
HAL Id: hal-02516094
https://cnam.hal.science/hal-02516094v1

Submitted on 23 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust Fault Detection for switched Takagi-Sugeno
systems with unmeasurable premise variables:

Interval-Observer-based approach
Yosr Garbouj, Thach Ngoc Dinh, Zhenhua Wang, Talel Zouari, Moufida

Ksouri, Tarek Raissi

To cite this version:
Yosr Garbouj, Thach Ngoc Dinh, Zhenhua Wang, Talel Zouari, Moufida Ksouri, et al.. Robust
Fault Detection for switched Takagi-Sugeno systems with unmeasurable premise variables: Interval-
Observer-based approach. 21st IFAC World Congress, Jul 2020, Berlin, Germany. �hal-02516094�

https://cnam.hal.science/hal-02516094v1
https://hal.archives-ouvertes.fr


Robust Fault Detection for switched Takagi-Sugeno
systems with unmeasurable premise variables:

Interval-Observer-based approach

Yosr Garbouj ∗ Thach Ngoc Dinh ∗∗ Zhenhua Wang ∗∗∗ Talel Zouari ∗∗∗∗,∗
Moufida Ksouri ∗ Tarek Raı̈ssi ∗∗

∗University of Tunis El Manar, National Engineering School of Tunis (ENIT),
Analysis, Conception and Control of Systems Laboratory (LR-11-ES20), BP

37, Le Belvedere 1002, Tunis, Tunisia (e-mail: yosr.garbouj@enit.utm.tn,
Moufida.Ksouri@enit.rnu.tn ).

∗∗Conservatoire National des Arts et Métiers (CNAM), Cedric-Lab, 292 rue
St-Martin, 75141 Paris Cedex 03, France (e-mail:

ngoc-thach.dinh@lecnam.net, tarek.raissi@cnam.fr)
∗∗∗ School of Astronautics, Harbin Institute of Technology, Harbin 150001,

PR China (e-mail: zhenhua.wang@hit.edu.cn)
∗∗∗∗Department of Electromechanical Engineering, ESPRIT School of

Engineering, Tunis, Tunisia (e-mail: talel.zouari@esprit.tn)

Abstract: This paper deals with the problem of robust fault detection for continuous-time switched
Takagi-Sugeno (T-S) fuzzy models. A procedure based on interval observers is proposed. First, an
interval observer is designed under the assumption that the disturbances as well as the uncertainties
are unknown but bounded. Stability and nonnegativity properties are given in terms of Linear Matrix
Inequalities (LMIs) taking into account disturbances attenuation. Next, residual intervals generated by
the interval observer are used for fault detection decision. Finally, a numerical example is provided to
show the usefulness of this approach.
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1. INTRODUCTION

Over the past decades, we have witnessed growing interests in
Takagi-Sugeno (T-S) fuzzy models (Takagi and Sugeno (1993)).
They have been considered as a powerful tool to cope with non-
linearities. T-S fuzzy systems use the center-of-gravity method
for defuzzification (Nguyen et al. (2019)) decomposing a non-
linear system into different zones. The validity of each one is
quantified by a nonlinear weighting function which depends on
the so-called premise variables (or decision variables). As many
nonlinear systems with switching features can be modeled as
switching fuzzy systems, it is obvious that the class of switched
fuzzy systems can describe more precisely both continuous and
discrete dynamics as well as their interactions in complex real-
world systems, see e.g. (Zouari et al. (2014); Garbouj et al.
(2019); Ojleska and Stojanovski (2008)). In the literature, few
works are devoted to this family of systems (Benzaouia (2012))
and the present paper is so motivated. Actually, our objective is
to consider the following compact form ẋ(t) =

r

∑
i=1

µ
σ
i (x(t))(A

σ
i x(t)+Bσ

i u(t))+d(t)

y(t) =Cσ x(t)
, (1)

where x(t) ∈ ℜn is the state vector, u(t) ∈ ℜm is the input,
y(t) ∈ℜp is the output, d(t) ∈ℜn is the bounded additive dis-
turbances, r is the number of local models and σ is the switch-
ing law such that σ ∈ {1, ...,N} is the index of the active mode
with N is a positive integer. The weighting function µσ

i (x(t))

depending on the premise variables which are composed of the
system state x(t). We assume that they are unmeasurable. The
following convex sum property is satisfied:

