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In data mining and machine learning, models come from data and provide 
insights for understanding data (unsupervised classification) or making prediction 
(supervised learning) (Giudici, 2003, Hand, 2000). 

Thus the scientific status of this kind of models is different from the classical 
view where a model is a simplified representation of reality provided by an expert of the 
field. In most data mining applications a good model is a model which not only fits the 
data but gives good predictions, even if it is not interpretable (Vapnik, 2006). 
 

In this context, model validation and model choice need specific indices and 
approaches. Penalized likelihood measures (AIC, BIC etc.) may not be pertinent when 
there is no simple distributional assumption on the data and (or) for models like 
regularized regression, SVM and many others where parameters are constrained. 
Complexity measures like the VC-dimension are more adapted, but very difficult to 
estimate. 
 

In supervised classification, ROC curves and AUC are commonly used (Saporta & 
Niang, 2006). Comparing models should be done on validation (hold-out) sets but 
resampling is necessary in order to get confidence intervals. 
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1. Data and models 
 

1.1 Traditional modelling 
 

In « classical » statistical modelling, a model is a simplified representation of the 
real world of the form:  

Data = Model + Error 
 
where the “Model” part of this equation represents relationships between variables. 
There are many kinds of models, most of them being explanatory or supervised 
according to machine learning vocabulary. 
 

The aim of a model is to give a good fit to observed data, in the sense where the 
error term may be considered as a white noise with a minimal variance. 
 

Usually models come from a theory (biology, economics, physics etc.) and the role 
of statistics consists in: 

a. estimating model parameters usually by Maximum Likelihood (ML) which has 
superseded other techniques like moments , minimum chi-square 

b. checking if data are in agreement with the model (and vice-versa) 
 

One can observe that model checking is frequently omitted in too many  
publications and that models are used to assess the influence of variables (risk factors) 
on a response  rather than to predict individual behaviours. This may be  in 
contradiction with the scientific exigence of having falsifiable models. 
 

1.2 Model choice 
 
When one has a nested family of parametric models with an unknown parameter θ, 

model choice based on penalized likelihood has given raise to a large literature. The two 
best known  criteria being AIC and BIC: 

( )ˆ2 ln ( ) 2AIC L kθ= − +  and ( )ˆ2 ln ( ) ln( )BIC L n kθ= − +  

where k is the number of parameters and θ̂  the ML estimate of θ. 
Despite their similarities  AIC and BIC come from completely different theories. 
 

AIC comes from Kullback-Leibler (KL) divergence. Let  f and  g  be two 
probability density functions. If  f is the true one and g an approximation the KL 
divergence or loss of information is: 

( )( ; ) ( ) ln ln( ( )) ( ) ln( ( )) ( ) (ln( ( )) (ln( ( ))
( ) f f

f tI f g f t dt f t f t dt g t f t dt E f t E g t
g t

= = − = −∫ ∫ ∫
 If we have to choose the best g (or θ) among a parametric family g(x:θ) one 
should maximize (ln( ( ; ))fE g t θ but the expectation is calculated with respect to the true 
distribution which is unknown. The ML solution consists in using  the parameter value 
maximising the density of the data according to g instead of f  
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Taking the expectation  with respect to data and f we have to maximize 
ˆ

ˆ(ln( ( ; ))fE E g t
θ

θ which under regularity assumptions is asymptotically such that: 

ˆ
ˆ ˆ(ln( ( ; )) ln( ( ))fE E g t L k

θ
θ θ −∼  

 
BIC comes from a completely different context : bayesian model choice. Let a 

finite family of parametric models Mi  with priors P(Mi) and conditional priors for  θi 
for each model P(θi / Mi) . Then the posterior probability of Mi knowing the data x is 
proportional to  P(Mi) P(x/Mi) 
 

With uniform priors P(Mi),  P(x/Mi) = ( / ; ) ( / )i i i i iP M P M dθ θ θ∫ x .  One has 

ˆln( ( / ) ln( ( / , ) ln( )
2i i i
kP M P M nθ −x x∼ . The most probable model Mi a posteriori is the 

one with minimal BIC. Then the posteriors are 
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=

=

∑
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It is well known that BIC favourises more parsimonious models than AIC due to 
its penalization and that AIC (not BIC)  is biased in the following sense: if the true 
model belongs to the family Mi ,  the probability that AIC chooses the true model does 
not tend to one when the number of observations goes to infinity. 

Other penalisations have been proposed such as ( )ˆ3 2ln ( ) 3AIC L kθ= − +  but 

only from an empirical way, without any theoretical  basis. 
 

