of partial derivatives with ∂µit/∂βk as its (t, k)-th element.
Vi is the working covariance matrix defined by :

Vi = φA
1/2
i Ri(α)A

1/2
i (4)

where Ri(α) is a working correlation matrix completely described by the
parameter vector α of size s×1. Ai is the diagonal matrix with elements equal
to the variance terms V (µit). If Ri(α) is the true correlation matrix of Yi then
Vi is the true covariance matrix.

Liand and Zeger[5] propose an iterative estimation method. A consistent
method (as the moments method) is used to estimate the couple (α, φ) for fixed

values of β̂. Then equation (3) is used to estimate β̂ for fixed values of (α̂, φ̂).
This leads to a consistent estimate of β.

The choice of Ri(α) is important. Classic structures are independent, ex-
changeable or auto-regressive of order 1. Selection criterion for the choice of the
working correlation matrix are useful. We quote here just a few : the Quasi-log-
likelihood under the independence model Information Criteria from Pan [8], the
Correlation Information Criteria from Hin and Wang[4] and Rotnitzky-Jewell’s
criterion[14]. In order to simplify, we will suppose the working correlation
known and of exchangeable or auto-regressive of order one structure.

3 Simulations plan/structure

Two types of responses are studied, a continuous and a binary outcome. Both
cases introduce 4 covariates which have been simulated by a Gaussian distribu-
tion with an auto-regressive of order one with parameter ρ = 0.3. We denote
Σ this correlation structure.
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3.1 Gaussian response

The response Yi is a multivariate normal vector with intra-subject correlation
structure Ri(α) following the model :

Yi = Xiβ + εi (5)

where xl ∼ N (0, Σ) for l ∈ {2, ..., 5}. The error vector εi is a multivari-
ate normal vector with mean zero and variance matrix σ2Ri(α). The mean
parameter vector is imposed equal to β = (1, 0.5,−0.2, 1,−1), where the first
component is the intercept. The variance parameter σ2 is chosen for having a
signal/noise ratio of 0.5 as described by Fu[1].

V (xtitβ)

σ2
=

1

2
⇔ σ2 = 2

5∑
l=2

β2
l = 4.58 (6)

3.2 Binary response

To simulate a binary response, the logit link is used and an intra-subject cor-
relation structure equal to Ri(α) is imposed thanks to Qaquish[11].

logit(E(yit)) = xtitβ (7)

where xl ∼ N (0, Σ) for l ∈ {2, ..., 5}. The mean parameter vector is im-
posed equal to β = (1, 0.5,−0.2, 0.3,−0.4). The first component is the inter-
cept.

For both kinds of data, the parameters vary as follows according to a full
factorial design.

• K, the number of subjects on K = {50, 100, 200, 300}
• n, the number of scheduled visits on N = {4, 6, 9}
• Ri(α), the correlation structure is either exchangeable or auto-regressive of

order one (both admit a scalar α → s = 1)
• α, the unique parameter of correlation on A = {0.1, 0.3, 0.5, 0.6}

We simulated 1000 samples that we will called completed for each of these
96 scenarios. All of the subjects in these samples get the same number of vis-
its. In order to evaluate the effect of missing visits on the GEE estimators we
simulated 1000 other samples that we will called uncompleted ou unbalanced
where we deleted some of the visits on some subjects. The percentage of con-
cerned subjects varies according to P = {10%, 20%, 30%, 50%} and the number
of deleted visits varies according to V = {1, 2, 3}.

With the aim of evaluating how robust the GEE estimator is in MCAR and
MAR situations, we imposed two different schemes of visits removal. First,
we consider a scheme where visits follow a uniform distribution. In that case
we can speak of MCAR data. In a second time we consider a probability of
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deletion that will increase with the follow-up (i.e. with the number of visits).
Last case imposed MAR data. We will talk about uniform unbalanced and
increasing unbalanced respectively. All computations are performed using R
[12] and GEE fitting performed by the package geepack of Halekoh et al.[2].

