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This paper deals with the problem of robust fault detection for continuous-time switched Takagi-Sugeno (T-S) fuzzy models. A procedure based on interval observers is proposed. First, an interval observer is designed under the assumption that the disturbances as well as the uncertainties are unknown but bounded. Stability and nonnegativity properties are given in terms of Linear Matrix Inequalities (LMIs) taking into account disturbances attenuation. Next, residual intervals generated by the interval observer are used for fault detection decision. Finally, a numerical example is provided to show the usefulness of this approach.
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INTRODUCTION

Over the past decades, we have witnessed growing interests in Takagi-Sugeno (T-S) fuzzy models [START_REF] Takagi | Fuzzy identification of systems and its applications to modeling and control[END_REF]).

They have been considered as a powerful tool to cope with nonlinearities. T-S fuzzy systems use the center-of-gravity method for defuzzification [START_REF] Nguyen | Fuzzy control systems: Past, present and future[END_REF]) decomposing a nonlinear system into different zones. The validity of each one is quantified by a nonlinear weighting function which depends on the so-called premise variables (or decision variables). As many nonlinear systems with switching features can be modeled as switching fuzzy systems, it is obvious that the class of switched fuzzy systems can describe more precisely both continuous and discrete dynamics as well as their interactions in complex realworld systems, see e.g. [START_REF] Zouari | Active mode recognition of switched nonlinear systems: application to fault detection and isolation[END_REF]; [START_REF] Garbouj | Parity space method for mode detection of a nonlinear switching system using takagi-sugeno modeling[END_REF]; [START_REF] Ojleska | Switched fuzzy systems: overview and perspectives[END_REF]). In the literature, few works are devoted to this family of systems [START_REF] Benzaouia | Switching takagi-sugeno systems. Saturated Switching Systems[END_REF]) and the present paper is so motivated. Actually, our objective is to consider the following compact form

   ẋ(t) = r ∑ i=1 µ σ i (x(t))(A σ i x(t) + B σ i u(t)) + d(t) y(t) = C σ x(t) , (1) 
where x(t) ∈ ℜ n is the state vector, u(t) ∈ ℜ m is the input, y(t) ∈ ℜ p is the output, d(t) ∈ ℜ n is the bounded additive disturbances, r is the number of local models and σ is the switching law such that σ ∈ {1, ..., N} is the index of the active mode with N is a positive integer. The weighting function µ σ i (x(t))

depending on the premise variables which are composed of the system state x(t). We assume that they are unmeasurable. The following convex sum property is satisfied:

   0 ≤ µ σ i (x(t)) ≤ 1, ∀σ ∈ {1, ..., N}, ∀i ∈ {1, . . . r} r ∑ i=1 µ σ i (x(t)) = 1 . (2) 
Furthermore, model-based fault detection represents an important research field and many results have been obtained in this context. Basically, the key of model-based diagnosis approaches is to use a mathematical model representation of the system to generate fault indicators called residuals. These signals are obtained by the comparison of the system and its fault-free model. Set-theoretic approaches for fault detection have been recently developed [START_REF] Puig | Fault diagnosis and fault tolerant control using set-membership approaches: Application to real case studies[END_REF]; [START_REF] Stoican | Set-theoretic Fault-tolerant Control in Multisensor Systems[END_REF]). Two main techniques are proposed: Setinvariance method [START_REF] Hanafi | Set invariance approach for fault detection and isolation in lure systems by lpv-embedding[END_REF]) and set-membership approach [START_REF] Fernández-Cantí | Set-membership identification and fault detection using a bayesian framework[END_REF]). Among several setmembership methods, interval observers are often used thanks to their aibility to generate adaptive thresholds for the system's outputs under the common assumption that the disturbances and the uncertainties are unkonw but bounded [START_REF] Gouzé | Interval observers for uncertain biological systems[END_REF]). Consistency checks between the measurements outputs and the interval observer outputs provide robust residuals which are used for robust fault detection [START_REF] Raïssi | Interval observer design for consistency checks of nonlinear continuous-time systems[END_REF]). According to the above mentioned studies, this paper deals with the problem of designing T-S interval observer based fault detection for a class of switched fuzzy systems. It is worth noting that most of existing works in the literature related to interval estimator design for fuzzy systems, even in the non-switching case, handled only the measurable premise variables case [START_REF] Li | Interval observer design for discrete-time uncertain Takagi-Sugeno fuzzy systems[END_REF]; [START_REF] Menasria | An interval observer design for uncertain nonlinear systems based on the T-S fuzzy model[END_REF][START_REF] Martínez García | Fault estimation using a Takagi-Sugeno interval observer: Application to a pem fuel cell[END_REF]). To the best of the author's knowledge, unmeasurable premise variables have not been yet fully investigated. The main feature of our design is in fact, to transform the considered system into an uncertain system subject to unknown but bounded disturbances through some changes of variables. Thanks to the convex properties (2), we can assume that uncertain terms including unmeasurable premise variables are bounded by known bounds. Then, interval observer can be constructed.