0≤ µ
σ
i (x(t))≤ 1, ∀σ ∈ {1, ...,N},∀i ∈ {1, . . .r}

r

∑
i=1

µ
σ
i (x(t)) = 1 . (2)

Furthermore, model-based fault detection represents an im-
portant research field and many results have been obtained
in this context. Basically, the key of model-based diagno-
sis approaches is to use a mathematical model representation
of the system to generate fault indicators called residuals.
These signals are obtained by the comparison of the system
and its fault-free model. Set-theoretic approaches for fault de-
tection have been recently developed (Puig (2010); Stoican
and Olaru (2013)). Two main techniques are proposed: Set-
invariance method (Hanafi et al. (2015)) and set-membership
approach (Fernández-Cantı́ et al. (2016)). Among several set-
membership methods, interval observers are often used thanks
to their aibility to generate adaptive thresholds for the system’s
outputs under the common assumption that the disturbances
and the uncertainties are unkonw but bounded (Gouzé et al.
(2000)). Consistency checks between the measurements out-
puts and the interval observer outputs provide robust residuals
which are used for robust fault detection (Raı̈ssi et al. (2010)).
According to the above mentioned studies, this paper deals with
the problem of designing T-S interval observer based fault de-
tection for a class of switched fuzzy systems. It is worth noting



that most of existing works in the literature related to interval
estimator design for fuzzy systems, even in the non-switching
case, handled only the measurable premise variables case (Li
et al. (2019); Menasria et al. (2017); Martı́nez Garcı́a et al.
(2017)). To the best of the author’s knowledge, unmeasurable
premise variables have not been yet fully investigated. The main
feature of our design is in fact, to transform the considered sys-
tem into an uncertain system subject to unknown but bounded
disturbances through some changes of variables. Thanks to the
convex properties (2), we can assume that uncertain terms in-
cluding unmeasurable premise variables are bounded by known
bounds. Then, interval observer can be constructed.

For the rest, preliminaries and the problem formulation are
presented in Section 2. Section 3 provides the main results for
designing robust fault detection based on T-S interval observer.
A numerical example is given in section 4 followed by a
conclusion in section 5.

2. PRELIMINARIES AND PROBLEM FORMULATION

2.1 Preliminaries

The set of real numbers is denoted by ℜ and the set of
nonnegative real numbers is denoted by ℜ≥0, i.e., ℜ≥0 :=
[0,+∞). Inequalities are understood component-wise, i.e., for
xa = [xa,1, ...,xa,n]

> ∈ℜn and xb = [xb,1, ...,xb,n]
> ∈ℜn, xa ≤ xb

if and only if, for all i ∈ {1, ...,n}, xa,i ≤ xb,i. The symbol P� 0
(resp. P ≺ 0) means that the symmetric matrix P is positive
(resp. negative) definite. Ep is a (p×1) vector whose elements
are equal to 1. In is the identity matrix with dimension n× n.
The symbol * denotes the transposed element in the symmetric
positions of a matrix. The left and right endpoints of an interval
[x(t)] are denoted by x(t) and x(t) such as [x(t)] = [x(t), x(t)].
A matrix A ∈ ℜn×n is called Metzler if all the off-diagonal
elements are nonnegative. A matrix A ∈ ℜn×n is said to be
nonnegative if each entry of A is nonnegative. Given a matrix
A∈ℜm×n, we define A+ =max{0,A}, A−=A+−A and denote
the absolute value of a matrix by |A| = A++A− (similarly for
vectors). For square matrices Ti, we define diag([T1 . . .TN ]) = T1 · · · 0

...
. . .

...
0 · · · TN

.

Lemma 1. (Farina and Rinaldi (2011)). The system described
by:

ẋ(t) = Ax(t)+u(t) (3)
is said to be nonnegative if A is a Metzler matrix and u(t)≥ 0.
For any initial condition x(0) ≥ 0, the solution of (3) satisfies
x(t)≥ 0,∀t ≥ 0.
Lemma 2. (Chebotarev et al. (2015)). Let x ∈ ℜn be a vector
such that x≤ x≤ x.
(1) if A ∈ℜm×n is a constant matrix, then

A+x−A−x≤ Ax≤ A+x−A−x. (4)

(2) if A ∈ ℜm×n is a matrix satisfying A ≤ A ≤ A, for some
A,A ∈ℜm×n, then

A+x+−A+x−−A−x++A−x− ≤ Ax
≤ A+x+−A+x−−A−x++A−x−.

