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ABOUT MAXIMAL ASSOCIATION CRITERIA
IN LINEAR ANALYSIS AND IN CLUSTER ANALYSIS

Gilbert SAPORTA

Conservatoire National des Arts et Métiers, 292 rue Saint-Martin,
75141 Paris Cédex 03

Many well-known methods of multivariate analysis may be presented in terms of
maximizing the sum of association measures between an unknown variable Y and
several known variables X; X5, ... X :

.
max 2 [0} (Y3 X).
Y k=1

According to the type of the variables and to the association measures we get various
forms of cluster analysis if Y is categorical, or of component analysis if Y is
numerical : principal components, redundancy analysis, correspondence analysis.
We try here to present a survey of this approach and propose new criteriums.

- i iation in li nalysi
1.1 Principal components (p.c.a.) and generalized canonical analysijs (g.c.a).

Everyone knows that the first principal component ¢ of asetof p standardized variables
X Xy, Xy maximizes :

i *(eix) ®1)
k=1

and that the other components corresponds to the other stationary values of this criterium.

I.D. Carroll [1] proposed a similar criterium for generalized canonical analysis, when there are
p sets of my numerical variables (k=1,2,..,p).

Let X;.X5,..., Xp bethe p data matrices of zero-mean variables, then a set of canonical
variables ¥, %;,.. §, may be derived by regressing an auxiliary variable z defined by :

max i R (z;X,) (P2)
Z =1
& = X (X, Xk)-l Xyz

where R? is the square multiple correlation coefficient.
This kind of canonical analysis comes down to usual p.c.a. when my =1 for every k.
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Since z= i X, 2, , the component loadings a, are given by :
k=1

-1
Vi; 0....0 Vii Vi Yy a a
1
0O Vp Va2 ko) )
A
1
L0 Vool | Vo1 Vo2 Vip] | % % |

see [ 13 ] where Vij is the covariance matrix between sets X; and Xj.

K, . . . .
One can remark that the max of 2 r(c;x ) isattained when ¢ is proportional to 2 X
k=1 k=1

"

What is the solution of max i R(z; Xk) ?

Z k1

12

C
If A =X (X, X)) X

e then R(.Z.;Xk)=(

z
z z

and maximizing (P3) isequivalent to maximize the Lagrangian :
1
z (z‘Akz)U2 "5 Azz.
Kk

Differentiatingin z leadsto:

Az z AiAjz_

————— =Az.Let r.=1(A z;A z) = .
(Z_' Ak—z)lﬂ ! l ! (Z' Aiz)lfz (E' Ajz)lﬂ

By straightforward computation we get :
DI
ij
i

Since A is to be maximized, the A; z are the canonical variables defined by Horst [ 6]

and z is proportional to the sum of these standardized canonical variables. However, this does
not lead to simple algorithms for it is no longer an eigenvalue problem.

1.2 Multiple correspondence analysis (m.c.a.)

M.c.a., also known as "homogeneity analysis™ [ 5], dual scaling [ 11 ] orelse (see [ 16 ]
or [21])is a technique that derives numerical scales z fromasetof p categorical variables.
Xl s Xg s e Xp with respective number of categories my, My, ..., m,.
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m.c.a. is equivalent to p.c.a. in that respect that the numerical scales z are stationary solutions
of :

max inz(g;%k) (P4)
k=1

where n2 is the square correlation ratio (or variance ratio) between the numerical variable z
and the categorical variable ¥ , .

Let X, be the indicator matrix of x K » Since n2 (z; }k) =R2 (z; Xp) = max r2(g; Xy 2
a
Zk

m.c.a. is also a particular case of g.c.a..

The scales z are eigenvectors of the matrix Q of size n defined by

Q= i A =X D' X where X isthe super indicator matrix. We will see further an
k=1

interpretation of these matrices.
Tenenhaus [ 15 ], by combining criteriums (P1) and (P4) for the case of a mixture of
continuous and categorical variables derived an extension of both p.c.a. and m.c.a. :

max(z r2(9;7_<j)+2n2(g;%k)) P5)

1.3 Redundancy analysis or p.c.a. of instrumental variables

Proposed by CR. Rao [ 12 ] and studied mainly by Escoufier [ 3 ] and Van Den Wollenberg
[ 17 ] redundancy analysis consists in deriving a linear combination of variables of a first set X;

t = X, a,that be the best predictor for a second set of variables X, .
One finds that a is solution of

-1 .
ViV, V, a="34a with A max.