However the use of penalised likelihood is not a panacea since it only addresses 
a narrow set of models. Either the likelihood or the true number of parameters are not 
computable for many “modern” modelling techniques: decision trees, neural networks, 
ridge and PLS regression etc.  

Furthermore, even for classical models one may have reasonable doubts about 
the convergence property towards the true model for BIC, since the “true” model 
generally does not exist,  moreover if the number of observations tends to infinity.  Let 
us remind that a model is a simplification of the real world helping the scientist to think 
and that as George Box said “All models are wrong. Some are useful”. 
 
 
2. Models for prediction 
 

In more and more applications (CRM, credit scoring etc.) models are used to 
make predictions. Thus the efficiency of a model should be measured by its capacity to 
make good predictions and not only to fit to the data (backforecasting is easier than 
forecasting). 
 
2.1 The bias-variance trade-off (Hastie & al. 2001)  

Let us consider a model like y = f(x ) + ε.  f is estimated by f̂  and we want to 
predict a new value 0y  of y for x0.  The prediction error is 0 0 0 0

ˆˆ ( ) ( )y y f x f xε− = + −
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« twice » random : first, ε is not deterministic and second : the prediction (x0
ˆŷ = f 0) is 

random due to the use of a random sample of observations. The expected square error  
is:  

( ) ( ) ( )( ) ( )222 2 2
0 0 0 0 0 0 0

ˆ ˆˆ ( ) ( ) ( ) ( ) ( )E y y E f x f x E f x f x V f xσ σ− = + − = + − + ˆ  

the first term is inherent to the phenomenon and cannot be reduced, the second term is 
the square bias of the model and the third is the prediction variance.  
 The more complex a model is, the lower is the bias but with a high variance. 
Thus there exist an optimal choice realizing a trade-off between bias (or goodness of fit 
to the observed data) and the prediction variance. But how can we measure the 
complexity of a model? 
 
2.2 Statistical learning theory and the VC-dimension 
 

V.Vapnik has shown that some models may not “generalize” in the following 
sense: for a prediction model let  be a loss function like  in 
regression or in a binary classification problem where y and  

ˆ( ; )L y y 2ˆ ˆ( ; ) ( )L y y y y= −
ŷ  take their values in 

{-1 ;+1}: 

( )21 1ˆ ˆ( ; )
2 2

L y y y y y y= − = − ˆ  

The risk is the expected loss ( ) ( , ) ( )R E L L z dP zθ= = ∫ where P(z) is the joint 

distribution of y and x. The optimal parameter θ̂ should minimize R but it is an 
impossible task since P(z) is unknown. The usual solution (least squares eg) consists in 

minimizing the empirical risk 
1

1 ( ; ( ; ))
n

emp i i
i

R L y f x
n

θ
=

= ∑ on a learning sample drawn 

from  P(z). With other definitions of L, one obtains the ML estimator or the Huber’s one 
etc.  Remp is a random variable. A model is consistent if Remp  converges towards  R when 
n tends to infinity (figure 1). 

 
consistent   non consistent 
 

Figure 1 
 

A necessary and sufficient condition for consistency is that the Vapnik-
Cervonenkis (VC) dimension should be finite. In binary supervised classification the 
VC-dimension h is a measure of complexity related to the separating capacity of a 
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family of classifiers. h is the maximum number of points which can be separated by the 
family of functions whatever are their labels ± 1. 

This does not mean that any configuration of h points might be « shattered »  
(one cannot for instance separate 3 points on the same line with a linear classifier in the 
plane), but for h+1 point there always exist a non-separable configuration.  

The VC-dimension of unconstrained hyperplanes of is p+1, but the VC 
dimension of a model is not identical to its number of parameters: it can be more or less. 

p\

In , the VC-dimension of f defined by f(x)=1 if sin(θx)>0 and  f(x)=-1 if 
sin(θx)<0 is infinite since by increasing the unique parameter θ , one may separate an 
arbitrary number of points (see figure 2). 

\

 
 

 
Figure 2 

For constrained hyperplanes (ridge-regression) ( )( )1
( , ) 1p

i ii
f X w sign w x

=
= +∑   

where 2 2
1

1p
ii

w
C=

= ∑w ≤ , the VC dimension may be far lower than p+1: 

2

2min ; 1Rh ent p
C

⎡ ⎤⎛ ⎞
≤ +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
 

 where R is the radius of the set of learning points. 
 

2.3 Model choice by Structural Risk Minimization (SRM) 
 
Vapnik’s inequality relates the difference between R and Remp to the VC-

dimension h : 

( )( )
emp

ln 2 1 ln ( 4)h n h
R R

n
α+ −

< +  

where 1-α is the confidence level. This inequality proves that (provided h is finite) one 
may increase the complexity of a family of models (eg increase the degree of 
polynomials) when the number of learning cases increases,  since it is the ratio h/n that 
is of interest. 