(5)

Lemma 3. (Rami et al. (2008)). A matrix A ∈ ℜn×n is Metzler
if and only if there exists η ∈ℜ≥0 such that A+ηI ∈ℜ

n×n
≥0 .

Consequently, if there exist a positive diagonal matrix P∈ℜn×n

and a constant η > 0 such that
PA+ηP≥ 0, (6)

then, A is Metzler.
Lemma 4. (Boyd et al. (1994); Jiang et al. (2002)). Consider x
and y with appropriate dimensions and Ω a positive definite
matrix. The following property is verified:

xT y+ yT x≤ xT
Ωx+ yT

Ω
−1y. (7)

Consequently, let λ > 0 be a scalar and P∈ℜn×n be a symmet-
ric positive definite matrix, then:

2xT y≤ 1
λ

xT Px+λyT P−1y, ∀x,y ∈ℜ
n. (8)

2.2 Problem formulation

Consider the continuous-time switched T-S fuzzy system (1).
Let’s introduce some assumptions which are used in the main
results proposed in this paper.
Assumption 1.

d ≤ d(t)≤ d, ∀t ≥ 0 (9)
where d =−d ∈ℜn.
Assumption 2. The state of the system x(t) and the known input
vector u(t) are supposed to be bounded in norm.

Now, given the lower and upper bounds x(t),x(t),∈ ℜn of the
state x(t), the system (1) can be rewritten equivalently to the
two following forms ∀σ ∈ {1,2, . . . ,N} and ∀i ∈ {1, . . . ,r}:

or

ẋ(t) =
r

∑
i=1

µ
σ
i (x(t))(A

σ
i x(t)+Bσ

i u(t))

−
r

∑
i=1

δ
σ

i (t)(A
σ
i x(t)+Bσ

i u(t))+d(t)

ẋ(t) =
r

∑
i=1

µ
σ
i (x(t))(A

σ
i x(t)+Bσ

i u(t))

+
r

∑
i=1

δ
σ

i (t)(A
σ
i x(t)+Bσ

i u(t))+d(t)

y(t) =Cσ x(t)

(10)

with δ
σ

i (t) = µσ
i (x(t))− µσ

i (x(t)) and δ
σ

i (t) = µσ
i (x(t))−

µσ
i (x(t)).

Let us define:

∆A
σ
(t) =

r

∑
i=1

δ
σ

i (t)A
σ
i , ∆Aσ (t) =

r

∑
i=1

δ
σ

i (t)A
σ
i

= A σ
Σ

σ

A (t)EA = A σ
Σ

σ
A (t)EA (11)

A σ = [ Aσ
1 · · · Aσ

r ] , EA =
[

In · · · In
]T (12)

Σ
σ

A (t) = diag([δ
σ

1 (t)In . . .δ
σ

r (t)In]) (13)
Σ

σ
A (t) = diag([δ σ

1 (t)In . . .δ
σ

r (t)In]) (14)

∆B
σ
(t) =

r

∑
i=1

δ
σ

i (t)B
σ
i , ∆Bσ (t) =

r

∑
i=1

δ
σ

i (t)B
σ
i

= Bσ
Σ

σ

B (t)EB = Bσ
Σ

σ
B (t)EB (15)

Bσ = [ Bσ
1 · · · Bσ

r ] , EB =
[

Im · · · Im
]T (16)

Σ
σ

B (t) = diag([δ
σ

1 (t)Im . . .δ
σ

r (t)Im]) (17)
Σ

σ
B (t) = diag([δ σ

1 (t)Im . . .δ σ

r (t)Im]) (18)
Thus by using the convex sum properties given in (2) for all
x(t) ∈ℜn and x(t) ∈ℜn, the system (10) becomes :




or

ẋ(t) =
r

∑
i=1

µ
σ
i (x(t))[(A

σ
i −∆A

σ
(t))x(t)+

(Bσ
i −∆B

σ
(t))u(t)]+d(t)

