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Abstract: For a class of nonlinear systems subject to disturbances, an observer is proposed
to estimate time-varying intervals in which their state variables are guaranteed to stay all
the time. The objective is to effectively deal with nonlinearities depending on unmeasured
variables which have been usually treated as uncertainty in observer design. Focusing on
nonlinearities in a polytopic form, this paper shows how an interval observer can replace
nonlinearities in unmeasured variables by nonlinearities in estimated intervals. Theoretical
guarantees and simulation comparisons are presented to demonstrate that the use of interval-
dependent nonlinearities gives better estimates than the use of an overbounding observer.
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1. INTRODUCTION

Recently, interval observers have gained an increasing at-
tention as a means of estimating variables component-wise
all the time in the presence of disturbances (Gouzé et al.
(2000); Bernard and Gouzé (2004); Moisan et al. (2009)).
The interval estimation overcomes weak points of classical
observers which are only able to give asymptotic estimates
in the absence of disturbances. Naturally, such interval
observer design is successful in doing this at the cost
of restrictive assumptions. Indeed, the interval property
requires error systems to be positive, which reduces to
Metzler matrices in the case of linear systems. Although
some relaxing techniques are available, securing the posi-
tivity at some point during the design process remains the
key. This paper does not look for better tricks in achieving
the positivity. Instead, this paper seeks benefits of interval
estimation in dealing with nonlinearities. It is typical of
observer design to cancel nonlinearities in the plant for ob-
taining tractable error dynamics. It amounts to requiring
the nonlinearities to be in only measured variables (Krener
and Isidori (1983); Isidori (2001); Khalil (2015); Nijmeijer
and van der Schaft (1990); Bernard (2019)). The same idea
applies to interval observers (Räıssi et al. (2012); Efimov
et al. (2013); Zheng et al. (2016)). Components involving
unmeasured variables are treated as uncertainties there.

Unlike classical observers, interval observers give valid
estimates of state variables at each time. The central
idea of this paper is to exploit the estimated intervals
in observer gains for allowing unmeasured variables to be
involved in nonlinearities. To realize this idea, this paper
focuses on a polytopic formulation which interpolates lin-
ear systems with scalar-valued nonlinear functions of state
variables. The formulation is considered as a class of linear
parameter-varying (LPV) systems (e.g., Apkarian et al.
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(1995)), but the parameters are endogenous, i.e., the state
variables, which means that the systems are nonlinear.
Thus the feedback induced by the endogenous variables
should be treated differently from time-varying cases. In
particular, in observer design, the endogenous variables,
i.e., the state variables, are not measured. The polytopic
formulation of nonlinearities is popular in control engineer-
ing (Takagi and Sugeno (1985)), which is often called the
Takagi-Sugeno fuzzy (T-S) model. Each linear system in
the polytopic model can be regarded as a linear model at
an operating point.

There have been extensive studies on interval observers
in various settings of systems (e.g., Mazenc and Bernard
(2011); Mazenc and Dinh (2014); Mazenc et al. (2013,
2014) to name a few in addition to the aforementioned
references). Some researches have also been focused on
LPV and T-S type systems (Chebotarev et al. (2015);
Efimov and Räıssi (2016); Li et al. (2019)). In Marx et al.
(2019), for discrete-time polytopic model, nonlinearities
of unmeasured variables are merely treated as one of
external disturbances with respect to which L2 gain is
reduced. It is worth noting that the approaches proposed
in Räıssi et al. (2012) and Efimov et al. (2013) incorporate
nonlinearities of unmeasured variables into uncertainties
bounded by functions of the input and estimated intervals
of state variables. However, the uncertainty treatment does
not allow the estimated nonlinearities to be used in the
observer gain to make use of the polytopic model. The
objective of this paper is to propose a mechanism making
use of intervals in the observer to treat nonlinearities of
unmeasured variables, and to characterize guarantees one
can gain from that mechanism.