When the variables of X, have unit-variances, the %' are the linear combinations of

variables of X , maximally correlated with the variable of the second set according to the
criterium :

Py
max Y, (&:x%) (P6)
k=1

The & are principal component of the data matrix X Vll1 \Y ie the matrix of the least-squares

12

approximations of x(lz) ) o l‘g) by the variables of the first set.

All these techniques have been generalized for time continuous data [2] ,[ 14 ], i.e.
realizations of a stochastic process X .
For instance p.c.a. of a numerical process (Karhunen-Loeve decomposition) consists in finding
variables z maximizing :

T

_[ ?(z;:X)dt ®7)
0
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and qualitative harmonic analysis in finding the maximum of

T
2 .
[n @ x e i)
0
II - Maximal association for ordinal variables
When the p variables X1, X5, are ordinal, finding a new variable Y of the same

kind (in general a complete order) may be done by maximizing the sum of functions of rank
correlation coefficients.
This approach is close to consensus or ranking aggregation problems.

2.1 Maximizing sum of Spearman’s r, _and of Kendall's T

Since 1, is invariant by monotone transformation of the data, and is a product moment

correlation coefficient

The solution of max 2 r (Y;X) (P9)
k=1

is given by the order associated to the sum of the p rankings of the n observations. This is

known as Borda's rule.

The solution of : max 2 T(Y; Xk) (P10)
k=1

is the order given by the Condorcet aggregation rule for which efficient algorithms have been

proposed by Marcotorchino and Michaud [ 9], using a paired comparison approach.

2.2 Maximizing z rf

Less attention has been paid in the literature to maximizing sum of squares of rank correlation
coefficients. In a consensus framework, it is of course of nonsense to equally consider a ranking
and its opposite. However this criterium may be interesting in order to robustify p.c.a.(see [7])
or in order to eliminate rankings which are uncorrelated to the others.

The solution of : max 2 r: (Y; X)) P11)
k=1

is simply given by the order associated to the first principal component of the rank matrix.
The problem :

max 2 T(Y;X) (P12)
k=1
seems an OpCIl one.

II1 - Cluster analysis

Partitioning a set of n observations is equivalent to look for an unknown categorical variable Y
correlated in some respect to descriptive variables X;,X,, ... Xp .
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3.1 Numerical variables
The most frequently used criterium for a partition is based upon the maximization of Trace B
where B is the between-class covariance matrix.
! k
. 2 .
For zero-mean variables, Trace B =— 2 n |g | wherethe g are the centroids
n 4 & &

i=1

of the clusters. Since Trace B is also equal to the sum of between class variances, for
standardized variables this comes down to :

mge (x5 ) (P13)
Y & i

and we know that k , the number of categories of Y has to be fixed in order to prevent the
trivial solution k=n , corresponding to T]2 =1.

3.2 Categorical variables

Several partitioning methods may be rewritten in terms of the maximization of

i(ﬁ(Y;xj)
j=1

where @) is an adequate measure of association.
Marcotorchino [ 8 ] pointed out recently that the central partition problem, which consists in
maximizing the number of agreements with p known partitions, may be set as :

max i R(Y;X.) (P14)
Y o .]
j=1
Where R isthe Rand's measure of association :

2330l -3l -3
2

n

R=1

Various other criteria may be defined using other measures of association, for instance :
maxixzw;xj) P15)
=1

However unlike (P14), (P15) has a trivial solution k=n.

| A

4.1 Some measures of similarities between pairs of observations

Almost all the above mentioned coefficients can be defined as scalar products between two
similarity matrices : Trace AB, where A and B are nx n matrices giving the similarities
between pairs of observations according to the measurement level of the underlying variable.

It is well known, that 1,1, T are particular cases of Daniels coefficients :
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22 a, bij Trace AB

r= =
\/ 2 2 aij2 z 2 bij2 \/?race A? Trace B>

for various forms of the elements :

3 = Xj- X for r
3 = rank x; - rank Xy for rg
X - X
a. = 1 for =1
ij

X - X
i 7

When the matrices A et B arerelated todataarrays Y and X by A=YMY'

and B=XNX"'where M and N are suitable metrics, we find the approach advocated by

Robert and Escoufier [ 41 and the scalar product between A and B leads to the RV

coefficient.

For a single numerical variable x with zero mean we willuse b; =x;x. ,ie.B=xx".

The sum of similarity matrices for p centered numerical variables is thus equal to the matrix W

of scalar products : W =X X"

For a single categorical variable 3¢ with m categories we may use one of the three following

similarities :

bi=1 if i and j belong to the same category
M
b;;=0 else

Thus B=XX' where X is the binary indicator matrix.