ẋ(t) =
r

∑
i=1

µ
σ
i (x(t))[(A

σ
i +∆Aσ (t)x(t)+

(Bσ
i +∆Bσ (t)u(t)]+d(t)

y(t) =Cσ x(t)

(19)

Remark 1. Due to the convex property of the weighting func-
tions (2), we have −1 ≤ δ

σ

i (t) ≤ 1 and − 1 ≤ δ
σ

i (t) ≤ 1. The
terms Σ

σ

A (t), Σ
σ
A (t), Σ

σ

B (t) and Σ
σ
B (t) satisfy Σ

σT
A (t)Σσ

A (t)≤ Inr,
Σ

σT
A (t)Σσ

A (t)≤ Inr, Σ
σT
B (t)Σσ

B (t) ≤ Imr and, Σ
σT
B (t)Σσ

B (t)≤ Imr.

Assumption 3. There exist known constant matrices ∆χ
σ

min,
∆χ

σ

max, ∆χ
σ

min
and ∆χ

σ

max
where χ denotes the letter A or B,

such that, for all t ≥ 0, for all σ ∈ {1,2, . . . ,N},

∆χ
σ

min ≤ ∆χ
σ
(t)≤ ∆χ

σ

max,
∆χ

σ

min
≤ ∆χ

σ (t)≤ ∆χ
σ

max
.

3. MAIN RESULTS

3.1 Interval observer synthesis

Consider the following upper and lower dynamics with σ ∈
{1,2, . . . ,N} and i ∈ {1, . . . ,r}:

ẋ(t) =
r

∑
i=1

µ
σ
i (x(t))[(A

σ
i −Lσ

i Cσ )x(t)+Bσ
i u(t)+

Lσ
i y(t)+d−ϕ

σ
A,min(t)−ϕ

σ
B,min(t)

ẋ(t) =
r

∑
i=1

µ
σ
i (x(t))[(A

σ
i −Lσ

i Cσ )x(t)+Bσ
i u(t)+

Lσ
i y(t)+d +ϕ

σ

A,min
(t)+ϕ

σ

B,min
(t)

(20)

where
ϕ

σ
A,min(t) = ∆A

σ+
minx+(t)−∆A

σ+
maxx−(t)−∆A

σ−
minx+(t)

+∆A
σ−
maxx−(t) (21)

ϕ
σ
B,min(t) = ∆B

σ

minu+(t)−∆B
σ

maxu−(t) (22)

ϕ
σ

A,min
(t) = ∆Aσ+

minx+(t)−∆Aσ+
maxx−(t)−∆Aσ−

minx+(t)

+∆Aσ−
maxx−(t) (23)

ϕ
σ

B,min
(t) = ∆Bσ

minu+(t)−∆Bσ
maxu−(t). (24)

Let’s introduce the upper and lower observation errors e(t) =
x(t)− x(t) and e(t) = x(t)− x(t). To obtain e(t) in (25), we use
the first expression of x(t) given in (19) while to obtain e(t) in
(26), the second form of (19) is used. Hence,

ė(t) =
r

∑
i=1

µ
σ
i (x(t))((A

σ
i −Lσ

i Cσ )e(t)+d−d(t)

+∆A
σ
(t)x(t)+∆B

σ
(t)u(t)+ψ(t) (25)

ė(t) =
r

∑
i=1

µ
σ
i (x(t))((A

σ
i −Lσ

i Cσ )e(t)+d(t)−d

+∆Aσ (t)x(t)+∆Bσ (t)u(t)+ψ(t) (26)

where ψ(t) =−ϕ
σ
A,min(t)−ϕ

σ
B,min(t) and ψ(t) =−ϕσ

A,min
(t)−

ϕσ

B,min
(t) with ϕ

σ
A,min(t), ϕ

σ
B,min(t), ϕσ

A,min
(t) and ϕσ

B,min
(t) de-

fined in (21)-(24).
It is clear that the dynamics of the error estimation given in
(25) and (26) depend on the state x(t) and the disturbance

d(t), then the problem of designing the interval observer (20)
is reduced to finding appropriate gains Lσ

i ∈ ℜn×p for each
mode σ ∈ {1,2, . . . ,N} in order to ensure the global asymptotic
stability and the nonnegativity property of the errors dynamics
and to minimize the influence of d(t) on the upper and lower
errors dynamics e(t) and e(t).
Let’s define the augmented upper and lower vectors as ea(t) =[

eT (t) xT (t)
]T and ea(t) =

[
eT (t) xT (t)