Notation The sets of real numbers and non-negative real
numbers are denoted by R and R+, respectively. The
symbol | · | denotes Euclidean norm of vectors of any
dimension. A square matrix A ∈ Rn×n is said to be
positive definite and written as A ≻ 0 if vTAv > 0



holds for all v ∈ Rn \ {0}. The symbol σmax(·) denotes
the largest singular value of a matrix. A square matrix
A ∈ Rn×n is said to be Metzler if each off-diagonal entry
of this matrix is nonnegative. Inequalities with symbols
≤ and ≥ are understood component-wise, i.e., for x =
[x1, x2, ..., xn]

T ∈ Rn and y = [y1, y2, ..., yn]
T ∈ Rn,

x ≤ y if and only if, for all i ∈ {1, ..., n}, xi ≤ yi.
The negation x ̸≤ y holds if and only if there exits
i ∈ {1, ..., n} such that xi > yi. For simplicity, [x, y]
denotes the closed set {z ∈ Rn : x ≤ z ≤ y}. The
component-wise maximum of a pair x, y ∈ Rn is denoted
by max{x, y} = [max{x1, y1},max{x2, y2}, ...]T ∈ Rn. The
minimum min{x, y} is defined in the same way. For any
matrix A, we let A+ = max(A, 0), A− = A+ −A.

2. A PLANT AND AN INTERVAL OBSERVER

Consider the system whose state x(t)∈Rn is governed by

ẋ(t) =

m∑
k=1

µk(x(t), u(t))Akx(t) + β(y(t), u(t)) + δ(t)

(1a)

y(t) = Cx(t), (1b)

where u(t) ∈ Rp and y(t) ∈ Rq are the input and the
output, respectively. This paper refers (1) to as the plant.
Assume that µk : Rn × Rp → [0, 1] satisfies

m∑
k=1

µk(x, u) = 1, ∀x ∈ Rn. (2)

Let xi denote the i-th component of the vector x. The
objective of this paper is to estimate x(t) which is not
measured. The output y(t) is measured. We are interested
in not only asymptotic estimation of x(t), but also esti-
mation of time-varying intervals in which all the variables
xi(t) stay all times. For this purpose, the functions β : Rq×
Rp → Rn and µk : Rn × Rp → [0, 1] are assumed to be lo-
cally Lipschitz. For an arbitrary disturbance δ : R+ → Rn

which is Lebesgue measurable locally essentially bounded,
it is assumed that system (1a) is forward complete 1 in
order to write properties of state estimation for the infinite
time horizon. The forward complete assumption is not
needed if one stops evaluating properties at the finite es-
cape time of maximal solutions. Assume that we know the
piecewise continuous functions δ, δ : R+ → Rn satisfying

δ(t) ≤ δ(t) ≤ δ(t), a.e. t ∈ R+. (3)

The system (1a) with initial conditions restricted to x(0) ∈
Rn

+ is said to be non-negative if there is no instant t ∈ R+
such that x(t) ̸≥ 0. Note that whenever the system (1a)
is said to be non-negative, the restriction x(0) ∈ Rn

+ and
δ(t) ≥ 0 for all t ∈ R+ are assumed in this paper. Let [Ak]i
denote the i-th row of the matrix Ak. The non-negativity
holds if and only if for each i ∈ {1, 2, ..., n}, the implication

xi = 0 ⇒ ∀u ∈ Rp
m∑

k=1

µk(x, u)[Ak]ix+ βi(Cx, u) ≥ 0

(4)

holds true for all x ∈ Rn
+. Systems are often non-negative.

Indeed, systems are non-negative if their state variables
are chosen as mass, i.e., energy quantities.

1 If β is globally Lipschitz, system (1a) is guaranteed to be forward
complete since (2) implies global Lipschitzness of µks.