.. b.. "
= § oo - ij b :
3) u = W = B, — which is the inverse of the frequency
R . s

of the category in common U = X(X'X)! X' isthe chi-square similarity matrix.

For p categorical variables, the sum of the U matrices is equal to Q (see part 1-2) and the
sum of the T matrices is the majority matrix giving the number of times where elements of each
pair belong to a same category minus the number of times they do not.

4.2 Cluster analysis and factor analysis : a few equivalences

We see easily from the preceding formulas that p.c.a. and m.c.a. consist in finding the
dominant eigenvectors of the similarity matrices W and Q respectively, whilst cluster
analysis consists in finding an unknown indicator matrix Y such that the associated similarity
matrix be the closest possible to another one.
More precisely :

Problem P1 (p.c.a.) isequivalentto:

max i Trace (c¢' X )_('J.) = max Trace (cc' W)
c 4 c
- _|=1 =
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Problem P4 (m.c.a.) isequivalentto:

max i Trace (c¢' Xj (X'j Xj)'1 X'j) = max Trace (¢ ¢' Q)
c “ C -
~ _|=1 =

Problem P6 isequivalent to:

max i Trace ¢ c_'(P1 x@) (P1 x.(z)) = Trace c¢' P1 W2 where P1 =X, (X; Xl)'1 X;
S - - T

Problem P13 isequivalent to :

max ZTrace XY (Y'Y)'1 Y' X fj) = max Trace (Y(Y'Y)'1 Y'W)
Y 5 Y
i
Problem P14 isequivalentto :

m%x 2 Trace QYY'-11HQ2 Xj X'j -11Y) = ma%( Trace QYY'-11)T
i

The last one excepted, these problems are equivalent to the maximization of the RV coefficient,
between the unknown variable and the known variables, with suitable normalizations.

Problem P13 has been studied by Nin [ 10 ] who was looking directly for the indicator matrix
with an optimization algorithm.

4.3. Cluster analysis and the paired-comparison approach.

The methodology proposed by Marcotorchino-Michaud [ 9 ] consists in finding directly the
similarity matrix Y Y'=A instead of the binary indicator matrix Y, where k is generally
unknown.
The elements of A must verify the constraints
au = ajl reflexivity
aj;+ay - a <1 transitivity (&)

When the maximization problems may be written with a linear objective function, a solution can
be achieved by using a variant of linear programming for instance, and the number of clusters

need not to be fixed in advance : it is an outcome of the maximization procedure.
Problems P13, P15 are not linearizable since the objective functions are :

P13 : max 2 2 i W,
a A Y
P15 : ?gx 2 Zj::—ij 4

ij i

unlike the Condorcet problem :

P14 : max ZZaij tij
TR
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4.4, A new criterium for numerical data

The necessity of fixing the number of clusters for criterium P13 is due to the presence of a
denominator a; . The following criterium which, as far as we know, has not been previously

used, allows a partition without fixing the number of classes :
max Trace (Y Y'W) (P16)

Alternative formulations of this criterium are :
max ZZ a, Wy (P16")
aij i j

with the constraints (C) for which we may use the general algorithmof [ 9 ].
Since Trace YYW=Trace Y Y X X'=Trace X’ Y Y'X and

n &
n &
YX = .

iy &k
k

max Z ni2 Hgi ” 2 (P16")

i=1

We see here the main difference with the Trace of between covariance matrix : there is here a
compromise between the size of the classes and the distance of the centroids to the overall
mean.

At first sight, it seems that this criterium will tend to create clusters far from the centroid, for
the criterium is based on the scalar products "through the origin".

This is confirmed by the analysis of few exemples.

Exemple 1is a 24 x 11 table of data studied by Bouroche, Saporta * about public expenditures
between 1872 and 1971.

Criterium P16 gives three clusters, represented here with the first two principal components
which accounted 64% of the variance.

xe 2.

1936
1932

1968
1962
— 1971 —

1959 1956 xe 1
198%

* L'analyse des Données - Que sais-je - PUF, Paris - page 18.
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Exemple 2 is an artificial set of data corresponding to the side "five" of a dice :

X ®Y
' » *y
¥
ny
* ¥ * ¥
L ® ¥

Here the criterium fails to recognize the five natural clusters and give two solutions whith two
clusters.

Y - Final remarks
It is our opinion that the explicitation of the underlying criteria of various techniques provide

some unity between linear methods and cluster analysis. It offers also the possibility of
inventing new criteria, but in this case there is a need for further experiments.
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