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Description of mixed data

The basic technicue for describino relationshins between in a low dimensional euclidian space.

We wiil present £iv qeneralizations of PCA to handle nominal and numerical data.

. . Eigenanalysis of a matrix of correlation coefficients

Since ordinary PCA consista in findinq the eiqecvalues and tha eiaenvectors of the correlation matrix between D numerical --> ~~ variables, one solution when we have both categorical variables and numerical variables may coneist in defininq a matrix of correlation coefficients between variables of different kinds.

To do this we need meaaures of relationshios between two ~~ -~ -. .

. . , i . e -~~r ~z a :

variables aixi i•e'-wee a ¥:.n-eqorica ana a numei~cal v c i i . a s l e w i ~c n would r.dve the sam intecpretdtion us rhe u w i i i l produot-moment correlation, end lead to semi-definite positive matrxx of coefficients.

Since negative correlation is meaninqless when a cateqoricei variable xs involved, the coefficients which we may use are aenerailv homoaeneous to sauared correlation and not to &xreiation.

For a couole of categorical variables, the coefficient will ba a function of the chi-square, and for a couple between a A natural extension of both PCA and MCA to a mixture of qualitative and quantitative variables consists in maximizinq to derive qeneralized principal components (see [START_REF] Saporta | About maximal association criteria in linear enaly~is and in cluster analyai~~~, Cla~eification & related techniaues of data analvsis[END_REF] or Tenenhaus (1977)).

This metbod provides a simple representation of individuals (the solutions are nested) and cornes d o m to a PCA of the following matrix: numerical indicator matrices of a r a b l e s cateqorical variables with the metric:

which is the concatenation of the D l , metric and the chi-square metric.

Unfortunately this method does not qive a satisfactory representation for the variables:

The mappinq of the variables with the and the r2 doea not lsad to clear graphies since al1 the variables are in the first quadrant.

1.4. PCA with optimal scalinq cf the cateqorical variables Followinq the works by Young (1981), Young, De Leeuw, ~a k i n e 1 9 7 8 ) Tenenhaus ( 1977 ) this technique consists in transforminy each categorical variable into a numerical variable by allotting numerical scores to the cateqories.

These scores are cptimally calculated in crder to get an l optimal PCA aocordinq to some criterium; the mcst popular criterium being the amount cf variance accounted for, by the 1 first k eiqenvalues of the correlation matrix.

The aiwcritbm i~ usually of the alternating least square famiiy (M.s).

starting frcm an initiai quantification of the categorical variables, a PCA is performed which gives k components ct. Knowinq these components, a set of projections onto the indicator i variables of the categorical variables (first canonical variable between the components and the indicator variables matrix X , ) l leads to a different quantification and so on.

The criteriam 2 Ak -f r2cc,;x1~ + f f r 2 ( ~L : ~, ~j ! 1 -1 , =*s=, ! = , s = i
is thus optimized over the cl and the a because it increases at -' sach step.

The Froc PRINQUAL of the release 6.03 of SAS-System is an implementation of this technique. In addition to the usual criterium of the sum of the first k eigenvalues, there are two other criteria (one ia based on the minimization of det R) and various options to traneform the numerical variables: functional, spiines, M-splines).

Since after the optimal transformations, this method is a standard PCA, the usual outputs may ne pruduced: in particular one lias correlation coefficients between transformed variables and numerical variables {principal components and variables of the data set). However a local and not global optimum may cccurr, dependinq on the startup point.

An other drawback is that the solution depends on k, the number of components retained for the representation: solutions are not nested.

The robustness of zhis method may aiso be questionable and bas nct yet qiven raise to publications.

A variant of ZNDSCAL: INDOBIX

Recentiy Kiers (1989; propcsed a method biised cn an application of the IKDSCAL mode1 of Carrcl and Chang (19701 to a e t of similarity matrices between the n observations. Eech shilarity matrix corresponds to one of the variables. So it ia necessary to define similarities between units according to the nature of the variables, categorical or numerical. Although one mey think of the Gower's coefficients (19711, Indomix uses similarity matrices based on orthogonal projectors.

For soma numerical variable x we get 1 S = z 2' where z is the vector of standardized values.

For a categorical variable we get 0 if i,ir do not belong to the same category S .

--,*' n/n, if i and i' belong to category of frequency n .

s S = x ( x ' x ) '
where X is the indicator matrix of the categoriee.

A nomlization factor may be used here, iI~'Il~1 for any variables j. in order to compare variables with different number OÂ categories.

An INDSCAL analyeis is then performed which gives a mapping of the individuals in a common space and a mapping of the variables according to the weights given to the underlying dimensions.

Of course some other variants are possible: such as blocking for instance the numerical variables in a single array X, or analyzing with a classical scaling technique the average matrix of the S or applying STATIS techniques, or any kind of three-way methoda since the data may be considered as e set OÂ matrices each one aasociated to a single variable, see for instance see Coppi, Bolaaco (1989) and Lavit (1988).

One problem with methods such as Indomix is that they cannot handle a large mount of data, since like every multidimensional technique, scaling the critical dimension is the number of observations, mot the number of variables.

Cluster analysis

Two approaches are feaaible when want to cluster observations with both qualitative and quantitative descriptore.

