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1. Description of mixed data

The basic technigue £for describing relationships between
numerical variables is principal component analysis (PCA!, which
provides a description of the observations and of the variables
in a low dimensional euclidian space.

We wiil present five generalizations of PCA to handie
nominal and numerical data.

1.1. Eigenanalysis of a matrix of correlation coefficients

Since ordinary PCA congists in finding the eigenvalues and
the eigenvectors of the correlation matrix between p numerical
variables, one solution when we have both categorical wvariables
and numerical variables may consist in defining a matrix of
correlation coefficients between variables of different kinds.

Tc do this we need measures of relationships between two
categorical variables and between a categorical and a numerical
variable which would have the same interpretation as the usual
product~moment correlation, and lead to semi-definite positive
matrix of coefficients.

Since negative correlation is meaningless when a categorical
variable is involved, the coefficients which we may use are
generally homogenecus to squared correlation and not to
correlation,

¥Yor a couple of categorical variabhles, the ccefficient will
be a function of the chi-sguare, and for a couple between a
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categorical and a numerical varjable, the coefficient will be a
function of the correlation ratio 7.

The RV coefficients proposed by Escoufier for meaeuring the
relationehips between vector-valued variables give an elegant
sclution to our problem if we identify a categorical variable
with k rategories to the set of the k indicator variables of its
categories.

When comparing two data matrices X and X with k and k,

variables, RV is defined as

—_ Tracefxlﬁ‘x; szzx;)

¢ 2 ’ Z
JfTrace{xiﬂzkzé Trace(REszz}

Where Mx’ H2 are matrices associated to the two data sets.

If we chooge M = (R;Rl}q, the RV coefficient is a function
of the canonical correlations betwesn xl and X,

It 1is straighevforward to ©prove that with =zero-mean
variables, the RV hatween two numericalzvariablea is equal to the
sgquared correlation coefficient r, the RV  between a

2
k-categerical variable and a numerical varlable is egual to i

and the vafoefficient between two categorical variahles is equal

ta @ = T {Pschuprow’s coefficient) ses Saparta
TR =17k~
{1976} .
So, the analysis of the relationships between p variables of
various kinda may Ee performed by diagonalizing the matrix

with elements rz, N ¢ .

-

This matrix is sdp. Since all its coefficients are poaitive,
the firat eigenvector hae all its elements of the same sign and
the correlation circle 18 actually a half-circlet

0f course this kxind of analysis provides omnly a mapping cf
the proximities between variables, but the eigenvectora cannct be
used to get a satisfactory representation of the individuals
since it i1s not possible to define a linear combination of

categorical and numerical variables.
However ip the STATIS method, we obtain a linear combination
of scalar product matrices between individuals

W= iuixix; ‘ the "compromise®
§=1
*
which in turn may be analysed and provide a representation of
units.

Here the o are the components ¢f the first gigenvector of

the matrix of RV coefficients. But W does nct use the whcola
information (i.e. all the correlaticn structurej.

1.2, Multidimensignal ocaling of similarity coefficients

One other important drawback of the last method is that it
is not correct to compare T° or % cocefficients when the number
of categories of the nominal variahles are not idemtical.

It is well known that the ¢hi~zquare measure of independance
is a monotonic functicn {in a probabilistic sense) of the degrees
of freedom: higher is the number of categories, higher is the
chi-squaras.

) Tha division by the square rooct of the degree of freedom
does not make a full correctien to this fact (its effect consists
mainly in normalizing between 0 and i the chi~sguare).

2

n

Morecver, even if r°, , T are cosines of elements of

some vectcr spaces, they have not the same distribution under the
null hypothesis of independence which prevents a complete
comparison. i

Por these reasonE, we propose to use, as a measure of
similarity between variables of different kinds, the probability
of ge;ting a value 1less than the correlaticn coefficient
{r*, n°, T% under the hypothesis of independence. Since these
similarities &are probabilities they may be compared and the
problem of the degrees of freedem vanishes.

There is noc reason why the px:p matrix § of these similarity
ccefficiente should be positive,

5o we propose not to do an eigenmanalysis, but to perform a
multidimensiconal scaling to get a mapping of the variables.

However, like in any method of multidimensional scaling we
need to £fix the dimension cof the representation since the
solutions are not nested.
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1.3. An__ extension of principal

component and of
cCorrespondence analysis

multiple

It is well known:

a) that in PCAZ of standardized variables the principal

components maximize r{c,xj) where the x° are the numerical

data variables.
b} that in MCA the components maximize E e
r’ are categorical variables.

A natural extension of both PCA and MCA to a mixture of
gqualitative and guantitative variables consists in maximizing

L e’y + ¥ e’y

to derive generalized principal components {see Saporta {1988) or
Tenenhauvs {1377}).