For the rest, preliminaries and the problem formulation are presented in Section 2. Section 3 provides the main results for designing robust fault detection based on T-S interval observer.

A numerical example is given in section 4 followed by a conclusion in section 5.

PRELIMINARIES AND PROBLEM FORMULATION

Preliminaries

The set of real numbers is denoted by ℜ and the set of nonnegative real numbers is denoted by ℜ ≥0 , i.e., ℜ ≥0 := [0, +∞). Inequalities are understood component-wise, i.e., for 

x a = [x a,1 , ..., x a,n ] ∈ ℜ n and x b = [x b,1 , ..., x b,n ] ∈ ℜ n , x a ≤ x b if
. . . T N ]) =    T 1 • • • 0 . . . . . . . . . 0 • • • T N   .
Lemma 1. [START_REF] Farina | Positive linear systems: theory and applications[END_REF]). The system described by: ẋ(t) = Ax(t) + u(t)

(3) is said to be nonnegative if A is a Metzler matrix and u(t) ≥ 0. For any initial condition x(0) ≥ 0, the solution of (3) satisfies x(t) ≥ 0, ∀t ≥ 0. Lemma 2. [START_REF] Chebotarev | Interval observers for continuous-time lpv systems with l1/l2 performance[END_REF]). Let x ∈ ℜ n be a vector such that x ≤ x ≤ x.

(1) if A ∈ ℜ m×n is a constant matrix, then

A + x -A -x ≤ Ax ≤ A + x -A -x. (4) 
(2) if A ∈ ℜ m×n is a matrix satisfying A ≤ A ≤ A, for some A, A ∈ ℜ m×n , then

A + x + -A + x --A -x + + A -x -≤ Ax ≤ A + x + -A + x --A -x + + A -x -. (5) 
Lemma 3. [START_REF] Rami | Tight robust interval observers: an lp approach[END_REF]). A matrix A ∈ ℜ n×n is Metzler if and only if there exists η ∈ ℜ ≥0 such that A + ηI ∈ ℜ n×n ≥0 .

Consequently, if there exist a positive diagonal matrix P ∈ ℜ n×n and a constant η > 0 such that PA + ηP ≥ 0, (6) then, A is Metzler. Lemma 4. [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF]; [START_REF] Jiang | An adaptive technique for robust diagnosis of faults with independent effects on system outputs[END_REF]). Consider x and y with appropriate dimensions and Ω a positive definite matrix. The following property is verified:

x T y + y T x ≤ x T Ωx + y T Ω -1 y.
(7) Consequently, let λ > 0 be a scalar and P ∈ ℜ n×n be a symmetric positive definite matrix, then:

2x T y ≤ 1 λ x T Px + λ y T P -1 y, ∀x, y ∈ ℜ n . (8)

Problem formulation

Consider the continuous-time switched T-S fuzzy system (1). Let's introduce some assumptions which are used in the main results proposed in this paper.

Assumption 1. d ≤ d(t) ≤ d, ∀t ≥ 0 (9) where d = -d ∈ ℜ n .
Assumption 2. The state of the system x(t) and the known input vector u(t) are supposed to be bounded in norm. Now, given the lower and upper bounds x(t), x(t), ∈ ℜ n of the state x(t), the system (1) can be rewritten equivalently to the two following forms ∀σ ∈ {1, 2, . . . , N} and ∀i ∈ {1, . . . , r}:

                             or ẋ(t) = r ∑ i=1 µ σ i (x(t))(A σ i x(t) + B σ i u(t)) - r ∑ i=1 δ σ i (t)(A σ i x(t) + B σ i u(t)) + d(t) ẋ(t) = r ∑ i=1 µ σ i (x(t))(A σ i x(t) + B σ i u(t)) + r ∑ i=1 δ σ i (t)(A σ i x(t) + B σ i u(t)) + d(t) y(t) = C σ x(t) (10) with δ σ i (t) = µ σ i (x(t)) -µ σ i (x(t)) and δ σ i (t) = µ σ i (x(t)) - µ σ i (x(t)). Let us define: ∆A σ (t) = r ∑ i=1 δ σ i (t)A σ i , ∆A σ (t) = r ∑ i=1 δ σ i (t)A σ i = A σ Σ σ A (t)E A = A σ Σ σ A (t)E A (11) A σ = [ A σ 1 • • • A σ r ] , E A = I n • • • I n T (12) Σ σ A (t) = diag([δ σ 1 (t)I n . . . δ σ r (t)I n ]) (13) Σ σ A (t) = diag([δ σ 1 (t)I n . . . δ σ r (t)I n ]) (14) ∆B σ (t) = r ∑ i=1 δ σ i (t)B σ i , ∆B σ (t) = r ∑ i=1 δ σ i (t)B σ i = B σ Σ σ B (t)E B = B σ Σ σ B (t)E B ( 15 
)
B σ = [ B σ 1 • • • B σ r ] , E B = I m • • • I m T (16) Σ σ B (t) = diag([δ σ 1 (t)I m . . . δ σ r (t)I m ]) (17) Σ σ B (t) = diag([δ σ 1 (t)I m . . . δ σ r (t)I m ]) (18 
) Thus by using the convex sum properties given in (2) for all x(t) ∈ ℜ n and x(t) ∈ ℜ n , the system (10) becomes :

                   or ẋ(t) = r ∑ i=1 µ σ i (x(t))[(A σ i -∆A σ (t))x(t)+ (B σ i -∆B σ (t))u(t)] + d(t) ẋ(t) = r ∑ i=1 µ σ i (x(t))[(A σ i + ∆A σ (t)x(t)+ (B σ i + ∆B σ (t)u(t)] + d(t) y(t) = C σ x(t) (19)
Remark 1. Due to the convex property of the weighting functions (2), we have 

-1 ≤ δ σ i (t) ≤ 1 and -1 ≤ δ σ i (t) ≤ 1. The terms Σ σ A (t), Σ σ A (t), Σ σ B (t) and Σ σ B (t) satisfy Σ σ T A (t)Σ σ A (t) ≤ I nr , Σ σ T A (t)Σ σ A (t) ≤ I nr , Σ σ T B (t)Σ σ B ( 
∆χ σ min ≤ ∆χ σ (t) ≤ ∆χ σ max , ∆χ σ min ≤ ∆χ σ (t) ≤ ∆χ σ max .

MAIN RESULTS

Interval observer synthesis

Consider the following upper and lower dynamics with σ ∈ {1, 2, . . . , N} and i ∈ {1, . . . , r}:

                 ẋ(t) = r ∑ i=1 µ σ i (x(t))[(A σ i -L σ i C σ )x(t) + B σ i u(t)+ L σ i y(t) + d -ϕ σ A,min (t) -ϕ σ B,min (t) ẋ(t) = r ∑ i=1 µ σ i (x(t))[(A σ i -L σ i C σ )x(t) + B σ i u(t)+ L σ i y(t) + d + ϕ σ A,min (t) + ϕ σ B,min (t) (20) 
where

ϕ σ A,min (t) = ∆A σ + min x + (t) -∆A σ + max x -(t) -∆A σ - min x + (t) + ∆A σ - max x -(t) (21) ϕ σ B,min (t) = ∆B σ min u + (t) -∆B σ max u -(t) (22) ϕ σ A,min (t) = ∆A σ + min x + (t) -∆A σ + max x -(t) -∆A σ - min x + (t) + ∆A σ - max x -(t) (23) 
ϕ σ B,min (t) = ∆B σ min u + (t) -∆B σ max u -(t). (24) 
Let's introduce the upper and lower observation errors e(t) = x(t)x(t) and e(t) = x(t)x(t). To obtain e(t) in ( 25), we use the first expression of x(t) given in ( 19) while to obtain e(t) in ( 26), the second form of ( 19) is used. Hence,