This paper proposes the following pair of systems as an
interval observer:

ẋ(t) =

m∑
k=1

{
wk(x(t), x(t), y(t), u(t))Akx(t)

− Lk(x(t), x(t))(y(t)− Cx(t))

}
+ β(y(t), u(t)) + δ(t)

(5a)

ẋ(t) =

m∑
k=1

{
wk(x(t), x(t), y(t), u(t))Akx(t)

− Lk(x(t), x(t))(y(t)− Cx(t))

}
+ β(y(t), u(t)) + δ(t),

(5b)

where the matrices Lk, Lk ∈ Rn×q (5) have yet to be
determined. The functions wk and wk are any bounded
continuous functions satisfying

m∑
k=1

µk(s, u)Ak ≤
m∑

k=1

wk(x, x, Cs, u)Ak,

∀s ∈ [min{x, x}, x] (6a)
m∑

k=1

wk(x, x, Cs, u)Ak ≤
m∑

k=1

µk(s, u)Ak,

∀s ∈ [x,max{x, x}] (6b)

wk(x, x, y, u) ≥ 0, wk(x, x, y, u) ≥ 0 (6c)

wk(x, x, y, u) = wk(x, x, y, u) (6d)

for all x, x, x ∈ Rn, y ∈ Rq and u ∈ Rp. When (1a) is a
non-negative system, the domains of s in (6a) and (6b) are
[min{max{0, x}, x}, x] and [max{0, x},max{max{0, x}, x}],
respectively. The same applies to the rest of this paper
when the non-negativity is assumed for (1a).

Both equations (5a) and (5b) are natural extension of
the Luenberger-type observer (see, e.g., Krener and Isidori
(1983); Nijmeijer and van der Schaft (1990)), except that
the system coefficients depend on x and x. It is stressed
that the standard Luenberger-type observer cannot be
applied directly to the plant (1a) since the nonlinearities
in (1a) involve the unmeasured state x. To deal with such
nonlinearities, wk and wk are introduced to (5).

Remark 1. In view of modeling a system, the unity re-
striction (2) for (1) is equivalent to assuming boundedness
of µks. Indeed, if functions µk : Rn × Rp → R+ admit
the existence of c ≥ 0 such that µk(x, u) ≤ c holds for
all x ∈ Rn and u ∈ Rp, the non-zero bound c can be
absorbed by Ak, and the identity of (2) can be achieved
by introducing a zero matrix to the set of Aks for µk(x, u)
playing the complementary role. When β(y, u) is restricted
to β(y, u) =

∑m
k=1 µk(x, u)Bku, the model (1a) defined

with (2) is sometimes referred to as the polytopic linear
model in the framework of polytopic linear parameter-
varying systems (Apkarian et al. (1995)). The model is also
called the Takagi-Sugeno Fuzzy model (Takagi and Sugeno
(1985)) which is very popular for engineering nonlineari-
ties in controller design problems. This paper supposes
that β(y, u) depends on y instead of x in the polytopic
formulation. It means that Bks are assumed to delete the
unmeasurable part from µk(x, u).

Remark 2. For any plant given by (1a) with (2), the exis-
tence of bounded continuous functions wk and wk satisfy-
ing (6) is guaranteed. More precisely, if achieving (6a)-(6c)
directly is not obvious, one can always increase the number
m in (1a) without changing the system dynamics to find



wk and wk. The easiest approach is to divide the k-th
mode into two modes (denoted by k+, k− below) as

µk(x, u)Ak = µ̂k+(x, u)Ak+ + µ̂k−(x, u)Ak−

µ̂k+(x, u) = µ̂k−(x, u) =
1

2
µk(x, u)

Ak+ = 2max{Ak, 0}, Ak− = 2Ak −Ak+.

It is easy to see that

wk+(x, x, y, u)Ak+ + wk−(x, x, y, u)Ak−

≤ µ̂k+(s, u)Ak+ + µ̂k−(s, u)Ak−
≤ wk+(x, x, y, u)Ak+ + wk−(x, x, y, u)Ak−

hold for s in the ranges of (6a) and (6b), respectively, with

wk+(x, x, y, u) = wk−(x, x, y, u) =
1

2
min

s∈[x,max{x,x}]
µk(s, u)

wk−(x, x, y, u) = wk+(x, x, y, u) =
1

2
max

s∈[min{x,x},x]
µk(s, u).