]T from which the
following dynamics are obtained with σ ∈ {1,2, . . . ,N} and
i, j ∈ {1, . . . ,r}:

ėa(t) =
r

∑
i=1

µ
σ
i (x(t))

r

∑
j=1

µ
σ
j (x(t))(A

σ

i j(t)ea(t)

+Bσ

i j(t)u(t))+Ed +Fd(t)+Gψ(t) (27)

ėa(t) =
r

∑
i=1

µ
σ
i (x(t))

r

∑
j=1

µ
σ
j (x(t))(A

σ
i j(t)ea(t)

+Bσ
i j(t)u(t))+Fd(t)+Ed +Gψ(t) (28)

where

Aσ

i j(t) =
[

Aσ
i −Lσ

i Cσ
∆A

σ
(t)

0 Aσ
j

]
,Bσ

i j =

[
∆B

σ
(t)

Bσ
j

]
Aσ

i j(t) =
[

Aσ
i −Lσ

i Cσ
∆Aσ (t)

0 Aσ
j

]
,Bσ

i j =

[
∆Bσ (t)

Bσ
j

]
E = [ I 0 ]

T
,E = [−I 0 ]

T

F = [−I I ]T ,F = [ I I ]T ,G = [ I 0 ]
T

Theorem 1. Let the system (19) satisfy Assumptions 1-3 and
assume that x(0), x(0) are known and the initial state x(0)
verifies x(0) ≤ x(0) ≤ x(0). If there exist a diagonal positive
matrix P1 ∈ ℜn×n, a positive definite matrix P2 ∈ ℜn×n and
strictly positive scalars ησ , ρσ

1 , γ and λ σ for all σ ∈ {1, . . . ,N}
such that for all i, j ∈ {1, . . . ,r}, the following constrained
minimization problem

minimize
P1,P2,Kσ

i ,ρσ
1

γ

subject to


φ

σ
i 0 P1 P1A

σ

∗ ϒ
σ
j 0 0

∗ ∗ −γI 0

∗ ∗ ∗ − 1
ρσ

1
I

 ≺ 0

P1Aσ
i −Kσ

i Cσ +η
σ P1 ≥ 0.

(29)

where

φ
σ
i = AσT

i P1 +P1Aσ
i −CσT KσT

i −Kσ
i Cσ +

3
λ σ

P1 + In

Kσ
i = P1Lσ

i

ϒ
σ
j = AσT

j P2 +P2Aσ
j +

3
λ σ

P2 +ρ
σ
1 ET

AEA,

with A σ , EA defined in (12), is solvable, then (20) is an
optimal interval observer for the system (1) that guarantees the
attenuation of additive disturbances effect with the cost function
computed by γ =

√
γ .

Remark 2. Notice that the terms ησ are fixed before solving the
LMIs (29) by Matlab. Thus, it is not a nonlinear optimization
problem.

Proof.

(1) Stability property

Consider the following common Lyapunov function for the
augmented upper dynamic (27):



V (ea(t)) = ea
T (t)Pea(t), P = diag([ P1 P2 ])� 0 (30)

Taking the derivative of the Lyapunov function (30) along
all trajectories of (27), then ∀σ ∈ {1,2, . . . ,N} and ∀i, j ∈
{1, . . . ,r}:

V̇ (ea(t)) = ėT
a (t)Pea(t)+ ea

T (t)Pėa(t)

=
r

∑
i=1

µ
σ
i (x(t))

r

∑
j=1

µ
σ
j (x(t))(e

T
a (t)A

σT
i j (t)Pea(t)

+eT
a (t)PAσ

i j(t)ea(t)+2eT
a (t)PBσ

i j(t)u(t))
+d

T
ET Pea(t)+ eT

a PEd
+2eT

a (t)PFd(t)+2eT
a (t)PGψ(t))

(31)
Based on Lemma 4, the following inequalities are deduced
where λ σ > 0 for all σ ∈ {1, . . . ,N} can be selected arbitrarily

2eT
a (t)PBσ

i j(t)u(t) ≤
1

λ σ
eT

a (t)Pea(t)

+uT (t)BσT
i j (t) [λ σ P]Bσ

i j(t)u(t)