ė(t) = r ∑ i=1 µ σ i (x(t))((A σ i -L σ i C σ )e(t) + d -d(t) +∆A σ (t)x(t) + ∆B σ (t)u(t) + ψ(t) (25) ė(t) = r ∑ i=1 µ σ i (x(t))((A σ i -L σ i C σ )e(t) + d(t) -d +∆A σ (t)x(t) + ∆B σ (t)u(t) + ψ(t) (26) 
where

ψ(t) = -ϕ σ A,min (t) -ϕ σ B,min (t) and ψ(t) = -ϕ σ A,min (t) - ϕ σ
B,min (t) with ϕ σ A,min (t), ϕ σ B,min (t), ϕ σ A,min (t) and ϕ σ B,min (t) defined in ( 21)-( 24). It is clear that the dynamics of the error estimation given in ( 25) and ( 26) depend on the state x(t) and the disturbance d(t), then the problem of designing the interval observer ( 20) is reduced to finding appropriate gains L σ i ∈ ℜ n×p for each mode σ ∈ {1, 2, . . . , N} in order to ensure the global asymptotic stability and the nonnegativity property of the errors dynamics and to minimize the influence of d(t) on the upper and lower errors dynamics e(t) and e(t). Let's define the augmented upper and lower vectors as e a (t) = e T (t) x T (t)

T and e a (t) = e T (t) x T (t) T from which the following dynamics are obtained with σ ∈ {1, 2, . . . , N} and i, j ∈ {1, . . . , r}:

ėa (t) = r ∑ i=1 µ σ i (x(t)) r ∑ j=1 µ σ j (x(t))(A σ i j (t)e a (t) +B σ i j (t)u(t)) + Ed + Fd(t) + Gψ(t) (27) ėa (t) = r ∑ i=1 µ σ i (x(t)) r ∑ j=1 µ σ j (x(t))(A σ i j (t)e a (t) +B σ i j (t)u(t)) + Fd(t) + Ed + Gψ(t) (28) 
where

               A σ i j (t) = A σ i -L σ i C σ ∆A σ (t) 0 A σ j , B σ i j = ∆B σ (t) B σ j A σ i j (t) = A σ i -L σ i C σ ∆A σ (t) 0 A σ j , B σ i j = ∆B σ (t) B σ j E = [ I 0 ] T , E = [ -I 0 ] T F = [ -I I ] T , F = [ I I ] T , G = [ I 0 ]
T Theorem 1. Let the system (19) satisfy Assumptions 1-3 and assume that x(0), x(0) are known and the initial state x(0) verifies x(0) ≤ x(0) ≤ x(0). If there exist a diagonal positive matrix P 1 ∈ ℜ n×n , a positive definite matrix P 2 ∈ ℜ n×n and strictly positive scalars η σ , ρ σ 1 , γ and λ σ for all σ ∈ {1, . . . , N} such that for all i, j ∈ {1, . . . , r}, the following constrained minimization problem minimize

P 1 ,P 2 ,K σ i ,ρ σ 1 γ subject to      φ σ i 0 P 1 P 1 A σ * ϒ σ j 0 0 * * -γI 0 * * * - 1 ρ σ 1 I      ≺ 0 P 1 A σ i -K σ i C σ + η σ P 1 ≥ 0. ( 29 
)
where 12), is solvable, then ( 20) is an optimal interval observer for the system (1) that guarantees the attenuation of additive disturbances effect with the cost function computed by γ = γ . Remark 2. Notice that the terms η σ are fixed before solving the LMIs (29) by Matlab. Thus, it is not a nonlinear optimization problem.

φ σ i = A σ T i P 1 + P 1 A σ i -C σ T K σ T i -K σ i C σ + 3 λ σ P 1 + I n K σ i = P 1 L σ i ϒ σ j = A σ T j P 2 + P 2 A σ j + 3 λ σ P 2 + ρ σ 1 E T A E A , with A σ , E A defined in (
Proof.