The direct epproach Consista in defining a global similarity meesure incorporating ail the variables such as the eum of the Gower's similarity coefficients or the sum of similarity matrices used in Indomix. Once this global siad-larity matrix w is defined, any method of hierarchical clustering may be applied; furthermore with the former ohoices (Gower or Indoaixi the matrix W is positive definite and may be considered as a matrix of scalar-product. It implies that method for euclidean data sucb as Dynamio Clustering or Ward's hierarchical method are applicable.

As in section 1.5 the difficulty here consista in defining meaisures of similarity for qualitative and quantitative data which may be compared and a correct way of agqregating these similarities.

We may also use an non-direct approach based on one of the generalizations of principal components analysis presented in the previous sections. We just have to perfora" a cluster analysis of the individuale described by their coordinates along the principal axes.

The use of cluster analysis with principal coordinates in a rd1 established methodoloav irefer to SPAD-K software) but it is
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highly recomended to retaii ail the coordinates to have a complete recovery of the interindividuals distances: retaining only the 5 or 6 first principal axes, for instance, may lead to wrong conclusions; some particuiar groupa of individuals may be revealed only in a high-dimension representation.

In this respect thsre is no problem to use the extension of PCA in section 1.3 because it is possible to have a full reconstitution of the data matrix with al1 the components. However the use of an optimal scaling method such as Prinqual inay be subject to some questions; the solution of this kind of PCA relies heavily on the rider of components choosed by the user: this number should be small to prevent indeterminacy or instability of the solution and there is no garantee to recover the data.

Explanatory methods with gualitat-~ve and quantitative predictors -.

This situation is better known and since there is an objective criterium, linked to the predictability of the dependent variable, the problems are rather different than in the case of oomponent analysis.

2.1. Linear effects, interactions, reversai †we restrict our topic to linear models (regression or discrimination accordinq ta the nature of the dependent variables) the main question concerns the type of influence of the categorical variables upon the structure of dependency.

a) The simplest case is of course the additive effect on the mean: the decision function is a linear combination of the numerical variables and of the indicator variables of the categories of the nominal variables.

b) When there are interaction between the cateqorical variables, one han only to insert in the previous model the indicator variables of the siqnificant crossinqs of the cateqorical variables. c)But the most problematic case occure when the correlational structure of the numerical predictors is a function of the categories of the nominal variables. An sxtreme situation is when the signs of some correlation is chanqed accordinq to the fact that an observation belongs to some cateqory or to another: it 1s the reversal case. In this case, differents models have to be fitted.

In multiple regression there is no particular T :^lem to handle case a) and b) which corresponds to models of (ariance analyais.

Less attention has been qiven to the case c); L forma1 molution is given by separate reqression for each :coup of individuals def ined by combinations of cateqorical var;,. .;les but the nuinber of groupa makee it qeneraliy unfeasible. A m-,>odoloqy derived from reqression tree Breiman et ai (1984), seerc one of the way to salve this problem.

Discriminant analysis

When there is no risk of reversal, a linear discriminant analysis with optimal scalinq of ths categorical predictors may be performed: since it is equivalent to a diecriminaut analysis with numerical variables and indicator variables it does not present any difficulty. Like in the general linear model some constraints on the coefficient of the indicator variables are neceseary, since they add-up to nnity; the most usual constraint being to put a zero coefficient to the first (or the last) indicator of each nominal variable.

Loqistic regraseion is an alternative method which is in favour bv the econometricians: its suoerioritv over discriminant analyais seems to be doubtiul excePt whei there is strong nonnormality of the numerical variables or strong difference between covariance matrices. (Efron 1975).

when the discriminant behaviour of the numerical variables differs according to the subgroups defined by the cateqorical variables ("reversai"). the iocation model developped by Olkin-Tate (19611 and Krzanowski (1975, 1980) may be very useful: this model assumes that the conditional distribution of the numerical variables X for each qroup G and for a fixed value of the categorical variable x is normal with a mean E(X/G,x} = riLtx and a constant matrix of covariance 2. m is fitted with MANOVA 1 . X model. The model may be completed by a log linear model for P ( ; K / G , ) . The parmeters are estimated by maximum likelihood. An implementation of this method is the proqrm ADM by Daudin-Scukal (19891. Due to the ccmplexity of the method, this model i s limited to a small number of variables.

Other proposais have been made such aa using as predictors the nroducts of the numerical variables bv the indicatcr variables of the nominal predictors but it lead; very quickly to a too large number of parameters.

Discussion

From this short overview of the problem, we may draw some conclusions.

For component analysis there are many solutions and the practiticner has to chcose between them. If his purpose is only the study of the relationships between variables. multidimensional scaling of P-values seems to be the best choice. If the purpose is a mapping cf units we would reconunend a PCA with indicator variables. If we want both simultaneouslv, a compromise is necessary: such as an optimal technique like Proc Prinquai or a scaling technique like Indomix. But wa have to be cautious with the number of components retained; further compariscn atudies and sensitivity analysis are necessary.

In cluster analysis the main problem relies upcn the definition of an adequate measure of similarity but this a common feature to ail clustering techniques.

For explanatory probleias, there is no difficulty when there are only linear effects and classical software is available. For more complex interaction effects, modellinq is more difficult, but cross-validation techniques may provide gcodness of fit criteria aince there is usually a simple criterium to cptimize 2 R in regression, or error rate in discrimination for instance).

1. 3 .

 3 An extension of principal component and of multiple correspondence analysas It ie well known: a) that in PC of stendardizad variables the principal components maximize r'l~,&-') where the 2 are the numerical data variables. b) that in MCA the components maximize y fim') where the are categorical variables,