This method provides a simple representation of individuals
(the solutions are nested) and comes down to a PBCA of the
following matrix:

["‘1

L

where the

numerical
variables

indicator matrices of
categorical variables

with the metric:

/n 0

0 ] 1

/n
oh

which is the concatepaticn of the Ny . metric and the chi-square
g

metric.

Unfortunately this method does not give a

. : satisfactory
repreeentation for the variables:
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and the r® does not lead
since all the variables are in the first

The mapping of the variables with the n’
to clear graphics
guadrant.

1.4. PCA with optimal scaling of the categorical variables

&

Following the works by Young {1281j, Young, De Leeuw, Takane
{1378), Tenenhaus {1977} this technigues consists in transformlnq
each categorical variable into a numerical variable by allotting
numerical scoree to the categories.

Theae scores are optimally calculated in order to get an
optimal PCAa accordlnq to some crlterlum, the =moet popular
criterium being the amount of wariance accounted for, by the
first k eigenvalues of the correlation matrix.

The algorithm is usually of the alternating least sguare
family (ALS).

Starting from an initial quantltlcatlon of the categcrical
variables, a PCA ir performed which gives k components c,-

Knowing these components, a set of projecticns onto the indicator
variables of the cateqorical variables (first canonical variable
between the components and the indicator varlables matrix xﬂ

leads to a different quantificaticn and so on.

K &
The criterium Z;\ = z i (e ix Y+ E ireﬁc iXal
1 i 1
151 1E1y LELyEL
is thus optimized over the e and the Q;* because it increases at

each step.

The Proc PRINQUAL of the release 6.03 of SAS~-System is an
lmplementatlon of this technique. In additien to the usual
criteriom of the sum of the first k e;genvalues, there ares twoe
other criteria {one is based on the minimization of det R} and
varions options to transform the numerical variables:
tfunctional, splines, M~splingsij.

Since after the optimal transformations, this method is a
standard PCA, the usnal outputs may be produced: in particular
ane has correlation coefficients between transformed variables
and numerical variables {principal components and variables of
the data set}., However a local and not glebal optimum may oecurr,
depending on the startup point.

in other drawbark is that the sclution depends on k, the
number of ccmponents retained for ths representation: soclutions

. are mot nested.

The robustness cf this method may also be questionable and
has not yet given raise to publicatlons,

1.5. & variant of INDSCAL: INDOMIK

Recently Kiers (1989} proposed a mwethod based on an
application of the INDSCAL model of Carrol and Chang (1373} to a
et of similarity matrices between the p cbservaticons.
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. Each aimilarity matrix corresponds to one of the variables.
So it ie necessary to define similarities between upnits according
to the nature of the variablesg, categorical or numerical.
: Althoggh onea may think of the Gower‘s coefficients (1971),
Indomix uses similarity matrices based on orthogonal projectors.
For some numerical variable x we get

(xLJ?} {xvui)

£
a

i
=1 ]

3
IR

1 .
S = T 2z z' where z is the vector of standardized values.

For a categorical variable we get

0 if 1,i’ de not belong to the same category
n/n} if i and i’ belang to category of frequency u .

] il : .
5 = X{(X‘X} wvhere X is the indicator matrix of the categoriea.

A no;malizAtion factor may be used here, ﬂs’"=l for any variables
j» 1in order to compare variables with different numbar of
categories.

An !HDQC&L analyeis is then performed which gives a mapping
of the individuals in a common space and a mapping of the
variables according to the weights given to the underlying
dimensions.

Of course some other variante are possible: such as blocking
for instance the numerical variables in a single array X, or
analyzln? with a classical scaling technique the average matrix
of the 5° or applying STATIS techniques, or any kind of three-way
methoda since Fhe data may be considered as a sat of matrices
ceach one aspociated to a single variable, see for instance see
Coppi, Bolasco (1989) and Lavit {19886},

Ona problem with methods such as Indomix is that they cannot
handlg a large amount of data, since like every multidimensiopal
technique, acaling the critical dimengion is the number of
obgervations, not the numbar of variables.

1.6, Cluster analysis

Two approaches are feasible when want to cluster
observations with bath gqualitative and gquantitative descriptors.

1.6.1

The direct approach conamists in defining a global similarity
measure incorporating all the variables such as the sum of the
Gower's similarity coefficients or the sum of similarity matrices
used in Indomix. Once this global similarity matrix W is defined
any method of hierarchical clustering may be applied; furthermoré
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with the former choices {Gower or Indomix} the matrix W is
positive definite and may be considered as a matrix of
scalar-produoct. It implies that method for euclidean data such as
Dynamic Clustering or Ward's hierarchical method are applicable.
Ae in section 1.5 the difficulty here consiets in defining
measures of similarity for dqualitative and quantitative data
which may be compared and a correct way of aggregating these
similarities. :

1.6.2

We may also use an non-direct approach based on one of the
generalizations of principal components analysis presented in the
previous sections. We just have to perform a cluster analysis of
the individuals daescribed by their coordinates aleong the
principal axes.