Small values of h gives a low difference between R and Remp . It explains why 
regularized (ridge) regression,  as well as dimension reduction techniques, may provide 
better results in generalisation than ordinary least squares. 

Based on the upper bound of R, SRM provides a model choice technique 
different from penalized likelihood, since no distributional assumptions are necessary . 

Given a nested family of models, the principle is (for fixed n) to choose the 
model which minimizes the upper bound : this realizes a trade-off between the fit and 
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the generalization capacity (see figure 3). Devroye & al (1996)  and Vapnik (2006) have 
proved that for any distribution , the SRM provides the best solution with probability 1 
(SRM is universally strongly consistent). 

  
 

Figure 3 
 

Since this is an universal inequality, the upper bound may be too large.  
An other drawback is that the VC-dimension is very difficult to compute, and in 

most cases,  one only knows upper bounds for h. 
 

3. Empirical model choice 
 
3.1. The 3 samples procedure 
 
Even if the previous inequality is not directly applicable, SRM theory proved 

that the complexity is not equal to the number of parameters, and gives  a way to handle 
methods where penalized likelihood is not applicable. One important idea is that one 
has to realize a trade-off between the fit and the robustness of a model. 

An empirical way of choosing a model in the spirit of Statistical learning Theory 
is the following (Hastie & al., 2001): 

Split the available data into 3 parts: the first set (training) is used to fit the 
various models of a family (parameter estimations), the second set (validation set) is 
used to estimate the prediction error of each previously estimated model and choose the 
best one, the last set (test set) is reserved to assess the generalization error rate of the 
best model. This last set is necessary, because the repeated use of the validation step is 
itself a “learning” step. 
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However split only once the data set into 3 parts is not enough, due to sampling 
variations. All this process should be repeated a number of times to get mean values and 
standard errors (see part 4). 

Let us remark that after having selected the best model and assessing its error 
rate with the 3 sets methodology, the final model has to be reestimated using all 
available data in order to have the best parameter estimates. 

 
 

3.2. Performance measures 
 

We will focus here on supervised classification into 2 groups. Error rate 
estimation corresponds to the case where one applies a strict decision rule. But in many 
other applications one just uses a “score” S  as a rating of the risk to be a member of one 
group, and any monotonic increasing transformation of S is also a score. Usual scores 
are obtained with linear classifiers (Fisher’s discriminant analysis, logistic regression ) 
but since the probability  is also a score ranging from 0 to 1, almost any 
technique gives a score. 

1( | )P G x

The ROC curve  synthesizes the performance of a score for any threshold s such 
that if S(x) > s then x is classified in group 1. Using s as a parameter, the ROC curve 
links the true positive rate to the false positive rate. The true positive rate (or specificity) 
is the probability of being classified in G1  for a member of G1 :  P(S>s|G1)). The false 
positive rate (or 1- sensitivity) is the probability  of being  wrongly classified to G1  : 
P(S>s|G2).  

 

 
Figure 4 

 
In other words, the ROC curve links the power of the procedure 1-β to α,  the 

probability of error of first kind. 
One of the main properties of the ROC curve is that it is invariant with respect to 

increasing (not only linear) transformations of S . Since the ideal curve is the one which 
sticks to the edges of the unit square, the favourite measure is given by the area under 
the ROC curve (AUC).  Theoretical AUC is equal to the probability of “concordance” : 
AUC = P(X1>X2) when one draws at random two observations independently from both 

groups. or two samples of n( ( )) (
s

s
AUC s d sβ α

=−∞

=+∞
= −∫ 1 .)  F 1 and n2 observations AUC 
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is estimated by 
1 2

cnc
n n

=  where nc is the number of concordant pairs. AUC comes down 

to Mann-Whitney’s U statistic : AUC = U/n1n2. 
The diagonal corresponds to the worst case where score distributions are 

identical for both groups: some practitioners use then the so-called Gini index G instead 
of AUC. G is twice the area between the ROC curve and the diagonal G = 2AUC-1 . 
When there are no ties, G is equal to Somers’D. 

ROC curves and AUC measures are commonly used to compare several scores 
or models, as long as there is no crossing. The best one has the largest AUC or G. 

 
 

4. A case study  
 

We exemplify the notions evocated in section 3  on a marketing data set 
(http://www.math.mcmaster.ca/peter/sora/case_studies_00/data_miningf). The sample 
consist of  2158 accounts. The response variable indicates whether or not a consumer 
answered to a direct mail campaign for a specific product. Among the 200 explanatory 
variables we selected 69 (including indicators for gender, recency, frequency, monetary 
type data for the specific accounts, census variables, "taxfiler" variables). We applied 
the two main classification techniques  : Fisher’s linear discriminant analysis (LDA) 
and logistic regression. 