2eT
a (t)PFd(t) ≤ 1

λ σ
eT

a (t)Pea(t)

+dT (t)FT
[λ σ P]Fd(t)

2eT
a (t)PGψ(t) ≤ 1

λ σ
eT

a (t)Pea(t)

+ψ
T (t)GT [λ σ P]Gψ(t)

(32)

Using the property of the weighting function given in (2), the
combination of (31) and (32) leads to:

V̇ (ea(t))≤ eT
a (t)Γ

σ ea(t)+d
T

ET Pea(t)+ eT
a PEd +υ

σ (33)
where for σ ∈ {1, . . . ,N}, i, j ∈ {1, . . . ,r}

Γ
σ = AσT

i j P+PAσ

i j +
3

λ σ
P, (34)

υ
σ = uT (t)BσT

i j (t) [λ σ P]Bσ

i j(t)u(t)+dT (t)FT
[λ σ P]Fd(t)

+ψ
T (t)GT [λ σ P]Gψ(t). (35)

Based on Assumption 2, ψ(t) given in (25) is bounded and
based on Assumption 1, it follows that υσ in (33) is bounded
for all σ ∈ {1, . . . ,N}. Besides, the upper estimation error given
in (25) can be seen as

e(t) = Hea(t), H = [ I 0 ] (36)
In the system (25), the effect of the known bound of the additive
disturbances d(t) on the upper observation error e is bounded
by the positive real number γ = γ2 if the following condition
holds (Boyd et al. (1994)):

V̇ (ea(t))+ eT (t)e(t)− γd
T

d ≤ 0 (37)
Since ϑ σ given in (33) is bounded, thus, by substituting (33)
and (36) in (37), (27) is Input to State Stable (ISS) (Vu et al.
(2007)) if the following inequality holds

eT
a (t)Γ

σ ea(t)+d
T

ET Pea(t)+ eT
a PEd

+eT
a (t)H

T Hea− γd
T

d ≤ 0
(38)

or equivalently[
ea
d

]T [
Γ

σ +HT H PE
∗ −γI

][
ea
d

]
≤ 0 (39)

Replacing the term Γσ by its expression given in (34), the
inequality (39) holds if the subsequent one is satisfied[

AσT
i j P+PAσ

i j +
3

λ σ
P+ In PE

∗ −γI

]
≺ 0 (40)

Recall that P= diag([ P1 P2 ]), and replacing AσT
i j by its expres-

sion given in (27), we have:


Θ

σT
i P1 +P1Θ

σ
i +

3
λ σ

P1 + In P1∆A
σ
(t) PĒ

∗ AσT
j P2 +P2Aσ

j +
3

λ σ
P2 0

∗ ∗ −γ̄I


≺ 0 (41)

where Θσ
i = (Aσ

i −Lσ
i Cσ ). Let’s rewrite (41) by separating the

time-depending term P1∆A
σ
(t), we obtain

Θ
σT
i P1 +P1Θ

σ
i +

3
λ σ

P1 + In 0 PĒ

∗ AσT
j P2 +P2Aσ

j +
3

λ σ
P2 0

∗ ∗ −γ̄I



+

W︷ ︸︸ ︷ 0 P1∆A
σ
(t) 0

∗ 0 0
∗ ∗ 0

≺ 0

(42)
The matrix W can be decomposed such that W = Q +QT

where

Q =

 0 P1∆A
σ
(t) 0

0 0 0
0 0 0

 . (43)

Using the definition of the uncertainty ∆A
σ
(t) given in (11), it

yields the following partition of Q

Q =

X︷ ︸︸ ︷[ P1A
σ 0

0 0
0 0

] Y︷ ︸︸ ︷[
0 Σ

σ

A (t)EA 0
0 0 0

]
. (44)

Choosing Ω = diag([ ρ
σ
1 In ρ

σ
2 In ]) � 0 with ρσ

1 , ρσ
2 are any

strictly positive scalars for all σ ∈ {1, . . . ,N}. Applying Lemma
4 to (44) yields

W ≤ XΩ
−1XT +Y T

ΩY. (45)

Bearing in mind that Σ
σT
A (t)Σσ

A (t) ≤ Inr (see Remark 1), the
following inequality holds

W ≤ diag([
1

ρσ
1

P1A
σ A σT P1 ρ

σ
1 ET

AEA 0 ]) (46)