These choices meet (6c) and (6d). The boundedness of wk

and wk is clear from (2).

3. MAIN RESULT

The goal of this paper is to show x(t) and x(t) generated by
(5) give an upper bound and a lower bound for all the time
t, respectively, and to provide useful properties suggesting
the advantage of using (5). To this end, let e = x− x and
e = x− x. the following is the main result.

Theorem 3. Consider the system consisting of (1) and (5)
equipped with (2) and (6c). Suppose that there exist ν,
ν > 0, ϵk, ϵk ≥ 0, P ≻ 0 and P ≻ 0 satisfying

m∑
k=1

ϵkwk(x, x, y, u) ≥ ν,

m∑
k=1

ϵkwk(x, x, y, u) ≥ ν,

∀x, x∈Rn, y∈Rq, u∈Rp (7)

P (Ak +LkC) + (Ak +LkC)TP + ϵkP ⪯ 0 (8)

P (Ak +LkC) + (Ak +LkC)TP + ϵkP ⪯ 0 (9)

for all k = 1, 2...,m. Then the implication

lim
t→∞

δ(t)−δ(t)= lim
t→∞

x(t)=0 ⇒ lim
t→∞

e(t)= lim
t→∞

e(t)=0

(10)

holds true of all x(0), x(0), x(0) ∈ Rn, and there exist g,
g ≥ 0 such that

lim sup
t→∞

|x(t)− x(t)| ≤ (g + g) lim sup
t→∞

|x(t)|

+ g lim sup
t→∞

|δ(t)−δ(t)|+ g lim sup
t→∞

|δ(t)−δ(t)| (11)

holds of all x(0), x(0), x(0) ∈ Rn. Furthermore, if wk, wk

and Lk, Lk are chosen to satisfy (6d) and Lk = Lk for all
k = 1, 2...,m, the implication

x(ts) = x(ts)
∀t∈ [ts,∞) δ(t)=δ(t)

⇒ ∀t ∈ [ts,∞) x(t) = x(t) (12)

holds true of all x(0), x(0), x(0) ∈ Rn.

Theorem 4. Suppose that system (1a) is non-negative. If
the matrices Ak + LkC and Ak + LkC are Metzler for all
k = 1, 2...,m, then the system consisting of (1) and (5)
equipped with (6a)-(6c) satisfies

∀t ∈ R+ x(t) ≤ x(t) ≤ x(t) (13)

for all x(0), x(0) ∈ Rn
+ and x(0) ∈ Rn satisfying

x(0) ≤ x(0) ≤ x(0). (14)

Property (13) in Theorem 4 guarantees that x(t) stays in
the component-wise interval [x(t), x(t)] all the time. How-
ever, if the length xi(t)−xi(t) is large or rapidly increasing
with time, the interval are useless. To avoid this situation,
property (12) secures that upper and lower bounds track
the true state precisely once the bounds hit the true values.
In other words, the agreement x(t) = x(t) is guaranteed
to be an equilibrium regardless of the variation of x(t).
Property (10) guarantees that the upper and lower bounds
are asymptotic estimates. The complete asymptotic esti-
mation of zero error requires limt→∞ x(t) = 0 since the
nonlinearities are of unmeasured variables. Property (11)
establishes an asymptotic property in general cases. It
demonstrates that the length xi(t) − xi(t) is not rapidly
increasing with time unless the disturbance and the plant
state are unbounded. Property (11) also indicates that
xi(t)− xi(t) is not unreasonably large. To see this, define

R(x, x, x, u) =

m∑
k=1

{wk(x, x, y, u)− µk(x, u)}Ak

R(x, x, x, u) =

m∑
k=1

{µk(x, u)− wk(x, x, y, u)}Ak.