Both techniques lead to a score function S(x) = 
1 10

... p px xβ β β+ + + and a 

posterior probability for group 1 equal to  
0 1 1

0 1 1

...

1 ...
exp( ( ))( | )

1 exp( ( )) 1

p p

p p

x x

x x
S eP G

S e

β β β

β β β

+ + +

+ + += =
+ +

xx
x

 

Modifying priors changes only the constant term in the score function. 
The previous formula is obtained in LDA under normality and equal covariance 
matrices assumptions, while it is the model in logistic regression. Estimation techniques 
differs: least squares in LDA , conditional maximum likelihood in logistic regression. 

Logistic regression is very popular since the βj  are related to odds-ratios. The 
probabilistic assumptions of logistic regression seem less restrictive than those of 
discriminant analysis, but discriminant analysis also has a strong non-probabilistic 
background being defined as the least-squares separating hyperplane between classes. 
Since the question is to find the best model in terms of prediction, the right thing to do 
is to compare their performance measured here by AUC. 
 

Figure 5 shows very close results : logistic regression has a slightly greater AUC 
than discriminant analysis 0.830 instead of 0.829, but with a standard error of 0.009 the 
difference is not significant.1 (Table 1). 
 

                                                 
1  Analysis were performed with SAS 9.1. ROC curves and AUC were computed with SPSS 14 
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Figure 5 

 
AUC 

 

  Zone  Std. err 
Asymptotic confidence 
interval 95% 

      
Lower 
bound Upper bound 

scdisc 0,829 0,009 0,812 0,846 
sclogist 0,830 0,009 0,813 0,847 

 
Table 1 

 
The above comparison was done with the total sample and may suffer from the 

resubstitution bias since the same data set is used twice : for estimating score and for 
prediction. As indicated in section 3.1 if we want to compare predicting capabilities of 
both methods, it is necessary to do so with an independent sample : one has to divide 
randomly the total sample into two parts : the training set and the validation set2. In 
order to avoid a too specific pattern, we did this random split 10 times using a stratified 
sampling (the strata are the two groups) without replacement of 70% for the training 
sample and 30 % for the validation sample. It is like a bootstrap technique but without 
replacement. 
 

                                                 
2 We use here only two sets and not three, since the objective is to measure the accuracy of a method and 
not to do model selection. 
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The performance of both methods was measured by the AUC computed for each of the 
10 validation samples.  
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Figure 6  Discriminant analysis 
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Figure 7 Logistic regression 
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Figures 6 and 7 as well as tables 2 and 3 confirm that: 

• Linear discriminant analysis performs as well as logistic regression 

• AUC has a small (due to a large sample) but non neglectable variability 

• Average AUC are lower than AUC computed on the total sample but are 

unbiased 

 

5. Conclusion and perspectives 
 
5.1 Predictive modelling 
 

If the purpose of a model is prediction, one should use adequate and objective 
performance measures and not “ideology” to choose between models. Error rates are too 
specific of a threshold and depend strongly on prior probabilities and on group 
frequencies. AUC is a global measure which integrates all thresholds but may be too 
general. One certainly needs more specific measures focussing on the central part of the 
ROC curve. 

Measurs based on penalized likelihood are intellectually appealing but of no help 
for complex models where parameters are constrained. 

 
5.2 Predict or understand? 
 

Some predictive methods used in data mining and machine learning (SVM, 
neural networks for instance) are so complex that they are « black-boxes ». 

The concept of a model is different from the common meaning : it is no longer a 
(parsimonious) representation of real world coming from a scientific theory but merely 
a « blind » prediction technique.  

If the problem is only to get good predictions, a model should be evaluated from 
the point of view of its efficiency and robustness. Is it possible to predict without 
understanding? This may be considered as shocking but the truth is yes, due mainly to 
advances in machine learning. 

Many applications do not require a theory, which would be difficult to elaborate: 
for instance it is not necessary to have a theory of consumer to predict if someone will 
accept a commercial proposition. Statistics is in this case a (very efficient) decision 
support technique and not an auxiliary of science. 

If the best model is the one which gives the best predictions, it has to be 
understood by users, especially when decisions implying citizens life are taken (reject a 
loan). In this respect, decision trees, linear models are commonly accepted but not non-
parametric density estimation, non-linear SVM. But acceptability of methods change 
with time and a  model which is considered as “complex” now, may be considered as 
standard 20 years later. 
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