Substituting (46) in (42) leads to: Ξ
σ
i 0 PE
∗ ϒ

σ
j 0

∗ ∗ −γI

≺ 0 (47)

where

Ξ
σ
i = Θ

σT
i P1 +P1φ

σ
i +

3
λ σ

P1 + In +
1

ρσ
1

P1A
σ A σT P1

ϒ
σ
j = AσT

j P2 +P2Aσ
j +

3
λ σ

P2 +ρ
σ
1 ET

AEA

From LMI (29), based on the Schur complement (Boyd et al.
(1994)) with Kσ

i = P1Lσ
i we can conclude that from (47), the

augmented upper dynamic (27) is ISS. Similarly one can prove
that the augmented lower dynamic (28) is ISS.

2 Nonnegativity property

First, from (21)-(24) and (5) of Lemma 2, the following in-
equalities hold

∆A
σ
(t)x(t)≥ ϕ

σ
A,min(t), ∆Aσ (t)x(t)≥ ϕ

σ

A,min
(t)

∆B
σ
(t)u(t)≥ ϕ

σ
B,min(t), ∆Bσ (t)u(t)≥ ϕ

σ

B,min
(t)

(48)



From Assumption 1, we have for all σ ∈ {1, . . . ,N}, i ∈
{1, . . . ,r}, d − d ≥ 0 and d − d ≥ 0. Thus from (25)-(26), it
holds that

ψ(t)+d−d(t)+∆A
σ
(t)x(t)+∆B

σ
(t)u(t)≥ 0

d(t)−d +∆Aσ (t)x(t)+∆Bσ (t)u(t)+ψ(t)≥ 0 (49)

Subsequently, thanks to (29) and Lemma 3, one can en-
sure that (Aσ

i −Lσ
i Cσ ) is Metzler for all σ ∈ {1, . . . ,N}, for

all i ∈ {1, . . . ,r} since P1(Aσ
i − Lσ

i Cσ ) + ησ P1 ≥ 0,∀σ ∈
{1, . . . ,N},∀i ∈ {1, . . . ,r} and P1 is diagonal positive matrix.
Lastly, according to Lemma 1, if x(0) and x(0) are supposed to
be known such that{

e(0) = x(0)− x(0)≥ 0
e(0) = x(0)− x(0)≥ 0 ,

then the dynamics of the estimation errors given in (25)-(26)
stay positive and consequently, x(t) ≤ x(t) ≤ x(t) which com-
pletes the proof.
Remark 3. For ensuring the stability property, we employ a
common Lyapunov function (30) which is restrictive but stan-
dard in designing interval observer for switched systems, and it
has previously been used by many works in the same context,
see e.g., (Ethabet et al. (2018); Dinh et al. (2019)).

3.2 Robust Fault Detection based on interval observer

In this section, the previous results are used to generate resid-
uals for fault detection. Under the presence of a sensor fault,
system (1) can be represented by:

ẋ(t) =
r

∑
i=1

µ
σ
i (x(t))(A

σ
i x(t)+Bσ

i u(t))+d(t)

y(t) =Cσ x(t)+ f (t)
∀σ ∈ {1,2, . . . ,N} ,∀i ∈ {1, . . . ,r} ,

(50)

where f (t) ∈ ℜp denotes pth sensor fault. The principle of
model-based fault approaches is to compare the measurements
y(t) with their estimates ŷ(t) provided by a faultless model. The
comparison leads to the generation of a residual r(t)∈ℜp given
by:

r(t) = ŷ(t)− y(t). (51)
In fault-free operation, the residual are arround zero. Neverthe-
less, when considering a system’s model affected by perturba-
tions and uncertainties given in (19), the residuals deviate from
zero even in the fault-free scenario. To cope with this problem,
a passive approach is used based on the interval observer (20)
designed in the previous section.