Property (2) implies that all the elements of the matrices
R(x, x, x, u) and R(x, x, x, u) are bounded. Thus, there
exist c, c ≥ 0 such that

c = sup
x,x,x∈Rn,u∈Rp

σmax

(
R(x, x, x, u)

)
(15)

c = sup
x,x,x∈Rn,u∈Rp

σmax (R(x, x, x, u)) . (16)

The value of c and c characterizes how close the replacing
nonlinearities are to the true ones of unmeasured variables.
The coefficients g and g of the estimation errors in (11)
depend on c and c, respectively. In fact, we can prove that
the closer we choose the replacing nonlinearities are, the
smaller the estimation errors are.

Proposition 5. Property (11) in Theorem 3 can be achieved
with g (resp. g) which is a increasing function of c (resp.
c)). Furthermore, for the notation g(c) (resp. g(c)), g(0) =

0 (resp. g(0) = 0) holds if δ(t) = δ(t) (resp., δ(t) = δ(t)
for all t ∈ R+.

It can be verified that if the assumptions in Theorem 4 are
satisfied, one can define smaller c and c in (15) and (16)
by restricting the triplet {x, x, x} to the set of x ∈ [x, x].

Remark 6. Property (6d) is the key to guaranteeing the
precise tracking (12) to be true once the state estimates
hit the true value. It aims at avoiding conservativeness of
estimated intervals. In fact, Theorems 3 and 4 do not need
(6d) unless (12) is of interest. If one does not pay attention
to the reasonable length of the estimated intervals, two
fictitious modes Â1 and Â2 representing an upper bound
and lower bound of (1a) can be defined as

2∑
l=1

wlÂl ≤
m∑

k=1

µk(x, y, u)Ak ≤
2∑

l=1

wlÂl

with w1 = w2 = 1 and w1 = w2 = 0. All the statements
in Theorems 3 and 4 except (12) hold true by replacing

Ak by Âl. The employment of (6d) gives the meaning of
using the original Ak in observers.

Remark 7. If there exists µ̂k : Rn × Rp → [0, 1] such that



µk(x, u) = µ̂k(y, u), ∀x ∈ Rn, u ∈ Rp (17)

for all k = 1, 2, ...,m, the use of x and x is not necessary.
In fact, it is easy to see that replacing both wk and wk
with µ̂k(y, u) in (5) yields

ė =

m∑
k=1

µ̂k(y, u)(Ak + LkC)e+ δ − δ

ė =

m∑
k=1

µ̂k(y, u)(Ak + LkC)e.+ δ − δ.

Therefore, all the statements of Theorems 3 and 4 hold
true without the cause clause limt→∞ x(t) = 0 in (10).

4. RELAXATION OF ASSUMPTIONS

Theorem 4 requires the non-negativity of the plant (1a),
and the Metzler property of Ak + LkC and Ak + LkC. In
order to relax these assumptions, one can confirm that
the observer proposed in this paper allows one to use
coordinate transformation which is popular in interval
observer design (see, e.g., Räıssi et al. (2012); Efimov and
Räıssi (2016)). In fact, applying z = Rx to the plant (1a)
for a nonsingular matrix R ∈ Rn×n yields

ż(t) =

m∑
k=1

µk(R
−1z(t), u(t))RAkR

−1z(t)

+Rβ(y(t), u(t)) +Rδ(t). (18)

The upper and lower bounds of disturbances are expressed
in the new coordinate as

R+δ −R−δ(t) ≤ Rδ(t) ≤ R+δ −R−δ(t). (19)

Then the non-negativity can be imposed on the system
(18) with the transformed initial condition z(0) = Rx(0)
and the transformed disturbance Rδ(t) instead of (1a).
The matrix R provides a degree of freedom in securing
the non-negativity for a given (1a). Using the disturbance
bounds (19), the observer (5) can be built for z of (18)
instead of x. The properties in (6) posed for s = R−1z can
be defined by replacing x, x with z, z, respectively. The
initial conditions of the observer can be set to

z(0)=R+x(0)−R−x(0), z(0)=R+x(0)−R−x(0) (20)