(1) Stability property Consider the following common Lyapunov function for the augmented upper dynamic (27):

V (e a (t)) = e a T (t)Pe a (t), P = diag([ P 1 P 2 ]) 0 (30) Taking the derivative of the Lyapunov function ( 30) along all trajectories of (27), then ∀σ ∈ {1, 2, . . . , N} and ∀i, j ∈ {1, . . . , r}:

V 

σ i j (t)u(t) ≤ 1 λ σ e T a (t)Pe a (t) +u T (t)B σ T i j (t) [λ σ P] B σ i j (t)u(t) 2e T a (t)PFd(t) ≤ 1 λ σ e T a (t)Pe a (t) +d T (t)F T [λ σ P] Fd(t) 2e T a (t)PGψ(t) ≤ 1 λ σ e T a (t)Pe a (t) +ψ T (t)G T [λ σ P] Gψ(t) (32)
Using the property of the weighting function given in (2), the combination of ( 31) and ( 32) leads to:

V (e a (t)) ≤ e T a (t)Γ σ e a (t) + d T E T Pe a (t) + e T a PEd + υ σ (33) where for σ ∈ {1, . . . , N}, i, j ∈ {1, . . . , r}

Γ σ = A σ T i j P + PA σ i j + 3 λ σ P, (34) 
υ σ = u T (t)B σ T i j (t) [λ σ P] B σ i j (t)u(t) + d T (t)F T [λ σ P] Fd(t) + ψ T (t)G T [λ σ P] Gψ(t).
(35) Based on Assumption 2, ψ(t) given in ( 25) is bounded and based on Assumption 1, it follows that υ σ in ( 33) is bounded for all σ ∈ {1, . . . , N}. Besides, the upper estimation error given in (25) can be seen as e(t) = He a (t), H = [ I 0 ] (36) In the system (25), the effect of the known bound of the additive disturbances d(t) on the upper observation error e is bounded by the positive real number γ = γ 2 if the following condition holds [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF]):

V (e a (t)) + e T (t)e(t)γd T d ≤ 0 (37) Since ϑ σ given in ( 33) is bounded, thus, by substituting ( 33) and ( 36) in ( 37), ( 27 Replacing the term Γ σ by its expression given in (34), the inequality (39) holds if the subsequent one is satisfied

A σ T i j P + PA σ i j + 3 λ σ P + I n PE * -γI ≺ 0 ( 40 
)
Recall that P = diag([ P 1 P 2 ]), and replacing A σ T i j by its expression given in ( 27), we have:

    Θ σ T i P 1 + P 1 Θ σ i + 3 λ σ P 1 + I n P 1 ∆A σ (t) P Ē * A σ T j P 2 + P 2 A σ j + 3 λ σ P 2 0 * * -γI     ≺ 0 (41) where Θ σ i = (A σ i -L σ i C σ ).
Let's rewrite (41) by separating the time-depending term P 1 ∆A σ (t), we obtain

    Θ σ T i P 1 + P 1 Θ σ i + 3 λ σ P 1 + I n 0 P Ē * A σ T j P 2 + P 2 A σ j + 3 λ σ P 2 0 * * -γI     + W   0 P 1 ∆A σ (t) 0 * 0 0 * * 0   ≺ 0 (42) The matrix W can be decomposed such that W = Q + Q T where Q =   0 P 1 ∆A σ (t) 0 0 0 0 0 0 0   . (43) 
Using the definition of the uncertainty ∆A σ (t) given in ( 11), it yields the following partition of

Q Q = X P 1 A σ 0 0 0 0 0 Y 0 Σ σ A (t)E A 0 0 0 0 . (44) 
Choosing Ω = diag([ ρ σ 1 I n ρ σ 2 I n ]) 0 with ρ σ 1 , ρ σ 2 are any strictly positive scalars for all σ ∈ {1, . . . , N}. Applying Lemma 4 to (44) yields

W ≤ XΩ -1 X T +Y T ΩY. (45) 
Bearing in mind that Σ σ T A (t)Σ σ A (t) ≤ I nr (see Remark 1), the following inequality holds

W ≤ diag([ 1 ρ σ 1 P 1 A σ A σ T P 1 ρ σ 1 E T A E A 0 ]) (46) 
Substituting ( 46) in (42) leads to:

  Ξ σ i 0 PE * ϒ σ j 0 * * -γI   ≺ 0 (47) 
where 29), based on the Schur complement [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF]) with K σ i = P 1 L σ i we can conclude that from (47), the augmented upper dynamic (27) is ISS. Similarly one can prove that the augmented lower dynamic (28) is ISS.