The use of cluster analysis with principal coordinates ia a
well established methodology {refer to SPAD-N software) but it is
highly recommended to retain all the coordipates to have a
complete recovery of the interindividuals distances: retaining
only the 5 or 6 first principal axes, for instance, may lead to
wrong conclusions; some particular groups cf individwals may he
revealed only in a high-dimensicn representation.

In this respect there is no problem to use the extension ¢of
PCA in section 1.3 because it is possible to have a full
reconstitution of the data matrix with all the components.
However the use of an optimal scaling method such as Pringual may
be subisct to some quegtions: the solution of this kind of PCA
relies heavily on the number of components choosed by the unger;
this number should be small to prevent indeterminacy or
instability of the sclution and there is no garantee to recover
the data.

?. Explanatory methods with gualitative and quantitative
Ewrwedlctors )

This situation is better known and since there 1is an
objective criterium, linked to the predictability of the
depandent variable, the problems are rather different than in the
case of component analysis.

2.1, Linear effects, interactions, reversal

If we restrict our toplic to linear models (regression OT
discrimination aceoarding to the nature of the dependent
variables} the main gquestion concerns the type of influence of
the categorical variables upon the structure cof dependency.

a) The simplest case is of course the additive effect on the
mean: the decision function iz a linear combination of the
numerical variahles and of +the indicator variables of the
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categories of the nominal variables.

b} When there are interaction bhetwean the categorical
variables, one has only to insert in the previous model the
indicator wvariablee of the significant «crossings of the
categorical variables.

c} But the most problematic case occurs when the
correlational structure of the numerical predictors is a function
of the categoriee of the nominal variables. An extreme situvation
iy when the signs of some correlation is changed accarding to the
fact that an observation belongs toc some category or to anocther:
it is the reversal casme. In this case, differents models have ta
be fitted.

In wmultiple regression there is no particular 1 :olem to

handle case a} and b} which corresponds to modelas of - “variance
analysis,
Leasg attention has been given to the case cj; formal

solution is given by separate regression far each :roup of
individuals defined by combinatione of categorical var:.:.:les but
the number of groups makes it generally unfeaszible. A m- .:odology
derived from regression tree Breiman et al {1584), seers one of
the way to solve this problem.

2.2, Discriminant analysis

When there is no risk of reversal, a linear discriminant
analysies with optimal scaling of the categorical predictors may
ke performed: since it is egquivalent to a diacriminant analysis
with numerical variables and indicator variables it does not
present any difficulty. Like in the general linear model some
conetraints on the coefficient of the ipndicator variables are
necessary, since they add-up to unity; the most usual constraint
being to put a zero coefficient to the first {or the last}
indicator of each nominal variable.

Logistic regression is an alternative method which is 1in
favour by the econometricians; its superiority over discriminant
analysis seems to be doubtful except when there 15 strong
nonnormality of the numerical variables or strong difference
between covariance matrices. {(Efron 1975).

When the discriminant behaviour of the numerical variables
differa according to the subgroups defined by the catagorical
variables {"reversal®}, the location model davelopped by
Clkin-Tate (1%61) and Krzanowski {1275, 1980} may be very useful:
this model aesumes that the conditional distribution of the
numerical variables X for each group G, and for a fixed value of
the categorical variable x 15 normal with a mean E(X/Gl,x} =W
is fitted with HMANOVA

model. The model may be completed by ; log linear model for
P(z/Gl}. The parameters are estimated by maximum likelihood. An

and a constant matrix of covariance . m
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implementation of this methed 1s the program ADM by Daudin-Soukal
(1989} .

Due to the complexity of the method, this model is limited
to a small number of variables.

Other proposals have been made such as using as predictors
the products eof the numerical wvariablea by the indicator
variables of the nominal predicteors but it leads very guickly to
a too large number of parameters. ¥

3. Discusasign

From this short overview of the preoblem, we may draw some
conclusions.

For component analysie there are many gocolutions and the
practitioner has to choose betwsen them. If his purpose is only
the study of the relationships between variables,
multidimensional scaling of P-values ssems to be the best choice.
If the purpose 1= a mapping of units we would recommend a PCA
with indicator wariablea. If we want both simultaneously, a
compromise 1s neceasary: gsuch as an optimal quantification
technigue like Proc Pringual or a scaling technigque like Indomix.
But we have to be cautious with the number of components
retained; further compariscn studies and sensitivity analysis are
nacassary.

In cluster analysis the main problem relies upon the
definition of an adequate measure of similarity but this a common
feature to all clusterlng techmnigues.

For explanatory problems, there is no difficulty when there
are only linear effects and classical software is available. For
more complex interaction effects, modelling is more difficult,
but cross~validaticn techniques may provide goodneas of fit
criteria since there is usually a simple criterium to optimize
{R® in regression, or error rate in discrimination for instance;.
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