since (14) implies z(0) ≤ z(0) ≤ z(0). Theorem 4 on
the transformed coordinate requires that the transformed
matrices R(Ak + LkC)R−1 and R(Ak + LkC)R−1 are
Metzler, where R gives a degree of freedom. The interval
estimation achieving (13) is obtained as

x(t)=S+z(t)−S−z(t), x(t)=S+z(t)−S−z(t), (21)

where S = R−1. Therefore, Theorem 4 holds true for z
with the pair z and z. It is important that

x = x ⇔ z = z (22)

not only makes the interval estimation through z and z rea-
sonable, but also allows (6d) to be effective with z and z.
Therefore, Theorem 3 is valid for the transformed variables
z with the pair z and z, and it gives guaranteed properties
on the original coordinate through (21). The transformed
disturbance bounds (19) have a useful property that the
two inequalities in (19) become equalities when δ(t) = δ(t).

5. AN EXAMPLE

Consider the plant (1) defined with

A1=

[
−2 2
5 −6

]
, A2 = 0, A3=

[
−2 0
−4 −2

]
(23a)

C = [1 0] , β(y, u) = 0 (23b)

µ1(x) =
1

2
, µ2(x) =

1

2 + x2
, µ3(x) =

x2

4 + 2x2
, (23c)

which satisfy (2). Since (4) holds, this system (23) is
non-negative. The plant (23) does satisfy the restrictive
assumption made in the preliminary work of Ito and Dinh
(2019) even if the disturbances are removed. By contrast,
it can be verified that the plant (23) satisfies all the
assumptions posed in Theorems 3 and 4 for

L1=

[
−2
0

]
, L2=

[
0
0

]
, L3=

[
−2
4

]
(24)

with

P =

[
2 0
0 1

]
. (25)

All properties in (6) are achieved by

w1=w1=
1

2
, w2=

1

2+x2
, w2=

1

2+max{0, x2}
(26a)

w3 =
max{0, x2}

4 + 2max{0, x2}
, w3 =

x2

4 + 2x2
. (26b)

For the unmeasured state x2, the interval computed by the
proposed observer (5) is shown in Fig. 1 for

x(0) =

[
3
4

]
, x(0) =

[
4
5

]
, x(0) =

[
2
3

]
(27)

δ(t) =

 sin 4t+1

1 + t

−cos 4t+1

1 + t

 , δ(t) =

 2

1+t
2

1+t

 , δ(t) = 0. (28)

The interval estimation is also plotted for

x(0) =

[
3
4

]
= x(0) = x(0) (29)

δ(t) =

 sin 4t+1

1 + t

−cos 4t+1

1 + t

 = δ(t) = δ(t) (30)

in Fig. 2. The simulation results are consistent with (10),
(11), (12) and (13) established in Theorems 3 and 4. If
ones ignore (6d), all other conditions in (6) are met by

w1 =
1

2
, w1 =

1

2
, w2 =

1

2
, w2 = 0 (31a)

w3 =
1

2
, w3 = 0. (31b)

This means that the observer (5) defined with (31) treats
the nonlinearities of the unmeasured state x2 as uncer-
tainty, and the observer uses an upper bound and a lower
bound of (23c). This treatment is basically the idea com-
mon in Chebotarev et al. (2015); Efimov and Räıssi (2016);
Räıssi et al. (2012); Efimov et al. (2013). For the pair (27)-
(28) and the pair (29)-(30), computed interval estimates
are shown in Figs. 3 and 4, respectively. Comparing these
plots with those in Figs. 1 and 2 confirms that the observer
(5) with (26) achieving (6d) produces tighter interval es-
timates than the observer with (31) violating (6d).
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Fig. 1. The interval [x2.x2] estimated by the observer (5)
with (24) and (26) for plant (1) given by (23) with
initial condition (27) and disturbance (28).
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Fig. 2. The interval [x2.x2] estimated by the observer (5)
with (24) and (26) for plant (1) given by (23) with
initial condition (29) and disturbance (30); The three
lines completely overlap.
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Fig. 3. The interval [x2.x2] estimated by the observer (5)
with (24) and (31) for plant (1) given by (23) with
initial condition (27) and disturbance (28).