Ξ σ i = Θ σ T i P 1 + P 1 φ σ i + 3 λ σ P 1 + I n + 1 ρ σ 1 P 1 A σ A σ T P 1 ϒ σ j = A σ T j P 2 + P 2 A σ j + 3 
λ σ P 2 + ρ σ 1 E T A E A From LMI (

Nonnegativity property

First, from ( 21)-( 24) and (5) of Lemma 2, the following inequalities hold

∆A σ (t)x(t) ≥ ϕ σ A,min (t), ∆A σ (t)x(t) ≥ ϕ σ A,min (t) ∆B σ (t)u(t) ≥ ϕ σ B,min (t), ∆B σ (t)u(t) ≥ ϕ σ B,min (t) (48) 
From Assumption 1, we have for all σ ∈ {1, . . . , N}, i ∈ {1, . . . , r}, dd ≥ 0 and dd ≥ 0. Thus from ( 25)-( 26), it holds that

ψ(t) + d -d(t) + ∆A σ (t)x(t) + ∆B σ (t)u(t) ≥ 0 d(t) -d + ∆A σ (t)x(t) + ∆B σ (t)u(t) + ψ(t) ≥ 0 (49)
Subsequently, thanks to (29) and Lemma 3, one can ensure that (A σ i -L σ i C σ ) is Metzler for all σ ∈ {1, . . . , N}, for all i ∈ {1, . . . , r} since P 1 (A σ i -L σ i C σ ) + η σ P 1 ≥ 0, ∀σ ∈ {1, . . . , N}, ∀i ∈ {1, . . . , r} and P 1 is diagonal positive matrix. Lastly, according to Lemma 1, if x(0) and x(0) are supposed to be known such that e(0) = x(0)x(0) ≥ 0 e(0) = x(0)x(0) ≥ 0 , then the dynamics of the estimation errors given in ( 25)-( 26) stay positive and consequently, x(t) ≤ x(t) ≤ x(t) which completes the proof. Remark 3. For ensuring the stability property, we employ a common Lyapunov function (30) which is restrictive but standard in designing interval observer for switched systems, and it has previously been used by many works in the same context, see e.g., [START_REF] Ethabet | Interval estimation for continuous-time switched linear systems[END_REF]; [START_REF] Dinh | Optimal interval observers for discrete-time linear switched systems[END_REF]).

Robust Fault Detection based on interval observer

In this section, the previous results are used to generate residuals for fault detection. Under the presence of a sensor fault, system (1) can be represented by:

       ẋ(t) = r ∑ i=1 µ σ i (x(t))(A σ i x(t) + B σ i u(t)) + d(t) y(t) = C σ x(t) + f (t) ∀σ ∈ {1, 2, . . . , N} , ∀i ∈ {1, . . . , r} , (50) 
where f (t) ∈ ℜ p denotes p th sensor fault. The principle of model-based fault approaches is to compare the measurements y(t) with their estimates y(t) provided by a faultless model. The comparison leads to the generation of a residual r(t) ∈ ℜ p given by: r(t) = y(t)y(t).

(51) In fault-free operation, the residual are arround zero. Nevertheless, when considering a system's model affected by perturbations and uncertainties given in (19), the residuals deviate from zero even in the fault-free scenario. To cope with this problem, a passive approach is used based on the interval observer (20) designed in the previous section.

Based on (4) of Lemma 2, the lower and upper outputs of the system (1) are given by:

y(t) = C σ + x(t) -C σ -x(t) y(t) = C σ + x(t) -C σ -x(t) (52) 
Let y(t), y(t) be the domain of the output y(t), the fault detection test can be formulated as y(t) / ∈ y(t), y(t) which is equivalent to:

0 / ∈ [r(t), r(t)] . (53) where r(t) = y(t) -y(t) = -C σ + (x(t) -x(t)) -C σ -(x(t) -x(t)) r(t) = y(t) -y(t) = C σ + (x(t) -x(t)) -C σ -(x(t) -x(t)) (54 
) Thus, the residual is described by and adaptative threshold. Remark 4. The considered system in this paper is affected by unknown but bounded disturbances. If these bounds are large, so does the width of the interval observer and it may lead to misdetection of the small faults. The proposed T-S interval observer design method given in (20) allows to compute optimal gains which attenuate the effect of the system's disturbances and ensure a tighter interval width which make it possible to detect low amplitude faults.