Based on (4) of Lemma 2, the lower and upper outputs of the
system (1) are given by:{

y(t) =Cσ+x(t)−Cσ−x(t)
y(t) =Cσ+x(t)−Cσ−x(t) (52)

Let
[
y(t),y(t)

]
be the domain of the output y(t), the fault

detection test can be formulated as y(t) /∈
[
y(t),y(t)

]
which is

equivalent to:
0 /∈ [r(t),r(t)] . (53)

where{
r(t) = y(t)− y(t) =−Cσ+(x(t)− x(t))−Cσ−(x(t)− x(t))
r(t) = y(t)− y(t) =Cσ+(x(t)− x(t))−Cσ−(x(t)− x(t))

(54)
Thus, the residual is described by and adaptative threshold.
Remark 4. The considered system in this paper is affected by
unknown but bounded disturbances. If these bounds are large,

so does the width of the interval observer and it may lead to
misdetection of the small faults. The proposed T-S interval ob-
server design method given in (20) allows to compute optimal
gains which attenuate the effect of the system’s disturbances
and ensure a tighter interval width which make it possible to
detect low amplitude faults.

4. NUMERICAL EXAMPLE

To show the effectiveness of the proposed fault detection
method, a switched system described by (50) is considered as
follows

A1
1 =

[−0.9 0 −0.45
0 −2.1 0
0 0 −0.1

]
,A1

2 =

[−3.86 0 1.22
0 −0.15 0
0 0 −0.1

]

A2
1 =

[−5.5 0 1.5
0 −1.1 0
0 0 −0.1

]
,A2

2 =

[−2.6 0 0.3
0 −0.15 0
0 0 −0.1

]

B1
1 =

[ 1
0
1

]
, B1

2 = B2
1 = B2

2 = B1
1,

C1 = [ 0 0 1.2 ] , C2 = [ 0 0 1.7 ] .
(55)

The weighting functions are hyperbolic tangent functions and
depend on the unmeasured state x1:

ξ (t) = x1(t)

µ
σ
1 (x(t)) =

1
2
(1− tanh(x1(t)), ∀σ ∈ {1,2}

µ
σ
2 (x(t)) = 1−µ

σ
1 (x1(t)), ∀σ ∈ {1,2}

(56)

For the simulation, the disturbances are chosen such as: d(t) =
0.1[ cos(3.5t) cos(3.5t) cos(3.5t) ]T and d =−d = [ 0.1 0.1 0.1 ]

T .
Thus, Assumption 1 is satisfied. The switching signal between
the two modes of the considered system is plotted in Figure 1.
The fault signal is set up as:

f (t) =

{ 0.03, 2s≤ t ≤ 4s
0.02, 8s≤ t ≤ 9s
0 otherwise

(57)

The initial conditions are x(0) = [ 0 0 0 ]
T and x(0) =−x(0) =

[ 0.1 0.1 0.1 ]
T . By fixing λ 1 = 85.96, λ 2 = 85.76, η1 = 10 and

η2 = 26, the solution of LMIs (29) of Theorem 1 are obtained
using the package CVX (Grant et al. (2008)). The values of the
optimal gains are given by:

L1
1 =

[−0.3750
0.0000

16.4867

]
,L1

2 =

[ 1.0167
0.0000

16.4867

]
,

L2
1 =

[ 0.0824
0.0000

11.6377

]
,L2

2 =

[ 0.1765
0.0000
11.6377

]
The attenuation level is γ = 7.5443. We verify that the matrices
Aσ

i −Lσ
i Cσ are Metzler for all σ ∈ {1,2} and for all i ∈ {1,2}.

In Figure 2, it is clear that the relations y(t)≤ y(t)≤ y(t) and
0 ∈ [r(t),r(t)] hold in fault-free case while these relations are
broken when the fault occurs. It should be noted that despite
the low values of the considered fault (57), the detection is
successful. At the instant t = 4.01s, the fault is still detected,
which is explained by the fault extension because of the fact that
the switching instant t = 3s happens during the faulty period
2s≤ t ≤ 4s.
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5. CONCLUSION

In this paper, an interval observer has been designed to cope
with the problem of robust fault detection for T-S switched
fuzzy systems where the premise variables are unmeasurable.
Through changes of variables, we can transform the considered
system into uncertain one before the interval observer can
be designed. The attenuation of the disturbances effects to
optimize the interval length is also taken into account. Based on
this methodology, the interval of the residual is generated to be
able to use for fault detection. Many extensions of this approach
are possible. We plan to investigate the Fault Tolerant Control
(FTC). Moreover, employing multiple Lyapunov functions to
ensure stability property of the proposed interval observer may
be expected.
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