6. CONCLUDING REMARKS

For interval observer design, this paper has proposed a
mechanism of using estimated intervals to deal with non-
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Fig. 4. The interval [x2.x2] estimated by the observer (5)
with (24) and (31) for plant (1) given by (23) with
initial condition (29) and disturbance (30).

linearities of unmeasured variables. For polytopic models,
it has been shown that the use of intervals can actually
make the estimation better than treating the nonlinearities
as uncertainty. The effectiveness has been demonstrated
by a numerical example comparing two observers. In this
paper, disturbances are addressed by both the observer
structure and performance guarantees, which were not
considered in the initial work presented in Ito and Dinh
(2019) by the authors. Restrictive assumptions used in the
initial work have also been removed, and such a point has
also been illustrated by the numerical example.

Finally, it would be worth mentioning that it is possible
to numerically reduce the L2-gain from the disturbance to
x and x as demonstrated in Efimov and Räıssi (2016). It
is reasonable when x is made small by control.
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Efimov, D. and Räıssi, T. (2016). Design of interval
observers for uncertain dynamical systems. Automation
and Remote Control, 77(2), 191–225.
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Gouzé, J.L., Rapaport, A., and Hadj-Sadok, M.Z. (2000).
Interval observers for uncertain biological systems. Eco-
logical modelling, 133(1-2), 45–56.

Isidori, A. (2001). Nonlinear control systems, an introduc-
tion, 3 rd. edition. Springer.

Ito, H. and Dinh, T.N. (2019). An approach to interval
observers for takagi-sugeno systems with attractiveness



guarantees. In SICE Annual Conference 2019, 1268–
1273.

Khalil, H.K. (2015). Nonlinear Control, Global Edition.
Pearson.

Krener, A.J. and Isidori, A. (1983). Linearization by
output injection and nonlinear observers. Syst. Control
Lett., 3(4), 47–52.

Li, J., Wang, Z., Shen, Y., and Wang, Y. (2019). Inter-
val observer design for discrete-time uncertain Takagi-
Sugeno fuzzy systems. IEEE Transactions on Fuzzy
Systems, 27(4), 816–823.

Marx, B., Ichalal, D., and Ragot, J. (2019). Interval
state estimation for uncertain polytopic systems. Int.
J. Control. doi:10.1080/00207179.2019.1644455.

Mazenc, F. and Bernard, O. (2011). Interval observers for
linear time-invariant systems with disturbances. Auto-
matica, 47(1), 140–147.

Mazenc, F. and Dinh, T.N. (2014). Construction of inter-
val observers for continuous-time systems with discrete
measurements. Automatica, 50(10), 2555–2560.

Mazenc, F., Dinh, T.N., and Niculescu, S.I. (2013). Robust
interval observers and stabilization design for discrete-
time systems with input and output. Automatica,
49(11), 3490–3497.

Mazenc, F., Dinh, T.N., and Niculescu, S.I. (2014). Inter-
val observers for discrete-time systems. Int. J. Robust
and Nonlinear Control., 24(17), 2867–2890.

Moisan, M., Bernard, O., and Gouzé, J.L. (2009). Near op-
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Appendix A. APPENDIX

Proof of Theorem 3 and Proposition 5

Define

A(x, x, y, u) =

m∑
k=1

wk(x, x, y, u)
(
Ak + LkC

)
A(x, x, y, u) =

m∑
k=1

wk(x, x, y, u) (Ak + LkC) .

Then from (1a) and (5) we obtain

ė = A(x, x, y, u)e+R(x, x, x, u)x+ δ − δ (A.1a)

ė = A(x, x, y, u)e+R(x, x, x, u)x+ δ − δ. (A.1b)

The existence of ν > 0, ϵk ≥ 0 and P ≻ 0 satisfying (7)
and (8) for all k = 1, 2...,m guarantees

PA(x, x, y, u) +A(x, x, y, u)P+ νP ≺ 0

for all x, x ∈ Rn
+ and u ∈ Rp

+. Properties (7) and (9) yields

PA(x, x, y, u) +A(x, x, y, u)P+ νP ≺ 0.