NUMERICAL EXAMPLE

To show the effectiveness of the proposed fault detection method, a switched system described by ( 50) is considered as follows

A 1 1 = -0.9 0 -0.45 0 -2.1 0 0 0 -0.1 , A 1 2 = -3.86 0 1.22 0 -0.15 0 0 0 -0.1 A 2 1 = -5.5 0 1.5 0 -1.1 0 0 0 -0.1 , A 2 2 = -2.6 0 0.3 0 -0.15 0 0 0 -0.1 B 1 1 = 1 0 1 , B 1 2 = B 2 1 = B 2 2 = B 1 1 , C 1 = [ 0 0 1.2 ] , C 2 = [ 0 0 1.7 ] .
(55) The weighting functions are hyperbolic tangent functions and depend on the unmeasured state x 1 :

     ξ (t) = x 1 (t) µ σ 1 (x(t)) = 1 2 (1 -tanh(x 1 (t)), ∀σ ∈ {1, 2} µ σ 2 (x(t)) = 1 -µ σ 1 (x 1 (t)), ∀σ ∈ {1, 2} (56) 
For the simulation, the disturbances are chosen T . Thus, Assumption 1 is satisfied. The switching signal between the two modes of the considered system is plotted in Figure 1. The fault signal is set up as:

f (t) = 0.03, 2s ≤ t ≤ 4s 0.02, 8s ≤ t ≤ 9s 0 otherwise (57)
The initial conditions are x(0) = [ 0 0 0 ] T and x(0) = -x(0) = [ 0.1 0.1 0.1 ] T . By fixing λ 1 = 85.96, λ 2 = 85.76, η 1 = 10 and η 2 = 26, the solution of LMIs (29) of Theorem 1 are obtained using the package CVX [START_REF] Grant | Cvx: Matlab software for disciplined convex programming[END_REF]). The values of the optimal gains are given by: The attenuation level is γ = 7.5443. We verify that the matrices A σ i -L σ i C σ are Metzler for all σ ∈ {1, 2} and for all i ∈ {1, 2}. In Figure 2, it is clear that the relations y(t) ≤ y(t) ≤ y(t) and 0 ∈ [r(t), r(t)] hold in fault-free case while these relations are broken when the fault occurs. It should be noted that despite the low values of the considered fault (57), the detection is successful. At the instant t = 4.01s, the fault is still detected, which is explained by the fault extension because of the fact that the switching instant t = 3s happens during the faulty period 2s ≤ t ≤ 4s. Through changes of variables, we can transform the considered system into uncertain one before the interval observer can be designed. The attenuation of the disturbances effects to optimize the interval length is also taken into account. Based on this methodology, the interval of the residual is generated to be able to use for fault detection. Many extensions of this approach are possible. We plan to investigate the Fault Tolerant Control (FTC). Moreover, employing multiple Lyapunov functions to ensure stability property of the proposed interval observer may be expected.

L 1 1 = -0

  such as: d(t) = 0.1[ cos(3.5t) cos(3.5t) cos(3.5t) ] T and d = -d = [ 0.1 0.1 0.1 ]
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  and only if, for all i ∈ {1, ..., n}, x a,i ≤ x b,i . The symbol P 0 (resp. P ≺ 0) means that the symmetric matrix P is positive (resp. negative) definite. E p is a (p × 1) vector whose elements are equal to 1. I n is the identity matrix with dimension n × n.

	The symbol * denotes the transposed element in the symmetric
	positions of a matrix. The left and right endpoints of an interval
	[x(t)] are denoted by x(t) and x(t) such as [x(t)] = [x(t), x(t)].
	A matrix A ∈ ℜ n×n is called Metzler if all the off-diagonal
	elements are nonnegative. A matrix A ∈ ℜ n×n is said to be
	nonnegative if each entry of A is nonnegative. Given a matrix
	A ∈ ℜ m×n , we define A + = max {0, A}, A -= A + -A and denote
	the absolute value of a matrix by |A| = A + + A -(similarly for
	vectors). For square matrices T i , we define diag([T 1

  t) ≤ I mr and, Σ σ T B (t)Σ σ B (t) ≤ I mr . Assumption 3. There exist known constant matrices ∆χ ∆χ σ min and ∆χ σ max where χ denotes the letter A or B, such that, for all t ≥ 0, for all σ ∈ {1, 2, . . . , N},

	∆χ	σ max ,	σ min ,

  ) is Input to State Stable (ISS)(Vu et al. 

	(2007)) if the following inequality holds			
	e T a (t)Γ σ e a (t) + d +e T a (t)H T He a -γd T E T d ≤ 0 T Pe a (t) + e T a PEd	(38)
	or equivalently					
	e a d	T	Γ σ + H T H PE * -γI	e a d	≤ 0	(39)