4 Results

A useful criterion for assessing the goodness of an estimator θ̂ is the Absolute

Relative Bias defined by ARB(θ̂) = ||E(θ̂)−θ||
||θ|| . We estimate this criterion by :

ÂRB(θ̂) =
1

1000

1000∑
b=1

||θ̂b − θ||
||θ||

(8)

where ||.|| is the euclidean norm which boils down to the absolute value

when the parameter is a scalar. θ̂b is the estimate of θ on the b-th sample.
The mean of the absolute relative gap between the estimator and its target is
thus estimated on 1000 samples.

4.1 Continuous response results
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Fig. 1. β̂ ARB evolution by missing rate for
96 models with a continuous response
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Fig. 2. ρ̂ ARB evolution by missing rate for
96 models with a continuous response

Figures 1 and 2 show the distribution of the ARB for the GEE estimator
of the parameter β and ρ on the 96 tested models for a continuous response.
These graphs compare the two deletion schemes : uniform and increasing.
The boxplots show no differences between the two deletion schemes. Precisely,
the difference is between [−0.005, 0.005] for the Absolute Relative Bias of β̂
and between [−0.06, 0.06] for the ABR of ρ̂.
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The ARB slightly increases with the missing rate. The median ARB switches
from 0.091 to 0.101 for β̂ and from 0.09 to 0.117 for ρ̂.
More precisely, graphics 3, 4 and 5 present the evolution of the Absolute Rela-
tive Bias for β̂ in the case K = 100 and n ∈ {4, 6, 9} with increasing unbalanced
scheme.
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4.2 Binary response results
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Fig. 6. β̂ ARB evolution by missing rate for
96 models with a binary response
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Fig. 7. ρ̂ ARB evolution by missing rate for
96 models with a binary response

Graphs 6 and 7 show the distribution of the ARB for the GEE estimator
of the parameter β and ρ on the 96 tested models for a binary response. These
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graphs compare the two deletion schemes : uniform and increasing.
There are no differences between the two deletion schemes. Some differences
in the range of [−0.005, 0.005] and [−0.015, 0.015] have been noted for the Ab-

solute Relative Bias of β̂ and ρ̂ respectively.

The small increase of the ARB is more important for a binary response
whith a median ARB switching from 0.155 to 0.193 for β̂ and from 0.101 to
0.131 for ρ̂. Graphs 8, 9 and 10 give more details about the evolution of the
Absolute Relative Bias.
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Fig. 8. β̂ ARB evolution by
missing rate for K = 100 and
n = 4 for a binary response
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Fig. 9. β̂ ARB evolution by
missing rate for K = 100 and
n = 6 for a binary response
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Fig. 10. β̂ ARB evolution by
missing rate for K = 100 and
n = 9 for a binary response

Results on binary response show higher Absolute Relative Bias meaning
worst results. Such results were expected since it is more complicated to have an
accurate estimator with a binary outcome. Nevertheless both responses, binary
and continuous, show the same evolution according to the rate of missing visits.
Moreover, both responses point the same lack of differences between uniform
unbalanced and increasing unbalanced structure.
Figures 3, 4, 5, 8, 9 and 10 demonstrate how small the increase is with the
rate of missing data. The decrease with the number of scheduled visits was
expected since it means a lower rate and better estimations.

5 Conclusion

Our simulations show two important issues. First of all, the evolution of the
absolute relative bias is similar regardless of the imposed missing data structure.
This means that no differences have been highlighted between both schemes.
Secondly, the absolute relative bias increases slowly with the missing rate,
which means that our imposed missing rate does not disrupt the efficacy of
GEE estimator.
We may infer that GEE estimators can be used in studies where MCAR and
MAR data are present. Bias induced by MAR is negligible. However, users
should pay attention to the missing data scheme and rates used here.
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Since it is very complicated to prove the presence of MNAR data, this missing
structure has not been studied here. Nevertheless, a complementary study with
this type of missing data could bring some more information about expected
bias.
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