The function V (e) = eTPe satisfies

V̇ (e) ≤ −ν

2
eTPe+

2

ν

[
x

δ − δ

]
[R I]TP [R I]

[
x

δ − δ

]
along (A.1a). From (15), for δ = ν/2 we obtain

V̇ (e) ≤ −ν

2
pmin|e|2 +

2(c2 + 1)pmax

ν

∣∣∣∣[ x
δ − δ

]∣∣∣∣2 ,
where pmax (resp., pmin) is the largest (resp., smallest)
eigenvalue of P . Hence, V (e) = eTPe is an ISS Lyapunov
function of system (A.1a) (see Sontag and Wang (1995)).
In the same way, V (e) = eTPe is an ISS Lyapunov function
of system (A.1b). Thereby, the implication (10) follows
from ISS and (3). ISS of (A.1a) also gives

lim sup
t→∞

|e(t)| ≤ 2
√

c2+1

ν

√
pmax

pmin

lim sup
t→∞

∣∣∣∣[ x(t)
δ(t)−δ(t)

]∣∣∣∣ .
Here, (2

√
c2+1/ν)

√
pmax/pmin is called the asymptotic

gain. A similar asymptotic gain of (A.1b) is obtained

between [xT , δT −δT ]T and e(t). Since x− x = e+ e, and

|[a, b]T | ≤
√
2(|a| + |b|) for a, b ∈ Rn, combining the two

asymptotic gains yields (11) with

g =
2
√

2c2+2

ν

√
pmax

pmin

, g =
2
√
2c2+2

ν

√
p
max

p
min

. (A.2)

These arguments also give

g =
2
√
c2

ν

√
pmax

pmin

, g =
2
√

c2

ν

√
p
max

p
min

. (A.3)

if δ(t) = δ(t) holds for all t ∈ R+. The definitions (A.2)
and (A.3) prove the claims of Proposition 5. Finally, if
(6d) holds, under the choice Lk = Lk for all k = 1, 2...,m,
summing up both sides of (A.1a) and (A.1b) yields, for all
x, x, x ∈ Rn and u ∈ Rp, d(x−x)/dt = 0 as long as x = x
and δ = δ. Hence, property (12) follows.

Proof of Theorem 4

The non-negativity assumption implies x(t) ≥ 0 for all
t ∈ R+. By virtue of (6a) and (6b), the implications

x ≤ x ≤ x ⇒ R(x, x, x, u) ≥ 0 (A.4)

x ≤ x ≤ x ⇒ R(x, x, x, u) ≥ 0 (A.5)

hold true for all u ∈ Rp. Due to property (6c), the
matrix A(x, x, y, u) is Metzler for all x, x, y and u since
Ak + LkC is Metzler for each k = 1, 2...,m. In the same
way, A(x, x, y, u) is Metzler. Suppose that there exists
i ∈ {1, 2, ..., n} such that xi(ts) ≤ xi(ts) = xi(ts) and
x(ts) ≤ x(ts) ≤ x(ts) hold at some ts ∈ R+. Then (A.4)
and x(ts) ≥ 0 imply R(x(ts), x(ts), x(ts), u(ts))x(ts) ≥ 0.
By virtue of (3), property (A.1a) yields ėi(ts) ≥ 0. In the
case where xi(ts) = xi(ts) ≤ xi(ts) and x(ts) ≤ x(ts) ≤
x(ts) hold, we obtain ėi(ts) ≥ 0 from (A.1b) and x(ts) ≥ 0
since (A.5) implies R(x(ts), x(ts), x(ts), u(ts))x(ts) ≥ 0.
Since the solutions x, x and x of (1a), (5a) and (5b) are
continuously differentiable with respect to t, the restriction
(14) of the initial condition results in (13).


